Characteristics of diagenesis, isotopic relations and reservoir properties of the Middle Miocene sandstones in the Carpathian Foredeep (Poland and Ukraine)

Katarzyna Jarmołowicz-Szulc, Aleksandra Kozłowska, Marta Kuberska

Abstract


 

 

The Upper Badenian and Sarmatian sandstones recognized from boreholes in southeastern Poland and western Ukraine are very fine to medium-grained subarkosic and sublithic arenites and wackes. The deposits underwent diagenesis well below 100°C, and their evolutionary pathways of diagenetic and related reservoir properties represent eo- and mesodiagenesis. Eodiagenesis here comprised mechanical compaction, development of chlorite, microcrystalline calcite, pyrite, siderite, kaolinite and quartz, and dissolution of feldspar and mica grains. Mesodiagenesis included quartz and K-feldspar overgrowths, albitisation, crystallisation of dolomite and ankerite and coarsely crystalline calcite, dissolution of feldspar grains and carbonate cement, and illite growth. The isotopic data of δ18OVPDB of carbonate cements suggest their crystallisation from porewater which is a mixture of marine and meteoric waters. The δ13CVPDB values suggest derivation of carbon from microbial methanogenesis of organic matter. The 87Sr/86Sr values in coarsely crystalline calcite are higher than those of Badenian seawater. The radiogenic strontium may have been supplied during diagenesis by meteoric waters draining the continental area. The Middle Miocene sandstones show better filtration abilities (good and very good) in the western part of the study area (Poland) than in the east. Primary intergranular porosity is more frequent than secondary intragranular and intercrystalline porosities.The primary porosity was diminished due to compaction and cementation from west to east. Some increase in porosity was caused by dissolution of detrital grains and by decay of soft parts of organisms.


Keywords


diagenesis, reservoir properties, sandstones, isotopic analyses, Middle Miocene, Carpathian Foredeep

Full Text:

PDF