Sedimentary evidence of extreme storm surge or tsunami events in the southern Baltic Sea (Rogowo area, NW Poland)
DOI:
https://doi.org/10.7306/gq.1385Keywords:
tsunami deposits, storm deposits, grain size analysis, geochemistry, radiocarbon dating, Baltic SeaAbstract
The Baltic Sea is not typically considered as an area affected by tsunamis. However, during the Late Pleistocene and Holocene several tsunami events have been interpreted from the sedimentary record, mainly in Sweden and Estonia. Furthermore, on the southern coast of the Baltic Sea, there are historical accounts of catastrophical marine floodings called “der Seebär” (“the Sea Bear”). Their descriptions reveal many features typical for tsunami, but their genesis remained unknown and sedimentary evidence for such events has not been found. Here we provide evidence of sandy event layers from the area of Rogowo, NW Poland – the area of historical catastrophic storms as well as “der Seebär” events. The study area is a low-lying coastal plain with an average elevation of –0.5 to +0.5 m a.s.l., protected from the open sea by beach and coastal dune systems up to 5 m high. Sedimentological, micropalaeontological and geochemical analyses along with AMS 14C dating were applied to sedimentary successions seen in 5 major trenches and 198 sediment cores up to 1.5 m long. Two sandy layers were identified in the peat deposits that developed on the plain during the last ~2000 years. They reveal a number of typical features of tsunami deposits (significant lateral extent and thickness, rip-up clasts, chemical and micropalaeontological evidence of marine origin), however, 14C dating along with the historical accounts revealed that the major layer, extending at least 1.2 km from the modern coasts, was probably deposited by arguably the largest storm surge during the last 2000 years, which took place in 1497 AD. These storm deposits were likely formed during inundation of the low-lying coastal plain after major breaching of coastal dunes resulting in tsunami – like flow pattern and thus similar sedimentological effects. A discontinuous sand layer of younger age (18th century) and sharing similar properties to the previous one may be related to “der Seebär” event or another storm surge. The study revealed that the southern Baltic Sea coast may be affected by much greater coastal flooding than known from more recent accounts and observations. Thus, the presented geological record should be taken as an example of a worst-case scenario in coastal zone risk assessment from natural hazards. These events left sedimentary deposits that resemble tsunami deposits. It is likely that, in similar settings where storm surges cause unidirectional inundation of a coastal plain, it may not be possible to establish whether the resulting deposits were laid down from storms or tsunamis.Downloads
Additional Files
Published
2017-09-26
Issue
Section
Articles
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as this can lead to productive exchanges and earlier and more frequent citation of the published work (See The Effect of Open Access).