Hydrodynamic modelling, environmental tracers and hydrochemistry of a confined sandy aquifer (Kędzierzyn-Głubczyce Subtrough, SW Poland)
Keywords:
confined aquifers, hydrodynamic modelling, environmental tracers, hydrochemistry, water qualityAbstract
Sarmatian sands and buried Pleistocene valleys of the Kędzierzyn-Głubczyce Subtrough represent one of the main aquifers in southern Poland ( MGWB-332 -- Major Ground Water Basin). This aquifer is intensively exploited, supplying tap water for the human population and for industry in the whole area; but, being confined, it has no influence on the ground water ecosystems. Two Ground Water Bodies (GWB-128 and GWB-129), introduced by administrative decisions according to EU Directives, approximately cover the area of MGWB-332. The present study is related to the eastern part, the Sarmatian and buried valleys sands of MGWB-332, i.e. to the most important part of the multi-aquifer GWB-129 which in profile consists of Holocene and Pleistocene sands, confined Sarmatian and Pleistocene buried valley sands, and Badenian sands. The presence and influence of deeper permeable formations is not addressed. The Sarmatian and Badenian aquifers are recharged and drained mainly by vertical seepages. Hydrodynamic modelling of the whole Kędzierzyn-Głubczyce Subthrough and tracer data indicate modern ages at the outcrops of the Sarmatian under the Pleistocene deposits and mid to early Holocene ages close to the Odra River valley. Waters are of the HCO3-Ca type, changing at the centre of the Sarmatian to the SO4-Ca type due to the contribution of ascending sulphate water from the Badenian strata, whereas water in the buried Quaternary valley is of the HCO3-Na type, which means no significant contribution of ascending waters. Polluted modern waters occur only at the northwestern boundary in the area of the hydrogeological window. The quality of waters and their hydrochemistry result from water-rock interactions and seepage exchanges with overlying and underlying aquifers belonging to the same GWB. Natural distributions of most major, minor and trace constituents are very wide, exemplifying difficulties in defining the quality of water in a unique way for the whole aquifer and particularly for the investigated multi-aquifer GWB.Downloads
Published
2010-03-27
Issue
Section
Articles
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as this can lead to productive exchanges and earlier and more frequent citation of the published work (See The Effect of Open Access).