Kwartalnik Geologiczny, t. 30, nr 2, 1986 r. str 157-186

Zbigniew CYMERMAN

Sekwencja deformacji skał metamorficznych z otworu wiertniczego Niedźwiedź IG 2

Wyróżniono struktury tektoniczne powstałe w czasie faz deformacji $D_1 - D_4$. Pozwoliły one ustalić sekwencję deformacji w przewierconych amfibolitach i blastomylonitach. Charakterystyczny dla tych serii metamorficznych był silny rozwój stref mylonitycznych i kataklastycznych, szczególnie w fazie D_2 . Faza deformacji D_1 należy prawdopodobnie do fałdowań starobretońskich, natomiast młodsze fazy (D_{2-4}) związane były z procesami kopułotwórczymi i/lub deformacjami synintruzyjnymi granito-idów żulowskich.

WSTĘP

Dodatnia anomalia grawimetryczna o formie kolistej, położona między Ziębicami a Paczkowem na Dolnym Śląsku, była rozpoznawana dwoma otworami wiertniczymi Niedźwiedź IG 1 i IG 2. Szczegółowe wyniki badań rdzeni wiertniczych z otworu Niedźwiedź IG 1 znajdują się w opracowaniu S. Maciejewskiego i L. Sawickiego (1977), a z otworu Niedźwiedź IG 2 – w dokumentacji zespołowej pod kierownictwem J. Jerzmańskiego (J. Jerzmański, Z. Cymerman i in., 1984). Na wstępie należy zaznaczyć, że badania tektoniczne rdzeni z otworu Niedźwiedź IG 1 nie zostały wykonane. Celem niniejszego artykułu jest przedstawienie najważniejszych wyników szczegółowych prac tektonicznych wykonanych na materiałach wiertniczych z otworu Niedźwiedź IG 2.

Otwór Niedźwiedź IG 2, położony ok. 1 km na północ od miejscowości Głęboka, osiągnął głębokość 1694,0 m. Utwory metamorficzne w najbliższej okolicy tego otworu przykryte są osadami trzecio- i czwartorzędowymi o dużych miąższościach, czasami przekraczającymi nawet 100 m. Najbliższe odsłonięcia powierzchniowe skał metamorficznych znajdują się w odległości ok. 3 km na wschód i południe od otworu Niedźwiedź IG 2 (fig. 1).

Podłoże podkenozoiczne, według J. Oberca (1972), reprezentowane jest przez dwie jednostki strukturalne (Gościęcic i Javornika), które należą do jednostek Sudetów Zachodnich oraz przez jednostkę Branny, należącą już do Sudetów Wschodnich. Na jednostkę Branny mają być nasunięte z zachodu, wzdłuż nasunięcia ram-

Fig. 1. Szkic geologiczny odkryty wokół otworu Niedźwiedź IG 2

Geological seketch map of area of the borehole Niedźwiedź IG 2, without Cainozoic deposites

Geological seketch map of area of the borehole Niedz/Nedz/1072, without Califobole deposites 1 – granity masywu Żulowej (karbon górny); 2 – mylonity i blastomylonity (? karbon dolny); starszy pałeozoik– dewon środkowy (?): 3 – paragnejsy i łupki łyszczykowe, 4 – łupki łyszczykowe i łupki granatowe, lokalnie leptynity, 5 – paragnejsy biotytowe, 6 – amfibolity, 7 – gnejsy muskowitowo-biotytowe (z Lipnik), 8 – gnejsy z Doboszowic; 9 – granice wydzieleń geologicznych; 10 – wychodnie podłoża podkenozoicznego; 11 – uskoki 12 – otwory wiertnicze; 13 – biegi i upady foliacji S₁ 1 – granites of Żulowa Massif (Upper Carboniferous); 2 – mylonites and blastomylonites (? Lower Carboni-ferous); Lower Pałeozoie – Middle Devonian (?): 3 – paragneisses and micaceous schists, 4 – micaceous and garnet schists and, locally, leptynites, 5 – biotite paragneisses, 6 – amphibolites, 7 – muscovite-biotite gneisses (from Lipniki), 8 – Doboszowice gneisses; 9 – geological boundaries; 10 – outcrops of pre-Cenozoic bedrock; 11 – faults; 12 – boreholes; 13 – strikes and dips of foliation S₁

158

zowskiego, jednostki zachodniosudeckie. m.in. jednostka Javornika, zbudowana z amfibolitów i gnejsów.

W otworze Niedźwiedź IG 2 poniżej głęb. 104,0 m występuje zwietrzelina ilasta amfibolitów, a od 122,0 do 1638,4 m – amfibolity. Od głęb. ok. 1536 m pojawiają się wśród amfibolitów łupki amfibolowe i gnejsy amfibolowe. Skały kwarcowoskaleniowe w postaci cienkich wkładek wśród amfibolitów stwierdzono od głęb. ok. 1350 m. Amfibolity charakteryzują się dużym zróżnicowaniem strukturalnym i teksturalnym. Dotyczy to głównie amfibolitów średnio- i nierównoziarnistych, znacznie mniej – odmian drobnoziarnistych. Poniżej grubej serii amfibolitów (1638,4–1694,0 m – koniec otworu) występuje seria bardzo zróżnicowanych skał mylonitycznych i blastomylonitycznych. Niestety, seria ta nie została przewiercona. W jej skład wchodzą mylonity i blastomylonity skał kwarcowo-skaleniowych, łupków kwarcowo-skaleniowych i wapieni krystalicznych. Nie wykluczone, że seria amfibolitów, jak i leżąca poniżej seria skał silnie przetransponowanych przez procesy tektoniczne reprezentują jeden duży, pierwotny kompleks utworów wulkaniczno-osadowych.

CEL I ZAKRES BADAŃ

Przedstawiona niżej sekwencja zjawisk tektonicznych oparta jest na szczegółowej analizie całego materiału wiertniczego z otworu Niedźwiedź IG 2. Dokonano także przeglądu mikroskopowego wszystkich płytek cienkich wykonanych dla celów petrograficznych (J. Jerzmański, Z. Cymerman i in., 1984). Otwór Niedźwiedź IG 2 wykonano z pełnym rdzeniowaniem od głębokości 232,7 m do końca otworu, tj. 1694,0 m.

Badania tektoniczne rdzeni wiertniczych mają także poważne ograniczenia. Skala obserwacji struktur tektonicznych uzależniona jest od średnicy odwierconych rdzeni wiertniczych. W przypadku otworu Niedźwiedź IG 2 skala ta zmieniała się od średnicy 10 cm do 4,7 cm w końcowych przedziałach głębokościowych otworu. Główny kierunek obserwacji zjawisk tektonicznych (od góry do dołu wiercenia) jest także dalszym ograniczeniem, zwłaszcza przy próbach określenia geometrii makrostruktur tektonicznych. Dotyczy to szczególnie rdzeni o małej średnicy. Innym ograniczeniem był brak danych o orientacji w przestrzeni geograficznej położenia obserwowanych struktur tektonicznych. Rdzeń wiertniczy nie był zorientowany. Pozostała jedynie możliwość pomiarów kątów upadu struktur planarnych i nachylenia osi fałdów oraz nachylenia lineacji – po wcześniejszym uwzględnieniu krzywizny otworu. Otwór Nieźdwiedź IG 2 uległ skrzywieniu w kierunku wschodnim, a maksymalny kąt krzywizny – 35° występuje od głęb. ok. 1300 m.

Główna uwaga przy badaniach tektonicznych rdzeni z omawianego otworu skoncentrowana była na szczegółowym opisie mikro- i mezostruktur oraz na wzajemnych zależnościach między różnymi strukturami tektonicznymi. Szczegółowa analiza obserwacji pozwoliła na ustalenie następstwa deformacji tektonicznych oraz przedstawienia próby rozwoju tektonicznego omawianego obszaru.

NASTEPSTWO DEFORMACJI

W seriach skalnych otworu Niedźwiedź IG 2 stwierdzono co najmniej 4 etapy deformacji tektonicznych, które zostały kolejno oznaczone jako D_1 , D_2 , D_3 i D_4 . Poszczególne etapy deformacji odbywały się w zmiennym (pod względem orientacji przestrzennej i wielkości) polu regionalnych naprężeń przy równoczesnej zmianie zarówno podatności materiału odkształcanego, jak i jego środowiska fizykochemicznego. Etapy poszczególnych deformacji wyróżniono na podstawie rodzaju i stylu struktur tektonicznych, ich superpozycji oraz na podstawie zależności między procesami tektonicznymi a metamorficznymi. Godny podkreślenia jest fakt, że nie udało się stwierdzić żadnych niewątpliwych struktur sedymentacyjnych lub przedmetamorficznych. Nie stwierdzono także struktur tektonicznych związanych z warunkami facji zieleńcowej w czasie progresji metamorfizmu regionalnego M_1 . Prawdopodobnie te starsze (jednak nie rozpoznane) struktury uległy zupełnej transpozycji w czasie pierwszej stwierdzonej fazy deformacji D_1 w warunkach maksymalnej progresji metamorfizmu regionalnego M_1 .

PIERWSZA FAZA DEFORMACJI (D1)

Najstarszymi rozpoznanymi strukturami tektonicznymi w otworze Niedźwiedź IG 2 jest foliacja penetratywna S_1 , typu złupkowania oraz rzadko spotykane fałdy F_1 . W serii amfibolitowej foliacja \hat{S}_1 może być podzielona na dwie odmiany morfologiczne: jednorodną oraz niejednorodną (zróżnicowaną).

Odmiana jednorodna foliacji S_1 (fig. 2) charakteryzuje się następującymi parametrami morfologicznymi (Z. Cymerman, 1984):

- małymi odstępami pomiędzy najbliższymi domenami foliacji, maksymalnie dochodzącymi do 1-2 mm (w amfibolitach domeny foliacji wyznaczone są przez partie skały o dużej zawartości procentowej minerałów ciemnych – głównie hornblendy; natomiast mikrolitony wyznaczone są przez laminy, wrzeciona i oczka minerałów jasnych, głównie plagioklazów);

- równym kształtem powierzchni granicznych domen foliacji;

- silnym i bardzo silnym stopniem uporządkowania minerałów w mikrolitonach;

– dużą gęstością (wysokim udziałem procentowym) domen foliacji w poszczególnych próbkach.

Parametry morfologiczne drugiej (niejednorodnej) odmiany foliacji S_1 w amfibolitach są następujące (fig. 2):

- odstępy między domenami foliacji są znacznie większe i bardziej zróżnicowane niż w przypadku odmiany jednorodnej i wahają się od 1-2 mm do kilku centymetrów;

 kształt powierzchni granicznych domen foliacji jest różny (obok powierzchni równych pospolite są także powierzchnie nierówne i formy siateczkowe, rzadko nieregularne);

- stopień uporządkowania minerałów w mikrolitonach charakteryzuje się dużym zróżnicowaniem (od stopnia słabego do średniego i silnego);

- gęstość domen foliacji w jednostce objętości próbki jest zmienna.

Występowanie dwóch odmian morfologicznych foliacji S_1 wykazuje pewien związek z głębokością. Poniżej głębokości 1412 m występuje odmiana jednorodna foliacji S_1 , natomiast powyżej – zdecydowanie przeważa odmiana niejednorodna foliacji S_1 .

Foliacja S_1 , która w serii mylonitycznej i blastomylonitycznej traci charakter struktury penetratywnej na rzecz foliacji S_2 , może być podzielona na 3 odmiany morfologiczne (fig. 3):

1 – foliację S_1 typu złupkowania laminowanego, które charakteryzuje się naprzemianległością lamin o różnym składzie i/lub zmiennej wielkości składników mineralnych; jest to najpospolitsza odmiana foliacji S_1 w omawianej serii, zwłaszcza dla łupków kwarcowo-skaleniowych i wapieni krystalicznych;

2 – foliację S₁ typu złupkowania rozproszonego, charakteryzującą się stosun-

Sekwencja deformacji skał metamorficznych

Fig. 2. Wykres morfologiczny foliacji (wg Z. Cymermana, 1984) dla amfibolitów Morphological graph of foliations (after Z. Cymerman, 1984) for amphibolites

1 – foliacja jednorodna; 2 – foliacja niejednorodna; parametr "Q" – odstęp między domenami foliacji; parametr "K" – kształt poszczególnych domen foliacji; parametr "U" – stopień uporządkowania minerałów w mikrolitonach w stosunku do powierzchni granicznych domen foliacji; parametr "G" – gęstość domen foliacji w skale 1 - homogeneous foliation; 2 - inhomogeneous (diversified) foliation; parameter "Q" - spacing of foliation domains; parameter "K" - shape of individual foliation domains; parameter "U" - degree of ordering of minerals in microlithons in relation to boundary planes of foliation domains; parameter "G" - frequency of foliation domains in rocks

Fig. 3. Wykres morfologiczny foliacji dla serii skał mylonitycznych i blastomylonitycznych Morphological graph of foliations for a series of mylonitic and blastomylonitic rocks

1 – złupkowanie laminowane; 2 – złupkowanie soczewkowate; 3 – złupkowanie rozproszone; objaśnienia parametrów morfologicznych jak na fig. 2

1 -laminated schistosity; 2 -lenticular schistosity; 3 -dispersed schistosity; explanations of morphological parameters as given in Fig. 2

kowo niewielką ilością łyszczyków wyciągniętych kierunkowo w drobnoziarnistym tle kwarcowo-skaleniowym; odmiana ta spotykana jest w skałach kwarcowo-skaleniowych;

3 – foliację S, typu złupkowania soczewkowatego, która charakteryzuje sie mikrolitonami w kształcie soczewek, oczek i wrzecion, najczęściej o średnicy poniżej 5 mm; jest to najrzadziej spotykana odmiana.

Między wyróżnionymi wyżej odmianami morfologicznymi foliacji zarówno

Fig. 4. Wykres zawartości (w %) kątów upadów foliacji S_1 w otworze wiertniczym Niedźwiedź IG 2 Graph of frequency (in per cent) of angles of dip of foliation S_1 in the borehole Niedźwiedź IG 2

w serii amfibolitowej, jak i serii mylonitycznej i blastomylonitycznej istnieją stopniowe przejścia.

Pomiary kątów upadu foliacji S₁, najstarszej i penetratywnej struktury planarnej, mają znaczenie decydujące przy określaniu geometrii i wielkości makroskopowych fałdów. Te ostatnie zaś mają duże znaczenie dla rozpoznania regionalnych budowli strukturalnych. Dla celów statystycznych wykonano 593 pomiary kątów upadu foliacji S₁ z uwzględnieniem krzywizny otworu Niedźwiedź IG 2. Wyniki analizy kątów upadu foliacji S₁ przedstawia fig. 4. 93,1% pomiarów kąta upadu foliacji S₁ znajduje się w przedziale powyżej 30° i poniżej 60°. Kąty upadu foliacji S₁ – większe od 58° i mniejsze od 32° – stanowią jedynie 6,9% wszystkich analizowanych pomiarów. W tab. 1, przedstawiającej charakterystykę stref dewiacji kątów upadu foliacji S_1 od średniej statystycznej (32–58°), pominięto zaburzenia kąta upadu foliacji S₁ spowodowane przez struktury fałdowe i budinażowe obserwowane w skali rdzenia wiertniczego. Przedstawione w tej tabeli strefy odchyleń (dewiacji) od średnich statystycznych wartości kątów upadu S_1 spowodowane zostały przez fałdy, których rozmiary są wielokrotnie większe niż skala obserwacji danego odcinka rdzenia. Strefy dewiacji charakteryzują się miąższościami znacznie większymi niż wartości wysokości krótszego skrzydła fałdu i będą zbliżone do wartości długości krótszego skrzydła – w przypadku fałdu asymetrycznego.

Należy podkreślić, że na stwierdzonych 50 stref dewiacji tylko 20% z nich charakteryzuje się kątami upadów S_1 mniejszymi od 32°; pozostałe 80% stref dewiacji ma kąty upadu S_1 większe od 58°. Strefy dewiacji o małych wartościach kątów upadu S_1 występują tylko do głęb. 863 m, natomiast strefy dewiacji o dużych wartościach kątów upadu $S_1 - w$ całym otworze (do głęb. 1640 m). Odległości między strefami dewiacji są zmienne i wahają się od 0,5 m do kilkuset m. Jednak w wyróżnionych w tab. 1 interwałach głębokościowych z kilkoma strefami dewiacji średnie odległości pomiędzy strefami wynoszą ok. 10 m.

Sekwencja deformacji skał metamorficznych

Tabela 1

Charakterystyka stref dewiacji kąta upadu foliacji S_1 od średniej statystycznej $(32-58^\circ)$ wartości kątów upadu foliacji S_1

A. Maksymalne miąższości stref dewiacji kąta upadu foliacji S_1							
Głębokości (m)	Kąty upadu S_1	Miąższość strefy (m)		Uwagi			
323,3 - 335,8	do 70° w stropie	12,5	powierz	chnie stropowe i spągov je rozlaminowane	we – in-		
508,0- 518,2	do 7º	10,2	charakt	erystyczne bardzo małe k	ąty upa-		
301,5- 309,2	do 70° (środek –	7,7	bardzo	zmienne kąty upadów;	; strop i		
	prawie poziome)		spąg –	diaftoryt			
521,5 - 528,0	do 75°	6,5					
352,9 - 359,0	do 70°	6,1					
679,8- 684,0	do 25°	4,2					
1595,7-1600,0	do 60°	4,3					
1574,8-1578,5	do 85°	3,7					
1636,8-1640,2	do 85°	3,4					
556,7- 560,0	do 85°	3,3					
551,9- 555,0	do 75°	3,1					
1002,2-1005,2	do 60°	3,0					
1257,1-1260,1	do 60°	3,0					
1354,5 - 1357,5	do 60°	3,0					
Pozostałe 32 strefy dewiacji o miąższościach poniżej 3,0 m i powyżej 0,2 m							
548,8- 549,0	do 80°	0,2					
862.8 - 862.9	do 30°	0,1					
1364,9-1365,0	do 65°	0,1					
1368,1-1368,2	do 65°	0,1					
				·			
B. Głębokości występowania stref dewiacji kąta upadu foliacji S_1							
Głebokości (m)	Łaczna miaższo	ść Liczba s	stref	f Średnia odległość między strefami (m)			
	(m)	dewiad	oji				
273.6 - 376.7	103.1	10		10.3			
418.0 - 575.9	157.9	16		9.8			
1341.0 - 1442.9	101.9	10		10.2			
630.5 - 684.0	53.5	5		10,7			
1555.7 - 1640.2	84.5	5		16.9			
1256.3 - 1260.1	3,8	2		3.8			
1002,2 - 1005.2	3.0	1					
862,8 - 862,9	0,1	1		_			
	L			L.,			

163

Stwierdzono 16 fałdów pierwszej generacji w przedziale głębokości 656 m – 1502 m. Fałdy F_1 są wąskopromienne bądź izoklinalne, najczęściej o pogrubionych przegubach i wytartych skrzydłach. Struktury te zostały lokalnie przetransponowane do form wydłużonych oczek lub soczewek o niewielkich rozmiarach (tabl. I, fig. 7, 8).

Pierwszy rozpoznany etap deformacji D_1 był synmetamorficzny i odbywał się w warunkach facji amfibolitowej. W niektórych partiach tektogenu doszło do zaniku lokalnego pola naprężeń, co prawdopodobnie spowodowało lokalne uplastycznienie materiału, głównie leukokratycznego i jego migracje w różnych kierunkach. Rozwinęły się wtedy cienkie laminy monomineralne, głównie plagioklazowe, czasem także hornblendowe, ułożone pod różnymi kątami względem foliacji S₁. Laminy te zostały w wielu przypadkach przecięte niezgodnie przez młodszą foliację S₂. Z okresem metamorfizmu M₁ i zaniku lub spadku wartości lokalnego pola naprężeń fazy D₁ należy także prawdopodobnie wiązać powstanie nielicznych fałdów ptygmatycznych i struktur typu *pinch and swell*. Fałdy ptygmatyczne stwierdzono tylko na głębokościach 500-600 m i 1550-1605 m.

DRUGA FAZA DEFORMACJI (D₂)

W czasie drugiej fazy deformacji D_2 uległa zafałdowaniu foliacja S_1 , tworząc fałdy F_2 . W etapie D_2 powstały także nowe struktury planarne (strefy rozlaminowań S_{2r} i strefy mylonityczne S_{2m}) oraz lineacje ziarna mineralnego L_{2z} i lineacje intersekcyjne L_{2i} .

sékcyjne L_{2i} . Fałdy F_2 tworzą bardzo zróżnicowaną grupę struktur zarówno pod względem formy geometrycznej, jak i wielkości. Najczęściej spotykanymi fałdami F_2 są struktury wąskopromienne typu symilar lub nieco wysmuklone, odpowiadają one fałdom klasy 2 i 3 (J. Ramsay, 1967), o kształtach podobnych do liter S lub Z – w zależności od ostrości przegubów fałdów (tabl. I, fig. 9; tabl. II, fig. 14; tabl. III, fig. 15, 17, 18). Fałdy F_2 o przegubach zaokrąglonych są znacznie liczniejsze od fałdów F_2 z ostrymi przegubami. Fałdy F_2 asymetryczne, średniopromienne są trudne do odróżnienia od podobnych struktur fałdowych F_3 . Przy ich odróżnieniu pomocne okazały się dwa następujące kryteria:

1 – długości skrzydeł krótszych fałdów F_2 są dość stałe, najczęściej rzędu 1–2 cm (tabl. III, fig. 18), w przeciwieństwie do fałdów F_3 , które charakteryzują się dużą różnicą w wielkości (od kilku mm do kilkunastu m – w strefach dewiacji foliacji S_1);

2 - fałdy asymetryczne F_2 należą do grupy fałdów niecylindrycznych stożkowych lub futerałowych (*sheath folds*), natomiast fałdy F_3 asymetryczne charakteryzują się cylindrycznością struktury w skali obserwacji.

Drobne fałdy F_2 śródfoliacyjne udało się stwierdzić tylko w 7 przypadkach. Natomiast bardzo liczne fałdy F_2 asymetryczne, ze strefami rozlaminowań S_{2r} równoległymi do orientacji ich dłuższych skrzydeł, występują na głębokości od ok. 300 m do prawie 730 m. Osie fałdów F_2 w większości przypadków zanurzają się pod kątem nachylenia rzędu 20–30°, rzadziej pod kątami mniejszymi.

Lineacja ziarna mineralnego L_{2z} wyrażona jest kierunkowym, równoległym ułożeniem wydłużonych ziarn i/lub agregatów mineralnych, głównie amfiboli lub łyszczyków. W amfibolitach, zwłaszcza tych wykazujących foliację S₁ niejednorodną, L_{2z} jest trudna do obserwacji ze względu na przekrój tabliczkowy lub słupkowy amfiboli. Od głębokości ok. 1530 m lineacja L_{2z} staje się znacznie wyraźniejsza, co spowodowane jest głównie obecnością łyszczyków we wkładkach łupków amfibolowych i skał kwarcowo-skaleniowych. W silnie zmylonityzowanych wapieniach krystalicznych stwierdzono linijne ułożenie smug grafitowych. Chociaż występują

Sekwencja deformacji skał metamorficznych

Tabela 2

Cechy charakterystyczne stref rozlaminowań S_{2r} i stref mylonitycznych S_{2m}

Cecha charakterystyczna	S _{2r}	S _{2m}	
Miąższość strefy	od kilku mm do kilku cm, ma- ksymalnie do 20 cm	od 0,05 mm do 30 mm, najczę- ściej od 0,2 do 0,6 mm	
Średnie wielkości rozdrobnione- go ziarna mineralnego w strefie	od 0,03 mm do 0,05 mm	od 0,002 do 0,02 mm	
Wykształcenie nowego uporząd- kowania (więźby) w strefie	bardzo wyraźne	różne (zależy od stosunku mię- dzy miazgą a porfiroblastami)	
Stosunek strefy do struktur fal-	1. równoległe do powierzchni	równoległe do powierzchni osio-	
dowych F ₂	osiowych fałdów wąskopromien- nych F ₂	wych fałdów asmetrycznych F_2	
	2. równoległe do skrzydła dłuższego fałdów asymetrycznych F_2		

licznie amfibolity bogate w granaty, nie zaznacza się tutaj lineacja wyznaczona przez uszeregowanie ziarn granatów.

Najczęściej słabo wykształcona lineacja L_{2z} położona jest skośnie względem biegu foliacji S₁, czasami jest zgodna z kierunkiem upadu S₁. Natomiast trudna do rozpoznania lineacja L_{1z} ułożona jest najczęściej równolegle do biegu foliacji S₁ i położona pod różnymi kątami, czasami nawet do 90° w stosunku do orientacji osi fałdów F₂. Lineacja L_{2z} zorientowana jest natomiast równolegle do osi fałdów F₂. Nie udało się jednak stwierdzić istnienia dwóch generacji lineacji, tj. L_{1z} i L_{2z} na tej samej powierzchni S₁. Dlatego też rozważania o podobnie wykształconych lineacjach ziarna mineralnego i w dodatku na podstawie niezorientowanych przestrzennie rdzeni obarczone są dużą możliwością błędnej ich interpretacji i wyciągnięcia niewłaściwych wniosków.

Struktury planarne powstałe podczas drugiej fazy deformacji D_2 zostały podzielone na dwie grupy: strefy rozlaminowań S_{2r} i strefy mylonityczne S_{2m} . Obydwie wymienione grupy struktur planarnych charakteryzują się rozdrobnieniem i rozwalcowaniem składników mineralnych w strefach intensywnych odkształceń ścinających, określanych nazwą stref ścinania (*shear zones*). Charakterystykę stref ścinania S_2 przedstawia tab. 2.

Strefy rozlaminowań S_{2r} (tabl. I, fig. 8; tabl. III, fig. 16) stwierdzono po raz pierwszy na głęb. 207 m, po raz ostatni na głęb. 1520 m. Szczególnie liczne (11) i o dużych miąższościach (średnio ok. 10 cm) strefy rozlaminowań znajdują się na głęb. 1416,6–1443,5 m. Należy podkreślić, że powyżej wymienionej partii z intensywnie rozwiniętymi S_{2r} występują foliacje S_1 o prawie pionowych kątach upadów (m.in. na głęb. 1398,4–1398,8 m). Najczęściej kąty upadów S_{2r} wahają się między $15-30^{\circ}$ i są konsekwentne w stosunku do upadów foliacji regionalnej S_1 . Czasami występuje niezgodność kątowa (do 40°) między kierunkami biegów foliacji S_1 i stref S_{2r} . Tylko w 3 przypadkach stwierdzono większe od 55° wartości kątów upadów S_{2r} . Strefy rozlaminowań S_{2r} często położone są równolegle do powierżchni osiowych fałdów F_2 . Strefy S_{2r} czasami są słabo zdeformowane przez otwarte, szerokopromienne fałdy F_4 lub przecinane przez strefy mylonityczno-kataklastyczne S_{2r} .

Strefy mylonityczne S_{2m} (tabl. II, fig. 12, 13; tabl. IV, fig. 19), najczęściej spotykane, mają średnie miąższości do 1 mm (tab. 2). Granice strefy S_{2m} ze skałą macierzystą są stopniowe i bardzo często zamaskowane przez zrekrystalizowane nowe ziarna

165

Cechy charakterystyczne stref mylonitycznych i kataklastycznych powstałych podczas faz deformacji D_2 , D_3 i D_4

Cechy charakterystyczne strefy	S _{2m}	S _{3m}	${ m S}_{4k}$
Wartości kątów upadu strefy	stałe (średnie)	zmienne (małe i średnie)	stałe (bardzo strome lub piono- we)
Stosunek kierunku upadu strefy do kierunku upadu foliacji S,	konsekwentny	asekwentny	różny
Rozgałęzienia przebiegu stref (strefy anastomo- zujące)	bardzo rzadkie	liczne (charakterystyczne spła- szczone siateczki i strefy II i III rzędu)	bardzo rzadkie
Odbarwienia (rozjaśnienia) wokół strefy	bardzo rzadkie	liczne (max do 1,5 cm)	bardzo liczne (miąższości rzędu kilku cm)
Zależności między strefą a fałdami	w powierzchniach osiowych nie- których fałdów asymetrycznych F_2 , rzadko deformowane przez fałdy F.	lokalnie strefy ułożone równo- legle do obwiedni fałdów asyme- trycznych F_2 , czasem deformo- wane przez fałdy F.	nie stwierdzono
Rodzaj skały budującej strefę	głównie mylonit i blastomylonit	pośredni między mylonitem a kataklazytem, czasem ultramy- lonit, rzadko protomylonit	głównie kataklazyt, rzadko pro- tokataklazyt
Przemieszczenia wzdłuż strefy	trudne do stwierdzenia (rekrysta- lizacja)	rzadkie (najczęściej rzędu kilku mm), także przemieszczenia stref S _{2m}	bardzo liczne (najczęściej kilku cm)
Charakter granicy między strefą a skałą ma- cierzysta	stopniowy (zrekrystalizowany)	wyraźny lub stopniowy	ostry i wyraźny
Miąższości stref	zmienne (średnio od 0,05 do 3 cm)	zmienne (średnio od 0,08 do 3,5 cm)	bardzo zmienne (od 0,1 do kilku cm)
Żyłki mineralne podkreślające przebieg strefy	bardzo rzadkie (epidotowe)	rzadkie (epidotowe, epidotowo- -chlorytowe lub mieszane)	liczne (epidotowe, węglanowe i mieszane)

Zbigniew Cymerman

166

mineralne, głównie epidoty i węglany. Najbardziej charakterystycznymi cechami najstarszej generacji stref mylonitycznych S_{2m} są średnie wartości ich kątów upadów oraz konsekwentność ich kierunków upadów do kierunków upadów foliacji S_1 (por. tab. 3).

Strefy ścinań (tj. $S_{2r} + S_{2m}$) od głęb. ok. 1416 m występują coraz częściej, a strefy S_{2m} – od głęb. ok. 1570 m aż do końca otworu – stają się w wielu miejscach penetratywną strukturą planarną, gdzie foliacja S_1 zachowuje się jedynie reliktowo w wiekszych klastach tkwiących w miazdze mylonitycznej.

Druga faza deformacji D, odbywała się w warunkach naprężeń kompresyjnych ze składową ścinającą. Mogą o tym świadczyć liczne strefy ścinań $S_{2r} + S_{2m}$, szczególnie liczne w ostatnich 120 m otworu oraz morfologia fałdów F, typu sheath folds. Analiza drugiej generacji struktur tektonicznych wskazuje zarówno na zmiany w intensywności, jak i miaższości stref deformacji. Podczas fazy D, najintensywniejszej deformacji uległy skały metamorficzne podścielające serię amfibolitowa. Nie jest to dziwne uwzględniając fakt, że miąższość samej serii amfibolitowej wynosi ok. 3700 – 3900 m (J. Jerzmański, Z. Cymerman i in., 1984) i że istnieje znaczna różnica w podatności miedzy amfibolitami a skałami je podścielajacymi. W czasie fazy D_2 zmieniły się także warunki metamorfizmu regionalnego M_2 . Po metamorfizmie M₁, zaliczanym do średniociśnieniowej facji amfibolitowej (S. Maciejewski, T. Morawski, 1979) nastąpił spadek temperatury i wzrost ciśnień kierunkowych w czasie metamorfizmu retrogresywnego M₂. W czasie rozdrobnienia i kruszenia składników mineralnych odbywał się równocześnie proces rekrystalizacji nowych minerałów w warunkach facji epidotowo-amfibolitowej (J. Jerzmański, Z. Cymerman i in., 1984).

TRZECIA FAZA DEFORMACJI (D₃)

W wyniku fazy deformacji D_3 powstały nowe struktury planarne S_3 , wykształcone w postaci stref rozlaminowań S_{3r} i stref mylonityczno-kataklastycznych S_{3m} , struktury fałdowe F_3 oraz lineacje L_3 .

Trzecia generacja struktur planarnych (S_3) charakteryzuje się zawsze asekwentnymi kierunkami upadów zarówno w odniesieniu do foliacji S_1 , jak i struktur planarnych S_{2r} i S_{2m} . Struktury planarne S_3 w bardzo wielu przypadkach przecinają starsze struktury planarne $(S_1 \ i \ S_{2r} + S_{2m})$.

starsze struktury planarne $(S_1 i S_{2r} + S_{2m})$. Strefy rozlaminowań S_{3r} występują bardzo rzadko i charakteryzują się miąższościami rzędu kilku cm. Na głębokościach od ok. 290 m do 370 m stwierdzono 4 strefy rozlaminowań S_{3r} położone równolegle do krótszych skrzydeł fałdów asymetrycznych F_3 .

Strefy S_{3m} mają charakter przejściowy między typowym mylonitem a kataklazytem. Miazga mylonityczna i/lub kataklastyczna stanowi najczęściej ponad 50% objętości danej strefy S_{3m} , a często nawet przekracza ponad 95% objętości. Strefy S_{3m} w tym ostatnim przypadku odpowiadają więc ultramylonitom lub ultrakataklazytom (M. Higgins, 1971). Strefy S_{3m} , odpowiadające protomylonitom lub protokataklazytom o zawartości miazgi mylonitycznej i/lub kataklastycznej poniżej 50%, są dość rzadko spotykane. Różnice i podobieństwa między strefami S_{2m} i S_{3m} przedstawia tab. 2. W przypadku stref S_{3m} obserwowano liczne rozgałęzienia, czasem anastomozujące i tworzące charakterystyczne spłaszczone siateczki; jest to wynik powstania stref S_{3m} II-rzędu, a nawet III-rzędu. Czasem fałdy otwarte F_3 mają równoległe do ich powierzchni osiowej strefy S_{3m} (tabl. IV, fig. 21). Stwierdzono także wypadki słabego zagięcia stref S_{3m} w pobliżu stref kataklastycznych S_{4k} (tabl. IV, fig. 22). Struktury fałdowe F_3 , w przeciwieństwie do fałdów F_2 , stanowią mniej liczną i nieurozmaiconą grupę struktur tektonicznych (tabl. IV, fig. 20, 21; tabl. V, fig. 23). Przeważnie są to fałdy otwarte, asymetryczne, w większości cylindryczne. Fałdy F_3 występują dość rzadko, liczniej pojawiają się jedynie w strefie od ok. 1030 do 1175 m. Prawdopodobnie także większość omówionych wyżej stref dewiacji foliacji S₁ powstała w wyniku fazy D₃. Dla fałdów F_3 charakterystyczna jest duża zmienność ich wielkości – od kilkunastu m (w strefach dewiacji foliacji S₁) do kilku mm w przypadku fałdów krenulacyjnych. Prawie wszystkie fałdki typu krenulacji są asymetryczne i występują głównie na głębokości od ok. 1220 m do ok. 1550 m. Tylko w jednym przypadku stwierdzono gufraż symetryczny o powierzchniach osiowych podkreślonych przez strefy S_{3m} mm wielkości. Osie fałdów typu krenulacji ułożone są równolegle do osi fałdów asymetrycznych F_3 i są najczęściej zgodne z przebiegiem lineacji L_{1z} lub L_{2z}.

Na głęb. 1548,7 m stwierdzono kliważ krenulacyjny S_{3k} typu nieciągłego (*discrete*), wykształcony w postaci 3 stref o miąższości do 1,5 mm, o ostrych i wyraźnych granicach z mikrolitonami. Ten typ kliważu krenalacyjnego świadczy o istnieniu składowej ścinającej w czasie jego rozwoju.

Godny podkreślenia jest fakt, że stwierdzone, zresztą nieliczne, rotacje granatów związane z bliską obecnością fałdów F_3 . Natomiast prawie wszystkie owalne agregaty granatów, zbudowane z wielu drobnych ziarenek o średnich wymiarach rzędu 0,08 – 0,25 mm, mają charakterystyczne cienie ciśnień, o średnich wymiarach rzędu kilku mm. Trójkątne cienie ciśnień zbudowane są z drobnoziarnistej zmylonityzowanej masy mineralnej. Część granatów uległa wtórnemu przeobrażeniu w epidot. Może o tym świadczyć fakt, że w przypadku braku lub małej ilości granatów w danej próbce amfibolitu wzrasta jednocześnie zawartość epidotu.

W czasie fazy deformacji D_3 powstały także struktury linijne L_3 typu lineacji intersekcyjnej L_{3i} i rzadko spotykanego budinażu L_{3b} . Lineacja L_{3i} , często spotykana, powstała w wyniku przecięcia starszych struktur planarnych (S_1 i S_2) przez struktury S_3 (tabl. II, fig. 13). Orientacja lineacji L_{3i} , jak i osi budin L_{3b} jest równoległa lub prawie równoległa do osi fałdów F_3 .

Faza deformacji D_3 odbywała się w warunkach znacznie słabszych pól naprężeń niż faza D_2 . Znalazło to swoje odbicie w rozwoju znacznie mniejszej liczby struktur tektonicznych, powstałych podczas fazy D_3 w stosunku do fazy D_2 . W czasie fazy D_3 również inaczej była zorientowana przestrzennie regionalna elipsoida naprężeń, chociaż oś σ_2 głównych naprężeń była zorientowana prawie równolegle do położenia tej osi w czasie fazy D_2 . O spadku temperatury w czasie omawianej fazy deformacji w stosunku do fazy D_2 może świadczyć znacznie słabsza rekrystalizacja ziarn mineralnych w strefach mylonityczno-kataklastycznych S_{3m} niż w strefach mylonitycznych S_{2m} .

CZWARTA FAZA DEFORMACJI (D₄)

Struktury tektoniczne fazy D_4 powstały przez odkształcenia znacznie już usztywnionego materiału skalnego, Mogą o tym świadczyć zarówno strefy kataklastyczne S_{4k} , jak i brekcje tektoniczne S_{4b} oraz formy fałdów F_4 i struktury budinażowe L_{4b} .

Struktury budinażowe L_{4b} wyznaczone są przez wyciągnięte szyjki, zbudowane z agregatów skaleniowych lub skaleniowo-kwarcowych, które położone są między sąsiednimi rdzeniami (jądrami) budin. Rdzenie budin charakteryzują się najczęściej kształtem tabliczkowym lub soczewkowatym i zbudowane są z podobnego materiału. jak i ich osłona. Dlatego też nie istnieją różnice między rdzeniem a osłoną budin w zakresie podatności materiału na deformacje. W związku z tym genezę struktur budinażowych L_{4b} należy raczej wiązać z procesami ścinania przegubowych partii fałdów starszych generacji, tj. F_2 i F_3 . Osie budin położone są najczęściej pod kątem prostym do osi fałdów i lineacji, powstałych podczas faz D_2 i D_3 . Budinaż L_{4b} pojawia się dopiero od głęb. 1090 m i występuje szczególnie licznie w strefie 1450– 1620 m. Szyjki budin osiągają najczęściej miąższość ok. 5 mm, rzadko dochodzą do 1,5–2,0 cm. Rdzenie budin osiągają wymiary rzędu 2–3 cm, rzadko tylko są większe. Największą miąższość rdzenia budiny – prawie 20 cm – stwierdzono na głęb. 1620 m.

Strefy ścinań związane z fazą D_4 zostały podzielone na dwie grupy struktur: strefy kataklastyczne S_{4k} i brekcje tektoniczne S_{4b} . Pod mikroskopem strefy S_{4b} charakteryzują się granulacją i rozkruszeniem fragmentów skały macierzystej oraz brakiem wyraźnie ukierunkowanej tekstury. W strefach S_{4k} miazga kataklastyczna występuje w zmiennych ilościach, najczęściej od 30 do 70%. Dlatego też można wyróżnić zarówno strefy protokataklazytu (o zawartości miazgi do 50%), jak i strefy kataklazytu, gdzie zawartość miazgi przekracza 50% objętości strefy. Upady stref kataklastycznych S_{4k} są bardzo strome lub pionowe (tabl. I, fig. 10; tabl. III, fig. 16; tabl. IV, fig. 21, 22). Strefy odbarwień (rozjaśnień) wokół stref S_{4k} osiągają wymiary kilku cm. W strefach S_{4k} doszło do przemieszczeń, nawet kilkucentymetrowych (tabl. V, fig. 24) i w związku z tym powstały liczne poddarcia oraz słabe zaburzenia starszych struktur planarnych, głównie foliacji S_1 . Bardzo często liczne, drobne żyłki mineralne, przeważnie epidotowe i węglanowe, podkreślają przebiegi stref S_{4k} (tabl. V, fig. 25).

Brekcje tektoniczne S_{4b} (tabl. V, fig. 25, 26) występują szczególnie licznie na pewnych głębokościach (240–250 m, 350–370 m, 565–590 m, 1241–1249 m, 1448–1459 m, 1546–1577 m i 1647–1658 m). Brekcje S_{4b} charakteryzują się bardzo stromymi lub pionowymi kątami upadów i zmiennymi miąższościami – od kilku mm do 15 cm (tab. 3). Granice stref brekcji są najczęściej ostre i wyraźne. Odłamki skały macierzystej w brekcji S_{4b} są w większości przypadków ostrokrawędziste lub bardzo słabo obtoczone. Wielkość ich jest zmienna, najczęściej od 0,2 mm do 3–5 cm. W strefach brekcji S_{4b} pojawiają się liczne, cienkie żyłki o różnym składzie mineralnym (węglany, epidoty i chloryty).

Fałdy F_4 stanowią dość rzadką grupę struktur tektonicznych. Stwierdzono tylko pojedyncze przypadki fałdów załomowych w najwyższej części otworu oraz dwa przypadki fałdów szewronowych na głębokościach 1430 i 1597,5 m. Pod mikroskopem stwierdzono kilka przykładów mikrofałdów F_4 typu kink folds oraz mikrofałdy F_4 szerokopromienne o zaokrąglonych przegubach.

MŁODSZE FAZY DEFORMACJI

Problem istnienia wielkopromiennych, otwartych, łagodnie falistych zafałdowań starszych struktur planarnych, głównie foliacji regionalnej S₁, nie może zostać rozwiązany za pomocą analizy rdzeni wiertniczych, głównie z powodu ograniczonego pola obserwacji. Nie udało się także wyróżnić poszczególnych generacji spękań skalnych, m.in. z powodu braku zorientowanych przestrzennie rdzeni oraz braku istotnych różnic między poszczególnymi powierzchniami spękań. Spękania najczęściej są równe i zabliźnione materiałem skalnym o różnym składzie mineralnym. W zależności od składu mineralnego spękań zabliźnionych można podzielić je na spękania zabliźnione epidotem, epidotem i węglanami, chlorytem i mieszanym zespołem mineralnym. Rzadko obserwowano szerokość powierzchni spękań. Kilkadziesiąt spękań miało rysy ślizgowe i zadziory. Orientacja rys ślizgowych na powierzchniach uskokowych (najczęściej bardzo stromych) jest zmienna, ale

Fig. 5. Blokdiagram przedstawiający nakładanie się struktur tektonicznych w otworze Niedźwiedź IG 2

Blockdiagram showing superimposition of tectonic structures in the borehole Niedźwiedź IG 2

w większości wypadków nachylona pod kątem 40–50°. Tylko w kilku wypadkach nachylenie rys jest rzędu 0–10°. Lokalnie pojawiają się słabe wielkopromienne pofałdowania powierzchni spękań (F_5 ?). Szczególnie liczne spękania z tektoglifami występują na głęb. ok. 1380 m. Dyslokacje są najczęściej reaktywowane w strefach kataklazytów S_{4k} i brekcji tektonicznych S_{4b}. Na podstawie orientacji kąta spadku rys ślizgowych można stwierdzić występowanie uskoków zrzutowych i przesuwczych oraz najliczniejszych – uskoków zrzutowo-przesuwczych.

Spękania strome i pionowe stanowią najliczniejszą grupę spękań. Czasem tworzą one dwa systemy spękań prawie prostopadłe do siebie. Spękania o małych kątach upadów występują sporadycznie i bardzo często ułożone są równolegle do stref S_{2m} i S_{3m} . Liczba spękań na odcinku jednego metra rdzenia jest zmienna – od jednego do kilkudziesięciu.

MECHANIZMY EWOLUCJI TEKTONICZNEJ

Szczegółowe badania tektoniczne rdzeni wiertniczych umożliwiły przedstawienie modelu rozwoju tektonicznego serii metamorficznych z otworu Niedźwiedź IG 2. Stwierdzono istnienie co najmniej 4 generacji struktur tektonicznych, związanych z fazami deformacji $D_1 - D_4$, wśród których dominują wyraźnie struktury

Fig. 6. Schematyczne modele historii rotacyjnej odkształcenia w czasie faz deformacji $D_1 - D_4$ Schematic models of history of rotational deformations during deformation phases $D_1 - D_4$

związane z drugim etapem deformacji (D_2) , oprócz foliacji S_1 . Ustalony i przedstawiony wyżej model ewolucji tektonicznej nie różni się zasadniczo od wcześniej ustalonych schematów deformacji dla innych części metamorfiku mezozonalnego na bloku przedsudeckim i w Sudetach (np. I. Wojciechowska, 1975; S. Cwojdziński, 1976; H. Dziedzicowa, 1979). Charakterystyczny jest tu natomiast intensywny rozwój stref ścinań, młodszych od fazy D_1 , szczególnie licznych w spągu serii amfibolitowej i w utworach bezpośrednio podścielających amfibolity.

Figura 5 przedstawia diagram, który ukazuje schematycznie nakładanie się i zależności przestrzenne między różnymi strukturami tektonicznymi w amfibolitach. Orientację przestrzenną diagramu ustalono dzięki skrzywieniu otworu (ku E) oraz na pomiarach w odkrywkach (fig. 1). Foliacja S₁ o prawie południkowych biegach zapada ku W lub SW. Lineacja ziarna mineralnego L₁₊₂ nachylona jest najczęściej ku SW pod małymi kątami. Mezofałdy F₂ wąskopromienne mają osie nachylone ku SW lub S pod małymi kątami. Strefy S_{3m} zapadają ku E lub SE pod kątami rzedu 30-40°.

Zakładając poprawność ustalonej wyżej sekwencji deformacji oraz orientacji przestrzennej struktur tektonicznych, można przedstawić próbę niekoaksjalnej (rotacyjnej) historii odkształcenia (L. Hobbs i in., 1976). Konieczne są przy omawianej próbie pewne uproszczenia:

1. Przyjęto południkową, horyzontalną orientację osi σ_2 naprężenia głównego podczas faz deformacji D_{1-4} , tym samym oś pośrednia σ_2 zorientowana jest prostopadle do płaszczyzny fig. 6; w rzeczywistości jednak oś Y (λ_2) końcowej elipsoidy odkształcenia nachylona jest pod kątem 5–10° ku SSW – mogą o tym świadczyć np. dane J. Oberca (1975).

2. Pominieto zmiany w objętości deformowanych skał.

Tabela 4

Cechy charakterystyczne	Faza	Model 1	Model 2	Model 3
Kąt rotacji elipsoidy w czasie poszczególnych faz deforma- cji	$egin{array}{c} D_2 \ D_3 \ D_4 \end{array}$	5-10° 25-30° 15-20°	5° 15 – 20° 55 – 60°	30 - 35° 95 - 100° 55 - 60°
Suma kątów rotacji elipsoidy deformacji		45 – 60°	75-85°	180 – 195°
Zwrot rotacji w czasie poszcze- gólnych faz deformacji	$\begin{array}{c} \mathbf{D_2}\\ \mathbf{D_3}\\ \mathbf{D_4}\end{array}$	lewostronny lewostronny lewostronny	lewostronny prawostronny lewostronny	prawostronny lewostronny prawostronny
Rodzaj naprężeń w czasie faz deformacji	D ₁ D ₂ D ₃ D ₄	kompresja tangencjalna kompresja tangencjalna kompresja prawie tangencjalna kompresja skošna	kompresja pionowa kompresja pionowa kompresja pionowa kompresja skośna	kompresja skošna lub prawie tangen- cjalna kompresja pionowa kompresja prawie tangencjalna kompresja skošna

Charakterystyka 3 modeli historii rotacyjnej elipsoidy odkształcenia podczas faz deformacji $D_1 - D_4$

3. Pominięto także zmiany w wartościach bezwzględnych naprężeń głównych oraz różnic naprężeń ($\sigma_1 - \sigma_2$) podczas poszczególnych faz deformacji; álatego też wszystkie elementy na fig. 6 mają jednakowe wymiary.

4. Przyjęto odkształcenie płaszczyznowe (*plane strain*) podczas faz deformacji D_{1-4} , gdzie $X(\lambda_1) > Y(\lambda_2) = 1 > Z(\lambda_3)$, dlatego też na fig. 6 zamiast elipsoid od-kształcenia przedstawiono elipsy odkształceń.

Fig. 6 przedstawia 3 modele niekoaksjalnej historii odkształcenia, a tab. 4 charakterystykę tych modeli. Model 1 opiera się na przyjęciu koncepcji faz deformacji tangencjalnych; model 2 – zakłada istnienie faz deformacji kopułotwórczych (M. Michniewicz, 1981); natomiast model 3 jest próbą połączenia modelu 1 z 2.

W modelu 1 w czasie fazy D_1 pod wpływem kompresji prawie tangencjalnej rozwija się foliacja S_1 wzdłuż płaszczyzny *ab* odkształcenia ścinającego, prawdopodobnie równoległej do pierwotnego zróżnicowania litologicznego. W fazie D_2 rozwijają się prawie koplanarne struktury S_2 i dochodzi do rotacji lewostronnej elipsoidy odkształcenia wzdłuż osi $Y(\lambda_1)$ o kąt $5-10^\circ$. Ponowna rotacja elipsoidy o kąt $25-30^\circ$ i rozwój asekwentnych względem S_1 i S_2 struktur S_3 nastąpiły w czasie fazy D_3 . W fazie D_4 rozwijają się strome struktury S_4 i dochodzi do 3 rotacji lewoskrętnej o kąt $15-20^\circ$.

W modelu 2 w wyniku prawie pionowej kompresji w fazie D_1 rozwijają się foliacja S_1 wzdłuż płaszczyzny *ab* maksymalnego odkształcenia ścinającego, rówległej do pierwotnej stratyfikacji (S_0). W fazie D_2 powstają koplanarne struktury S_2 , a elipsoida doznaje rotacji lewostronnej o kąt 5°. Rotacja prawostronna elipsoidy o kąt 15–20° i rozwój struktur S_3 odbywa się w czasie fazy D_3 . Podczas fazy D_4 powstają struktury S_4 i elipsoida doznaje rotacji lewostronnej o kąt 55–60°.

Model 3 przyjmuje powstanie foliacji S₁ w fazie D₁ w przybliżeniu równolegle

do płaszczyzny XY($\lambda_1 \lambda_2$) elipsoidy odkształcenia, która może być jeszcze płaszczyzną ścinania. Podczas fazy D_2 powstaje prawie koplanarna struktura S_2 i dochodzi do rotacji prawostronnej elipsoidy o kąt 30–35°. Do zmiany rotacji elipsoidy na lewostronną (o kąt 95–100°) i powstania struktur S_3 doszło w czasie fazy D_3 . Prawie pionowe struktury S_4 powstały podczas fazy D_4 , w czasie której doszło do prawostronnej rotacji elipsoidy o kąt 55–60°. Ten 3 model wydaje się obecnie najbardziej prawdopodobny.

Zagadnienie wieku poszczególnych etapów deformacji $(D_1 - D_4)$ jest problematyczne. Umieszczenie poszczególnych faz deformacji w bezwzględnej skali czasowej może być przyjęte jedynie na podstawie analogii regionalnej. Wielkość i kształt serii amfibolitowej okolic Niedźwiedzia (fig. 1) dają się porównać tylko z masywami amfibolitowymi Jesenika i Sobotina (CSRS), które uważane są za starowaryscyjskie intruzje skał zasadowych (J. Svoboda i in., 1966).

Model 1 ewolucji tektonicznej (fig. 6) jest czasowo i przyczynowo związany z nasuwaniem się struktur zachodnio- na wschodniosudeckie (dewońskie ? warstwy z Branny) wzdłuż nasunięcia ramzowskiego w czasie ruchów starowaryscyjskich (J. Oberc, 1972; 1975). Także model 2, oparty na wnioskach M. Michniewicza (1981), wiąże poszczególne fazy deformacji $(D_1 - D_4)$ z waryscyjskim cyklem orogenicznym. W modelu 3 w czasie fazy starobretońskiej D_1 w wyniku kompresji tangencjalnych lub skośnych powstała foliacja S_1 , natomiast faza kopułotwórcza D_2 (bretońska) spowodowała wypiętrzenie form kopułowych, rozwój nasunięć i stref mylonityzacji w warunkach regresji metamorfizmu M_2 . W fazie D_2 doszło prawdopodobnie do rozwoju kopuły gnejsowej na wschód od otworu Niedźwiedź IG 2 i, być może, grawitacyjnego zsuwania się ku zachodowi serii amfibolitowej na zachodnim skrzydle piętrzącej się kopuły gnejsowej. Podczas fazy kruszcogórskiej D_3 prawdopodobnie doszło do kompresji prawie tangencjalnej. Intruzja asturyjskich granito-idów żulowskich spowodowała powstanie kompresji skośnej podczas fazy D_4 .

WNIOSKI

Szczegółowe badania tektoniczne rdzeni wiertniczych z otworu Niedźwiedź IG 2 pozwoliły ustalić sekwencję deformacji w przewierconych utworach metamorficznych. Stwierdzony rozwój deformacji nie różni się zasadniczo od schematów deformacji ustalonych dla innych fragmentów metamorfiku Sudetów. Różnica dotyczy przede wszystkim intensywnego rozwoju stref mylonitycznych i kataklastycznych, szczególnie utworzonych w wyniku fazy deformacji D_2 .

Powstałe struktury tektoniczne związane były prawdopodobnie z waryscyjskim cyklem orogenicznym. Faza deformacji D_1 i synkinematyczny metamorfizm M_1 należą prawdopodobnie do fałdowań starobretońskich. Natomiast młodsze fazy deformacji związane były z procesami kopułotwórczymi (D_2 i D_3 ?) i/lub deformacjami synintruzywnymi granitoidów żulowskich.

Oddział Dolnośląski Instytutu Geologicznego Wrocław, al. Jaworowa 19 Nadesłano dnia 26 marca 1985 r.

PIŚMIENNICTWO

CWOJDZIŃSKI S. (1976) – Obserwacje mezo- i makrostrukturalne z północnej części strefy tektonicznej Złoty Stok-Skrzynka. Kwart. Geol., 20, p. 485-501, nr 3.

CYMERMAN Z. (1984) – Klasyfikacja morfologiczna, terminologia i geneza foliacji. Kwart. Geol., 28, nr 3/4, p. 457--490.

DZIEDZICOWA M. (1979) – Deformacja i metamorfizm we wschodnim obrzeżeniu gnejsów sowiogórskich. W: Materiały Konferencji Terenowej – Wybrane zagadnienia stratygrafii, petrografii i tektoniki wschodniego obrzeżenia gnejsów sowiogórskich i metamorfiku kłodzkiego. Wyd. Uniw. Wrocławskiego, p. 53-61.

HIGGINS M. (1971) - Cataclastic rocks. Prof. Pap. U. S. Geol. Surv., 687, p. 1-97.

- HOBBS L.E., MEANS W.D., WILLIAMS P.F. (1976) An outline of structural geology. New York, London, Wiley.
- JERZMAŃSKI J., CYMERMAN Z., KORNAŚ J., KOSSOWSKA I., KURAL K., MACIEJEWSKI S., PENDIAS H., SYLWESTRZAK H. (1984) – Dokumentacja wynikowa otworu Niedźwiedź IG 2. Arch. Inst. Geol. Wrocław.

MACIEJEWSKI S., SAWICKI L. (1977) – Dokumentacja wynikowa otworu Niedźwiedź IG 1. Arch. Inst. Geol. Wrocław.

MACIEJEWSKI S., MORAWSKI T. (1979) – Metamorphism in Lower Silesia. Biul. Inst. Geol., 318, p. 25-42.

MICHNIEWICZ M. (1981) – Próba interpretacji wczesnych etapów tektogenezy Sudetów w nawiązaniu do teorii diapiryzmu wgłędnego oraz koncepcji głębokich rozłamów. Geol. Sudetica, 16, p. 75-141, nr 2.

OBERC J. (1972) – Budowa geologiczna Polski, T. 4. Tektonika, cz. 2, Sudety i obszary przyległe. Wyd. Geol. Warszawa.

OBERC J. (1975) – Tektonika i rozwój wschodniej części bloku przedsudeckiego. Prz. Geol., 23, p. 213–220, nr 5.

RAMSAY J.G. (1967) - Folding and fracturing of rocks. McGraw-Hill, New York.

- SVOBODA J. I IN. (1966) Regional geology of Czechoslovakia. Part I: The Bohemian Massif. Prague.
- WOJCIECHOWSKA I. (1975) Tektonika kłodzko-złotostockiego masywu granitoidowego i jego osłony w świetle badań mezostrukturalnych. Geol. Sudetica, 10, p.61–122, nr 2.

Збигнев ЦИМЕРМАН

ОЧЕРЕДНОСТЬ ДЕФОРМАЦИИ МЕТАМОРФИЧЕСКИХ ПОРОД В СКВАЖИНЕ НЕДЗВЕДЬ ИГ 2 (НИЖНЯЯ СИЛЕЗИЯ)

Резюме

В статье приведены итоги детального изучения тектоники по кернам из скважины Недзведь ИГ 2, расположенной между Зембицами и Пачковом (Нижняя Силезия). В этой скважине до глубины 1638,4 м пройдены амфиболиты, а под ними серия милонитово-бластомилонитовых пород до глубины 1694,0 м (т.е. до конца скважины). Выяснено наличие по крайней мере 4 этапов деформаций (Д₁---Д₄).

Streszczenie

Самые древние тектонические текстуры сформировались во время фазы Д, и представлены региональным рассланцеванием S, и только изредка сохранившимися складками F,. Рассланцевание S, типа сланцеватости в амфиболитовой серии представлено двумя морфологическими разновидностями (фиг. 2): однородной и неоднородной. Рассланцевание в серии милонитовых пород и бластомилонитовых пород представлено 3 морфологическими разновидностями (фиг. 3): типа пластинчатой сланцеватости, тип рассеянной сланцеватости и тип линзообразной сланцеватости.

Углы падения рассланцованных пород S, не превышают (в более чем 90%) 32—58°. Причиной редких отклонений от таких величин являются более молодые складчатые структуры (F₃?) размером до двадцати метров. Этап деформации Д, был синметаморфическим и протекал в условиях амфиболитовой фации.

Во время второй фазы деформаций A_2 поверхность рассланцевания S_1 была смята и образовались многочисленные складки F_2 . Большинство складок F_2 относится к группе нецилиндрических, конусообразных или покровных складок (sheath folds). Планарные структуры S_2 систематизированы по 4 характерным признакам (мощность зоны, средняя величина раздробленного зерна в зоне, строение нового fabrio соотношение зоны со складками F_2) на 2 группы структур: зоны рассланцевания (S_{2r}) и милонитические зоны (S_{2m}) . Зоны скалывания $S_{2r} + S_{2m}$, начиная с глубины 1416 м, а тем более с глубины 1570 м, становятся планарной структурой, все глубже проникающей за счет рассланцевания S_1 . В фазе деформаций A_1 проявлялись скалывающие напряжения. Самые интенсивные скалывающие деформации появились в породах; залегающих под амфиболитовой серией и в ее подошве. Одновременно с дроблением и рассланцеванием отдельных партий тектогена происходила перекристаллизация в условиях эпидотово-амфиболитовой фации M_2 .

Во время фазы Д₃ образовались планарные структуры типа зон рассланцевания (S_{3r}) и милонитого-катакластических зон (S_{3m}), складки F₃ и скрещивающиеся линеации L₃₁. Текстуры этапа Д₄ обрпзовались в гораздо более неподвижных областях породы, чем во время старших фаз деформаций. Свидетельством того являются катакластические зоны S_{4k} и тектонические брекчии S_{4b}, планарные структуры L_{4b} и угловатые складки F₄.

Считая верной установленную очередность деформаций и пространственную ориентировку тектонических структур, показано 3 модели некоаксиального (ротационного) процесса деформаций. В эти модели введены некоторые упрощения и предпосылки, в частности, опущены изменения объема нарушенных пород и смены величин главных напряжений, а также учтены плоскостные деформации в разных фазах (X > Y = 1 > Z).

Модель 1 характеризуется самыми небольшими и постоянными (левосторонними) ротациями элипсоида деформации во время фаз Д₂₋₄ и составлена по принципу всех тангенциальных или им подобных деформаций. Модель 2 построена по принципу куполообразующих фаз в процессе деформаций фазы Д₁₋₄. Модель 3, отличающаяся самой большой и изменчивой ротацией элипсоида деформации, отражает как тангенциальные, так и куполообразующие деформации, приуроченные к варисцийскому орогенезу.

Zbigniew CYMERMAN

SEQUENCES OF DEFORMATIONS OF METAMORPHIC ROCKS IN THE BOREHOLE NIEDŹWIEDŹ IG 2 (LOWER SILESIA)

Summary

The paper presents results of detail tectonic studies on core material from the borehole Niedźwiedź IG 2 (Fig. 1), situated between Ziębice and Paczków (Lower Silesia). The borehole penetrated amphibolites at depth of 1638.4 m to enter underlaying series of mylonitic-blastomylonitic rocks, in which it was ended at depth of 1694.0 m. At least four stages of deformations were identified $(D_1, D_2, D_3, \text{ and } D_4)$.

The oldest identified tectonic structures originated in the phase D_1 . They include regional foliation S_1 and occasionally preserved folds F_1 . Two morphological varieties of foliation S_1 of the schistosity type were differentiated in the amphibolite series (Fig. 2): homogeneous and inhomogeneous foliations, and three varieties in the series of mylonitic and blastomylonitic rocks (Fig. 3): foliation of the laminated schistosity type, foliation of the dispersed schistosity type, and foliation of the lenticular schistosity type.

The bulk (90%) of values of angles of dip for foliation S_1 fall within the range from 32° to 58°. Deviations from that range are innumerous and explainable as due to origin of younger fold structures (F₃?), up to about a dozen meters in size. The deformation phase D_1 was synmetamorphic, developing under conditions of amphibolite facies.

The second phase of deformations (D_2) resulted in folding of surfaces of foliation S_1 in result of origin of numerous folds F_2 . The majority of these folds belong to the group of non-cylindrical, conical or sheath folds. With reference to 4 characteristic features (i.e. thickness of zone, mean size of diminution of grain in zone, development of new fabric, and relation of zone to folds F_2), two groups of planar structures S_2 were differentiated: ductile shear (S_{2r}) and mylonitic (S_{2m}) zones. The shear zones $S_{2r} + S_{2m}$ pass into a planar structure, more and more penetrative at the expense of foliation S_1 , from the depth of 1416 m (but especially 1570 m). The deformation phase D_2 took place under conditions of shearing stresses. The most intense deformations related to shearing are found in rocks underlaying the amphibolite series and at the base of that series. Fracturing and ductile shears of individual parts of the tectogene were accompanied by a process of recrystallization under conditions of epidote-amphibolite facies M_2 .

The phase D_3 resulted in origin of planar structures S_3 of the type of delamination zones (S_{3i}) and mylonitic-cataclastic zones (S_{3m}) , folds F_3 , and intersectional lineations L_{3i} . Structures of phase D_4 originated in rock domains markedly more rigid than in times of the proceeding phases. This is indicated by nature of cataclastic zones S_{4k} , tectonic breccias S_{4b} , boudinage structures L_{4b} , and kink folds F_4 .

Assuming that the above reconstructions of sequences of deformations and spatial orientation of tectonic structures are correct, 3 models of non-coaxial (rotational) history of deformations were outlined. The models were constructed making some simplifications and assumptions, e.g. neglecting changes in volume of the deformed rocks and major stress values, and inferring planar deformations in the course of individual deformation phases (X > Y = 1 > Z).

The model 1, characterized by the smallest and constant (sinistral) rotations of deformation ellipsoid in the phases D_{2-4} , is based on the hypothesis of tangential to subtangential nature of all the deformations. The model 2 assumes contribution of dome-forming phases in the phases D_{1-4} , and the model 3 assumes the greatest and varying rotations of deformation ellipsoid and contribution of both tangential and dome-forming deformations, regarded as related to the Variscan orogenic cycle.

176

Kwart. Geol., nr 2, 1986 r.

TABLICA I

Zbigniew CYMERMAN – Sekwencja deformacji skał metamorficznych z otworu wiertniczego Niedźwiedź IG 2

TABLICA I

Fig. 7. Fałd F_1 zachowany reliktowo w amfibolicie z głęb. 1391 m. Charakterystyczny dla tego wąskopromiennego fałdu jest owalny przegub. Górne skrzydło fałdu uległo prawie zupełnemu wytarciu. Ponad fałdem przebiega skośnie do niejednorodnej foliacji S_1 strefa mylonityczna S_{3m} . Wzdłuż strefy S_{3m} doszło do przesunięć rzędu kilku mm i powstania struktury budinażopodobnej (L_{3b}).

Relics of tight fold F_1 , characterized by ovale hinge and almost completely destroyed upper limb, in amphibolite from depth of 1391 m. A mylonitic zone S_{3m} passes above the fold, obliquely in relation to inhomogeneous foliation S_1 . Offsets, a few mm in scale, have taken place and a boudinagelike structure (L_{3b}) originated along the zone S_{3m} .

Fig. 8. W dolnej części strefa rozlaminowań S_{2r} . Powyżej tej strefy występują relikty silnie przetransponowanych fałdów F₁. Strefa rozlaminowań S_{2r} przecięta przez skośnie przebiegającą strefę mylonityczną S_{3m} . Próbka z głęb. 238,2 m.

Shear band zone S_{2r} (visible in lower part of the photo) and, above it, relics of strongly transposed folds F_1 . The zone S_{2r} is obliquely cut by mylonitic zone S_{3m} . Sample from depth of 238.2 m.

Fig. 9. Amfibolit drobnoziarnisty z licznymi granatami, które osiągają wymiary rzędu 5-6 mm z cieniami ciśnień. Fragment fałdu (F₂?) wąskopromiennego powstałego w wyniku zafałdowania leukokratycznej laminki plagioklazowej. Próbka z głęb. 1173,4 m.

Fine-grained amphibolite with numerous garnets up to 5-6 mm in size and with pressure shadows. A fragment of tight fold (F₂?), formed in result of folding of leucocratic plagioclase lamina. Sample from depth of 1173.4 m

Fig. 10. Fałd F_2 śródfoliacyjny, typu symilar, powstały w wyniku procesów ścinania. Powierzchnia osiowa fałdu F_2 jest prawie równoległa do jednorodnej foliacji S_1 . Prawie pionowe strefy kataklastyczne S_{4k} nie spowodowały przesunięć starszych struktur tektonicznych. Łupek amfibolowy z głęb. 1576,5 m

Intrafolial fold F_2 of the similar type, formed due to shearing processes. Axial plane of the fold is almost parallel to homogeneous foliation S_1 . Almost vertical cataclastic zones S_{4k} did not result in any offsets of older tectonic structures. Amphibolite schists from depth of 1576.5 m

TABLICA II

Zbigniew CYMERMAN – Sekwencja deformacji skał metamorficznych z otworu wiertniczego Niedźwiedź IG 2

TABLICA II

Fig. 11. Fałd F_2 wąskopromienny, który powstał w wyniku zafałdowania foliacji S_1 i warstewki leukokratycznej. Prawie pionowe strefy S_{4k} . Próbka z głęb. 1059,0 m

Closed fold F_2 , formed in result of folding of foliation S_1 and leucocratic layer. Zones S_{4k} almost vertical. Sample from depth of 1059.0 m

Fig. 12. Wąska strefa rozlaminowań S_{3r} przecina niezgodnie penetratywną foliację S_1 i bardzo cienkie strefy mylonityczne S_{2m} (prawie równoległe do S_1). Foliacje S_1 niejednorodna. Głęb. 836,3 m

Narrow zone of shear bands S_{3r} , discordantly cutting penetrative foliation S_1 and very thin mylonitic zones S_{2m} (almost parallel to S_1). Foliation \dot{S}_1 inhomogeneous. Sample from depth of 836.3 m Fig. 13. W amfibolicie wyraźna strefa rozlaminowań S_{2r} (z równoległymi cienkimi strefami mylonitycznymi S_{2m}) została przecięta i przesunięta przez strefę mylonityczną S_{3m} . Próbka z głęb. 912,0 m Amhibolite displaying a distinct zone of shear bands S_{2r} (with parallel thin mylonitic zones S_{2m}), cut and displaced by mylonitic zones S_{3m} . Sample from depth of 912.0 m

Fig. 14. Fałd F₂ wąskopromienny typu symilar. W prawej górnej części zdjęcia kilkumilimetrowe przesunięcie jasnej, leukokratycznej laminki (równoległej do S₁) przez strefę S_{4k}. Głęb. 1211,2 m

Tight fold F_2 of the similar type. A light-coloured, leucocratic lamina, a few mm thick and parallel to S_1 , and displaced by the zone S_{4k} , may be noted in upper right part of the photo. Sample from depth of 1211.2 m

Kwart. Geol., nr 2, 1986 r.

TABLICA III

Zbigniew CYMERMAN – Sekwencja deformacji skał metamorficznych z otworu wiertniczego Niedźwiedź IG 2

TABLICA III

Fig. 15. W amfibolicie fałdy F_2 prawie izoklinalne o ostrych, kątowych przegubach i zredukowanych skrzydłach. Powierzchnie osiowe F_2 zorientowane są w przybliżeniu równolegle do penetratywnej foliacji S₁. Głęb. 1334,2 m

Amphibolite displaying almost isoclinal folds F_2 with sharp, angular hinges and reduced limbs. Axial planes of the folds F_2 subparallel to penetrative foliation S_1 . Sample from depth of 1334.2 m

Fig. 16. Charakterystyczna strefa rozlaminowań S_{2r} powstała na granicy dwóch różnych odmian amfibolitów. W lewej części zdjęcia strefa mylonityczna S_{3m} została przecięta niezgodnie przez cieńszą i stromą strefę kataklastyczną S_{ak} . Próbka z głęb. 363,3 m

Characteristic ductile shear zone S_{2r} , developed at boundary of two different varieties of amphibolite. Mylonitic zone S_{3m} is discordantly cut by thin, steeply inclined cataclastic zone S_{4k} (left part of the photo). Sample from depth of 363.3 m

Fig. 17. W łupku amfibolowym dwie generacje fałdów: starsze fałdy (F_2) konwolutne o zmiennej orientacji powierzchni osiowych, młodsze fałdy (F_3) otwarte, asymetryczne, charakteryzują się znacznie bardziej stromymi i stałymi orientacjami swoich powierzchni osiowych. Próbka z głęb. 1598,6 m Two generations of folds in amphibolite schists: folds of older generation (F_2) convolute, with varying orientation of axial planes, and those of younger generation (F_3) – open, asymmetric, and characterized by markedly steeper and stable orientation of axial planes. Sample from depth of 1598.6 m Fig. 18. Fałdy F_2 asymetryczne. Równoległe do powierzchni osiowych fałdów F_2 zaczynają lokalnie rozwijać się strefy rozlaminowań S_{2r} . Jasna lamina leukokratyczna przecina niezgodnie foliację S_1 . Próbka z głęb. 377,7 m

Asymmetric fold F_2 . Note local development of shear band zones S_{2r} , parallel to axial planes of the folds F_2 . Light-coloured leucocratic lamina discordantly cuts foliation S_1 . Sample from depth of 377.7 m

Kwart. Geol., nr 2, 1986 r.

TABLICA IV

Zbigniew CYMERMAN – Sekwencja deformacji skał metamorficznych z otworu wiertniczego Niedźwiedź IG 2

TABLICA IV

Fig. 19. Wąska strefa mylonityczna S_{3m} przecina niezgodnie i przemieszcza starsze struktury planarne (S_1 i S_{2m}). Najcieńsze i najmłodsze są pionowe strefy S_{4k} . Próbka z głęb. 311,2 m

Narrow mylonitic zone S_{3m} , discordantly cutting and displacing older planar structures (S_1 and S_{2m}). Vertical zones S_{4k} are here the thinnest and youngest. Sample from depth of 311.2 m

Fig. 20. Partia przegubowa fałdu asymetrycznego F_3 w gnejsie amfibolowym. Spękanie zabliźnione, niezgodnie zorientowane względem powierzchni osiowej fałdu F_3 . Próbka z głęb. 1605,8 m

Hinge part of asymmetric fold F_3 in amphibolitic gneiss. Fractures filled and oriented discordantly in relation to axial plane of the fold F_3 . Sample from depth of 1605.8 m

Fig. 21. Fałd otwarty F_3 z powierzchnią osiową podkreśloną obecnością wąskiej strefy mylonitycznej S_{3m} . Występują tu także dość licznie, cienkie, prawie pionowe strefy kataklastyczne S_{4k} . Amfibolit z głęb. 427,6 m

Open fold F_3 with axial plane accentuated by narrow mylonitic zone S_{3m} . Note presence of fairly numerous, thin, almost vertical cataclastic zones S_{4k} . Amphibolite from depth of 427.6 m

Fig. 22. 1,5 cm strefa kataklastyczna S_{4k} , prawie pionowa, która powoduje zagięcie strefy mylonitycznej S_{4m} . Próbka z głęb. 366,3 m

Almost vertical cataclastic zones S_{4k} , 1.5 cm thick, responsible for bending of mylonitic zone S_{3m} . Sample from depth of 366.3 m Kwart. Geol., nr 2, 1986 r.

TABLICA V

Zbigniew CYMERMAN – – Sekwencja deformacji skał metamorficznych z otworu wiertniczego Niedźwiedź IG 2

TABLICA V

Fig. 23. Fałdy F_3 otwarte, asymetryczne, ze skrzydłami krótszymi znacznie grubszymi od skrzydeł długich. Spękanie prawie pionowe, zabliźnione głównie epidotem. Próbka z głęb. 1153,0 m

Open asymmetric folds F_3 with short limbs markedly thicker than the long ones. Fractures almost vertical, mainly healed with epidote. Sample from depth of 1153.0 m

Fig. 24. Strefa kataklastyczna S_{4k} , pionowa, z licznymi żyłkami mineralnymi równoległymi do granic strefy. Wzdłuż strefy kataklastycznej S_{4k} doszło do 2 cm przemieszczenia, m.in. laminki leukokratycznej zafałdowanej izoklinalnie (F_2) i foliacji S_1 jednorodnej. Charakterystyczne odbarwienia wokół strefy S_{4k} . Próbka z głęb.1517,6 m

Vertical cataclastic zones S_{4k} with numerous mineral veinlets parallel to it. Isoclinally folded leucocratic lamina (F_2), homogeneous foliation S_1 , and other structures are offset for about 2 cm along that zone. Note characteristic decolouring around the zone S_{4k} . Sampel from depth of 1517.6 m Fig. 25. Strefa brekcji tektonicznej S_{4b} o zawartości 50-60% matrix. Charakterystyczne rozjaśnienie całej strefy w stosunku do otaczającego amfibolitu. Bardzo stroma (prawie pionowa) orientacja przestrzenna strefy S_{4b} . Okruchy brekcji tektonicznej osiągają wielkość do 1,5 cm. Liczne spękania zabliźnione głównie epidotem i kalcytem. Próbka z głęb. 690,8 m

Tectonic breccia zone S_{ab} with content of matrix about 50-60% and characterized by colouring lighter than that of surrounding amphibolite and very steep (almost vertical) spatial orientation. Fragments of breccia up to 1.5 cm in size. Fractures numerous, filled mainly with epidote and calcite. Sample from depth of 690.8 m

Fig. 26. Silnie węglanowa brekcja tektoniczna S_{4b} . Klasty kilkucentymetrowej wielkości "opływane" są przez miazgę kataklastyczną. Zdecydowanie przeważają jasne klasty o słabo zaokrąglonych krawędziach. Spękania zabliźnione są kalcytem. Próbka z blastomylonitycznego łupku kwarcowo-skaleniowego z głęb. 1650,2 m

Strongly calcareous tectonic breccia S_{4b} . Clasts, up to a few mm in size, embedded in cataclastic matrix. Light-coloures clasts with weakly rounded margins clearly predominante. Fractures filled with calcite. Sample from blastomylonitic quartz-feldspar schists from depth of 1650.2 m