The Tajno ultramafic-alkaline-carbonatite massif, NE Poland: a review. Geophysics, petrology, geochronology and isotopic signature
Keywords:
Tajno intrusion, East European Craton, ultramafic-alkaline- carbonatitic complex, CarboniferousAbstract
This paper reviews all available geological data on the Tajno Massif that intruded the Paleoproterozoic crystalline basement of NE Poland (Mazowsze Domain) north of the Teisseyre-Tornquist Zone, on the East European Craton. This massif (and the nearby Ełk and Pisz intrusions) occurs beneath a thick Mesozoic-Cenozoic sedimentary cover. It has first been recognized by geophysical (magnetic and gravity) investigations, then by drilling (12 boreholes down to 1800 m). The main rock types identified (clinopyroxenites, syenites, carbonatites cut by later multiphase volcanic/subvolcanic dykes) allow characterizing this massif as a differentiated ultramafic, alkaline and carbonatite complex, quite comparable to the numerous massifs of the Late Devonian Kola Province of NW Russia. Recent geochronological data (U-Pb on zircon from an albitite and Re-Os on pyrrhotite from a carbonatite) indicate that the massif was emplaced at ~348 Ma (Early Carboniferous). All the rocks, but more specifically the carbonatites, are enriched in Sr, Ba and LREE, like many carbonatites worldwide, but depleted in high field strength elements (Ti, Nb, Ta, Zr). The initial 87Sr/86Sr (0.70370 to 0.70380) and eNd(t) (+3.3 to +0.7) isotopic compositions of carbonatites plot in the depleted quadrant of the Nd-Sr diagram, close to the “FOcal ZOne” deep mantle domain. The Pb isotopic data (206Pb/204Pb <18.50) do not point to an HIMU (high U/Pb) source. The ranges of C and O stable isotopic compositions of the carbonatites are quite large; some data plot in (or close to) the “Primary Igneous Carbonatite” box, while others extend to much higher, typically crustal δ18O and δ13C values The initial 87Sr/86Sr (0.70370 to 0.70380) and εNd(t) (+3.3 to +0.7) isotopic compositions of carbonatites plot in the depleted quadrant of the Nd-Sr diagram, close to “FOcal ZOne” (FOZO) deep mantle domain. The Pb isotopic data (206Pb/204Pb <18.50) do not point to an HIMU (high U/Pb) source. The ranges of C and O stable isotopic compositions of the carbonatites are quite large; some data plot in (or close to) the “Primary Igneous Carbonatite” box while others extend to much higher, typically crustal δ18O and δ13C values.Downloads
Additional Files
Published
2020-07-02
Issue
Section
Thematic issue
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as this can lead to productive exchanges and earlier and more frequent citation of the published work (See The Effect of Open Access).