New insight into coastal processes in the southern Baltic Sea: relevance to modelling and future scenarios
Keywords:
coastal zone evolution, barrier coast, shoreface-connected sand ridges, wave energy distributionAbstract
Understanding the relationships between shoreline changes and morpho-geological features of the seabed and hydrodynamics is important for predicting coastal dynamics. The southern Baltic barrier coast is distinguished by rhythmic shoreline features of different scales, forming an erosion-accumulation system. This study is an attempt to explain the relationships between shoreface-connected, obliquely oriented sand ridges, the distribution of wave energy, and the impact of waves on shoreline changes. A 28.5 km stretch of the Polish coast, up to 2 km offshore, was investigated using a multibeam echosounder, a sub-bottom profiler, a side-scan sonar, and sediment coring. Analyses of a DTM, aerial photographs and maps from the late 19th century show that the boundaries between accretion and erosion zones on the coast have shifted eastward at a rate of ~10–11 m/year. Hydrodynamic modeling shows that depressions between the ridges are “energy windows” through which higher energy waves reach the shore. The asymmetry of the ridges and their orientation relative to the prevailing direction of waves suggest that they have been moving eastward. Measurements of 137Cs content in the sediment cores prove that the thickness of the dynamic layer exceeds 1.5–2.0 m. When large-scale sand ridges migrate, “energy windows” also migrate with them, as does the entire erosion-accretion system. In conclusion, it is highly likely that the average shoreline retreat measured on the scale of a few centuries and dozens of kilometres may be smaller than we suspect based on observations made in recent decades.Downloads
Published
2024-04-25
Issue
Section
Articles
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as this can lead to productive exchanges and earlier and more frequent citation of the published work (See The Effect of Open Access).