Temperature and isotopic relations in carbonate minerals in the Middle Jurassic sideritic rocks of central and southern Poland

Authors

  • Katarzyna Jarmołowicz-Szulc Polish Geological Institute - National Research Institute
  • Aleksandra Kozłowska Polish Geological Institute - National Research Institute

DOI:

https://doi.org/10.7306/gq.1323

Keywords:

fluid inclusions, isotopes, carbonate minerals, sideritic rocks, Middle Jurassic

Abstract

The present study assesses the physico-chemical character of the fluids responsible for the genesis of carbonate minerals in the Middle Jurassic sideritic rocks at the northeastern margin of the Holy Cross Mts. and in the Częstochowa region. These rocks occur at present at depths between 30 and 600 m. Fluid inclusion and isotopic analyses have been performed in the carbonate minerals from sideritic sandstones, clayey siderites and sideritic coquinas. Siderite is the main carbonate mineral of the sideritic rocks. Calcite and ankerite are also present. The siderite is represented by two varieties, Mg-rich siderite (sideroplesite, less commonly – pistomesite) and siderite. Two generations of siderite have been distinguished – an early and a late one. The early siderite was formed at temperatures of about 20°C in the zone of microbiological methanogenesis from marine waters with some influence of meteoric waters (δ18O from –7.84 to –1.92‰ VSMOW). The late siderite crystallized at temperatures of about 62–110°C from pore waters enriched in 18O (δ18O >0‰ VSMOW) as compared with the isotopic composition of the waters responsible for the early siderite generation. The conducted fluid inclusion analyses point to formation of the cements from complex fluids of brine and carbon dioxide character, with densities slightly exceeding 1 g/cm3 and salinities varying from 10.5 to 16.9 wt.% NaCl eq. and from 6.4 to 14.0 wt.% NaCl eq. in the Holy Cross Mts. and in the Częstochowa region, respectively. The homogenization temperatures lie in the intervals of 62–110°C and 60–97°C, respectively and represent elevated values compared with data from the Polish Lowlands. Apart from burial, other heat sources must have been important for the lithogenesis of the Middle Jurassic deposits.            

Downloads

Additional Files

Published

2016-11-02

Issue

Section

Thematic issue