Microfabric diversity and grain shape analysis of fault rocks from the selected areas of the Western Tatra Mountains
DOI:
https://doi.org/10.7306/gq.1129Keywords:
microfabrics, grain shape analysis, fault rocks, shear zones, Western Carpathians, Western Tatra MountainsAbstract
Fault rocks in brittle and brittle-ductile shear zones played a key role in the evolution of the Western Tatra Mountains crystalline rocks (Poland–Slovakia). Microfabrics of these rocks, including grain shape analyses, were investigated in the six areas of the Western Tatra Mountains. Based on studies of thin sections, 14 types of fault rock microfabric are distinguished, according to the following criteria: (a) the presence and abundance levels of a cataclastic matrix and (b) the presence and form of a preferred orientation features. General tendencies observed in these areas indicate southwards increasing non-coaxial deformation as well as the domination of ultracataclasites or ultramylonites to phyllonites in areas with negative relief (e.g., sedlo Zabrat’ Pass, Dziurawa Przełęcz Pass). A model of shear zone evolution embracing following three stages is proposed: (1) deformation partitioning and block-controlled cataclastic flow, (2) matrix-controlled cataclastic flow, (3) selective leaching and deposition of silica, leading to the formation of softened and hardened deformation domains respectively. These microstructural observations were supported by statistical analyses of the grain shape indicators (compactness, isometry, ellipticity, solidity, convexity). Two trends of relationships between compactness and convexity were noted: the first, horizontal on the correlation diagrams, was interpreted as an effect of rapid cataclasis and then sericitization, the second, with a strongly negative correlation coefficient, was considered as an effect of long-term cataclastic flow. The different microfabric data and microstructural interpretations described in this paper are consistent with a new model of the tectonic history of the Western Tatra Mountains evolution, with an important role for a non-coaxial deformation during Alpine orogeny in brittle and brittle-ductile conditions.Downloads
Additional Files
Published
2013-11-14
Issue
Section
Articles
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as this can lead to productive exchanges and earlier and more frequent citation of the published work (See The Effect of Open Access).