Data compression by Principal Component Analysis (PCA) in modelling of soil density parameters based on soil granulation
DOI:
https://doi.org/10.7306/gq.1169Keywords:
Artificial Neural Networks, Principal Component Analysis, compaction parameters, minimum and maximum dry density of solid particles, graining parameters.Abstract
The parameter for the density specification of naturally compacted non-cohesive soils and soils in embankments of hydraulic structures is the density index (ID). The parameter used to control the quality of compaction of cohesive and non-cohesive soils artificially thickened, embedded in a variety of embankments is the degree of compaction (IS). In order to determine the parameters of density (ID or IS), compaction parameters ( or should be examined in a laboratory, which often is a long and difficult procedure to carry out. Therefore, there is a need for methods of improving and shortening the test of compaction parameters based on the development and application of useful correlations. Since compaction parameters are dependent on the soil granulation, a method based on regression and artificial neural networks was applied to develop required correlations. Due to the large number of input variables of neural networks in relation to the number of case studies, a PCA method was used to reduce the number of input variables, which resulted in reduction in the size of neural networks.Downloads
Published
2014-05-13
Issue
Section
Thematic issue
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as this can lead to productive exchanges and earlier and more frequent citation of the published work (See The Effect of Open Access).