Thermogenic gases generated from coals and shales of the Upper Silesian and Lublin basins: hydrous pyrolysis approach
Keywords:
hydrous pyrolysis gas, gaseous hydrocarbons, carbon dioxide, molecular nitrogen, stable C, H, N isotopes, Upper Silesian and Lublin Coal basinsAbstract
In order to provide a better characterization of the origin and volume of thermogenic gas generation hydrous pyrolysis (HP) experiments were performed on coals and shales at 330 and 360oC for 72 hours. The maturity range of coals and shales used for HP varies from 0.57 to 0.92% Ro. The maturity increase caused by HP at 330 and 360oC ranges from 1.32 to 1.39% and from 1.71 to 1.83%, respectively. δ13C of CH4, C2H6, C3H6 and n-C4H10 in HP gases versus their reciprocal C-number have a concave relationship, and therefore do not follow a linear trend. δ2H of CH4, C2H6 and C3H6 in HP gases versus their reciprocal H-number show both linear and convex-concave relationships. The growth of CO2 yields during HP was higher for shales than for coals. H2S yields from shales are higher than from coals, which can be connected with catalytic and adsorbed influence of shale matrix. H2 was also generated in notable quantities from water and organic matter of coals and bigger amounts from shales. N2 yields grow with the increase of Ro after 360oC HP and it is more enriched in 15N isotope than after 330oC.Downloads
Additional Files
Published
2021-07-12
Issue
Section
Articles
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as this can lead to productive exchanges and earlier and more frequent citation of the published work (See The Effect of Open Access).