Analysis of the fault pattern in selected areas of the Polish Outer Carpathians

Leonard MASTELLA, Ewa SZYNKARUK

Fault pattern was studied in selected areas of the Polish Outer Carpathians. The study was based on the author's own mapping data, radar images and the Geological Map of Poland 1:200 000. A dense and regular fault pattern is present in all the studied areas. It consists of two sets of faults diagonal to the strike of the main tectonic structures, D9 and D1, and a set of less common transverse faults T. The azimuths of the set T faults correspond approximately to the azimuths of the a1 axis of the D9 and D1 system. The azimuths change accordingly to the bending of the Carpathian arc, from ca. 40° in the east to ca. 175° in the west. All the fault sets dissect the regional structures and their overthrust planes, which indicates that the faults formed after folding and overthrusting of the nappes.

Leonard Mastella, Ewa Szynkaruk, Institute of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warszawa, Poland (received: 26.02.1998; accepted: 8.07.1998).

Key words: Carpathians, conjugate fault sets, faults, fault pattern, photointerpretation, radar images, tectonics.

INTRODUCTION

This study presents an analysis of the fault pattern in selected areas of the Polish Outer Carpathians (Fig. 1A). The fault pattern was studied in the following areas: the eastern part of the Fore-Dukla unit, tectonic windows of Mszana Dolna and Świątkowa, Silesian nappes near Solina, between the rivers Skawa and Dunajec and near Żywiec (Fig. 1B). The analysis was based on:
- author's own field studies documented at the scale of 1:10 000 and supplemented with geological interpretation of air photos at approximate scales of 1:17 000 and 1:50 000;
- geological interpretation of radar images at approximate scale of 1:100 000;
- analysis of Geological Map of Poland 1:200 000 (sheets Jasło, Nowy Sącz, Bielsko-Biała; Fig. 1B)

The study was a part of the projects KBN No. 60099101 and BW-1384/10 (both led by Doc. Dr. hab. Leonard Mastella).

METHODS

Diverse methods were applied. Classical methods of geological mapping were used in the field work, together with structural analysis made according to the general suggestions presented by W. Jaroszewski (1972) and L. Mastella (1988). The methods of interpretation of air photos, including the radar ones, was based on the works by A. Pszczółkowski (1968), S. Doktór, M. Graniczny (1982), M. Graniczny et al. (1989), S. Ostaficzuk (1978), P. Vergely, H. Zadeh-Kabir (1988), D. J. Sanderson et al. (1991). Especially useful were the radar images at a scale 1:100 000 and resolution of ca. 30 m (S. Doktór, M. Graniczny, 1982). The masking effect of vegetation is partly removed on these images (S. Doktór, M. Graniczny, 1982; P. Vergely, H. Zadeh-Kabir, 1988; M. Graniczny et al., 1989) and the low angle of incidence of the radar beam (S. Doktór, M. Graniczny, 1982; M. Graniczny et al., 1989) increases the legibility of linear geological elements,
including faults (M. Graniczny et al., 1989). The direction of flight was parallel to the regional structural strike, so the legibility of the faults oblique and normal to this direction increased markedly.

The faults oblique and normal to the structural strike were analyzed, as longitudinal faults are indistinguishable from thrusts on air photographs. The analysis included the faults which were directly mapped in the field, distinguished by interpretation of air photos and marked on existing geological maps. The faults manifest themselves in exposures by the presence of zones of breccia and cataclasites, folded shales and broken sandstone beds. The nature of these faults was established using folds (Pl. I, Fig. 10), fault drag (Pl. II, Fig. 11), slickensides, en echelon arrangement of faults and shears within the zones of breccia (Pl. II, Fig. 12).

Fault positions were established by photointerpretation where zones of breccia and cataclasites extended on valley slopes as narrow and often dry gullies, and where they were marked on hill crests as steps, gaps or small shifts in ridge axes (see L. Mastella, 1975; L. Mastella et al., 1996; L. Mastella, J. Rubinkiewicz, 1998). The interpretation of faults on the radar photos and geological maps involved analysis of their surface traces, their en echelon patterns and the displacement of rock series along them — all using the methods tested earlier in the Polish part of the Carpathians (L. Mastella, 1975; 1988; A. Konon, 1996, 1997; J. Rubinkiewicz, 1996).

The fault pattern was represented as (depending on its complexity — see S. Doktor, M. Graniczny, 1982; P. Vergely, H. Zadeh-Kabir, 1988; D. J. Sanderson et al., 1991): schematic maps based mainly on field studies, directly on the radar images or on maps drawn from them. In a few cases the patterns are illustrated by rose diagrams only.

Fault azimuths were measured to the nearest 1°. Rose diagrams were drawn by grouping measurements into 5° classes, each representing the sum of the lengths of faults within the azimuth class and shown as percent of the total length of all faults in the area. Azimuth of the centre of each class was then used for calculation.

The faults of the diagonal sets in the whole studied area are mostly right-lateral — D_R (Pl. I, Fig. 11) and left-lateral — D_L (Pl. I, Fig. 10; Pl. II, Fig. 12) strike-slip faults, in many cases reactivated as dip-slip faults. Mutual geometrical relationships of the two sets, namely the offsets of some faults along the others and mutual terminations of some faults on the others, as seen in exposures (L. Mastella, 1988) and air photos (S. Doktor, M. Graniczny, 1982; L. Mastella, 1988; P. Vergely, H. Zadeh-Kabir, 1988; D. J. Sanderson et al., 1991) indicate that a large part of the faults were synchronous (during the strike-slip phase of their development). In such a situation (W. Jaroszewski, 1980) the acute angle between the two sets is twice the shearing angle 2θ and it is usually close to 60° (op. cit; J. Handin et al., 1963). It can be said of such faults (G. Mandl, 1988; T. Engelder, 1989; R. Dadlez, W. Jaroszewski, 1994) that they were formed in a triaxial field of stresses.

In that case, according to the general rules (R. Dadlez, W. Jaroszewski, 1994), the bisector of the acute angle between the surfaces of faults from both sets was used to determine the axis of main stress σ_1. The σ_2 direction is determined by the
ANALYSIS OF THE FAULT PATTERN

THE FORE-DUKLA UNIT AND ITS MARGIN

The studied fragment of the Fore-Dukla unit and its immediate surrounding extends for ca. 40 km, from Ustrzyki Góre in the east to Roztoki Dolne near Biłgoraj in the west. It is 1 to 6 km wide (Fig. 2A). On SW the unit is bound by the overthrust of the Dukla unit built here of the Upper Cretaceous Łupków and Cisna Beds (A. Ślączka, 1961; G. Haczeński, 1971; J. Rubinkiewicz, 1996), and on the NE by a large inverse fault whose hanging wall consists of the Upper Oligocene Krosno Beds of the Central Carpathian Depression (A. Ślączka, K. Zytko, 1978; J. Kuśmirek, 1979; L. Mastella, 1995). The Fore-Dukla unit consists of numerous steeply inclined tectonic slices of various size, aligned NW-SE, in accordance with the regional strike of the unit (L. Mastella, 1995). They include almost complete sequence of the Silesian unit (A. Ślączka, 1959), from the Lower Cretaceous (op. cit.) to the Upper Oligocene Passage Beds (J. Kuśmirek, 1979).

The obtained cartographic representation shows a regular pattern of faults (Fig. 2A) whose position is independent of lithology of the affected rock series (L. Mastella, 1995). Individual faults cross through both the slices and the large faults that border the Fore-Dukla unit (L. Mastella, 1995; J. Rubinkiewicz, 1996), and through folds in the Central Carpa-
than Depression. They were thus formed after establishment of the general structural features of the area.

Three sets of faults with steep surfaces dominate in the pattern. The directions of two of them (DR and DL) are diagonal to the strike of regional units and the third (T) is perpendicular to it.

Faults of the DR and DL sets. The directions of the faults of the DR set (right-lateral) in the western and eastern parts of the studied fragment of the Fore-Dukla unit are N–S, while those of the DL set (left-lateral) are NE–SW (Fig. 2A, diagrams 1 and 3). These sets are undoubtedly conjugate synchronous shear surfaces (L. Mastella, 1995). This is indicated, among others, by the fact that in the middle part, where the azimuths of the directions of faults DR vary between 7 and 15°, and of faults DL — 42–50° they intersect at an angle 2θ of ca. 35°. In the southern part of the Central Carpathian Depression and in the northern part of the Dukla nappe the directions of the DR set are 10° and those of the set DL are 60° (Fig. 2A, diagrams I and II) (J. Rubinskiwicz, 1996, fig. 8).

The 2θ angle varies from 33° in the northern part of the Dukla unit and in the middle part of the Fore-Dukla unit to ca. 46° on its ends. Such shears, whose 2θ angle is distinctly smaller than 60° are called hybrid shears (P. L. Hancock, 1985) and they originate in a triaxial stress-field when the σ3 value is negative (Fig. 3; R. Dadlez, W. Jaroszewski, 1994, fig. 58), i.e., extension occurs along this axis. In the Fore-Dukla unit extension occurred by lateral expansion of its mostly ductile layers, compressed between the sandstone complexes of the Dukla unit and the Central Carpathian Depression (L. Mastella, 1995). Additional extension occurred also in the Central Carpathian Depression and the Dukla unit near sigmoidal bends of their contacts with the Fore-Dukla unit (Fig. 2A) (L. Mastella, 1995). The shearing angle in the southern part of the Central Carpathian Depression is about 50°. This is due to the fact that the faults cut through thick-bedded sandstones. In this lithology the 2θ angle is usually slightly smaller than 60° (G. Mandl, 1988).

The mean direction of σ1 over the whole studied section of the Fore-Dukla unit, equivalent to the direction of maximum compression, is close to 25°, and in its margins, both in the Central Carpathian Depression and in the Dukla unit it reaches 35° (Fig. 2A). The σ3 directions are ca. 115° and ca. 125°, respectively. Both these axes are horizontal and the σ2 axis is vertical.

Faults of the T set. The faults of the transverse set (T) are usually readily mappable, wide zones of tectonic failure (Pl. II, Fig. 13). Their nature is in many cases impossible to determine. The vertical and horizontal component, if they can be determined at all, often have variable orientations, even in a single zone. However, normal faults generally predominate. Faults with azimuths 24–28° predominate in the Fore-Dukla unit, while those within its margins have azimuths about 35°.

The directions of those faults are nearly identical with the direction of σ1, i.e., they are nearly perpendicular to σ3, thus they seem to be normal faults (cf. G. Mandl, 1988; R. Dadlez, W. Jaroszewski, 1994) (Fig. 5).

TECTONIC WINDOW OF ŚWIĄTKOWA

A small tectonic window occurs near the village of Święt­kowa (Fig. 2B), in which the Grybów unit crops out from beneath the overlying Inoceramian Beds of the Magura unit (M. Książkiewicz, 1972; L. Koszarski, 1985). The Grybów unit comprises a sequence from the Hieroglyphic Beds to the Krosno Beds (L. Koszarski, A. Tokarski, 1968). Large faults of mappable sizes clearly cut through the window unit as well as through the Magura nappe (Fig. 2B), hence they are younger than the overthrust of the Magura nappe.

The described fault pattern is overprinted by steep faults with distinct strike-slip component and azimuths ca. 165° (DR — right-lateral) and 45° (DL — left-lateral) (L. Mastella, J. Rubinskiwicz, 1998). The faults form a diagonal system of conjugated simultaneous shears with the 2θ angle ca. 60° and with the σ3 axis azimuth of ca. 15° (op. cit.). Subordinately occur faults with azimuths ca. 16° (Fig. 2B). The conformity of their directions to the σ1 direction of the diagonal system make it possible that the faults have the same origin as the T set faults in the Fore-Dukla unit, though some smaller ones are feather faults around the DL faults. Most of the described faults were reactivated as dip-slip faults after the strike-slip phase (op. cit.).

THE MSZANA DOLNA TECTONIC WINDOW

The tectonic window of Mszana Dolna extends at the most curved fragment of the arcuate Magura unit (Fig. 1B). Many authors have shown (H. Kozikowski, 1972; J. Burzan, 1974, 1978; J. Burzan et al., 1976, 1978; L. Mastella, 1988) that two tectonic units crop out within it. The lower, folded and locally broken into tectonic slices Mszana Dolna tectonic unit (L. Mastella, 1988) is built of sandstones and shales of the Krosno Beds (J. Burzan, 1974, 1978; J. Burzan et al., 1976, 1978). It is overlain by small tectonic caps of the silex Grybów unit (H. Kozikowski, 1972; L. Mastella, 1988).
The fault pattern in the window and its margins was studied in detail in the field (L. Mastella, 1988) and supplemented with interpretation of air photographs, and radar images (Fig. 4) over an area of ca. 180 km². Here also the faults postdate the overthrusts, as they cut through all the three tectonic units. The fault pattern consists mostly of steep faults oblique to the regional tectonic structures (L. Mastella, 1988). Two sets of initially strike-slip faults dominate (op. cit.): \(D_R \) — right-lateral and \(D_L \) — left-lateral ones, both forming a conjugate system of synchronous shears. The faults with azimuths 160°–164° (\(D_R \)) and 44°–50° (\(D_L \)) dominate within the window and in the adjacent part of its margin. The \(2\theta \) angle is ca. 66° and the azimuth of the \(\sigma_1 \) is 14° (Fig. 4, diagrams O1, O2, O3, B1 and B2). Faults with the azimuth 160° dominate in the \(D_R \) set in the highest parts of the Magura unit and 40° in \(D_L \) set (Fig. 4, diagrams M1 and M2) at the \(2\theta \) angle about 60° and the azimuth of the \(\sigma_1 \) about 10° (Fig. 9). This small difference in the \(\sigma_1 \) azimuths between the window and the basal parts of the Magura nappe (\(\sigma_1 = 14° \)) when compared to its higher parts (\(\sigma_1 = 10° \)) may be due to the clockwise rotation of the lower parts relative to the higher ones. This is corroborated by transformation of the right-lateral faults (\(D_R \)) into left-lateral ones (L. Mastella, 1988) suggesting in turn (op. cit.) the earlier reported (R. Unrug, 1984; K. Birkenmajer, 1985; C. Tomek, 1988; P. Aleksandrowski, 1989) clockwise regional rotation.

Most of the discussed faults were reactivated as dip-slip faults, some of them active until now (M. Gruszczynski, L. Mastella, 1986; L. Mastella, 1988).

CENTRAL CARPATHIAN DEPRESSION (AREA OF LESKO)

The analysis of the fault pattern was made on radar images which cover about 200 km² in the Central Carpathian Depression south-west of Lesko (Fig. 1B). The area is built mainly of thick-bedded sandstones of the Lower Krosno Beds folded into several steep folds oriented NW–SE, locally dissected by thrusts (S. Gucik et al., 1979; S. Gucik, A. Wójcik, 1982; A. Ślączka, K. Żytko, 1978; S. Wdowiarz, 1980, 1985).
The fault pattern as seen on the radar images is very dense and regular (Fig. 5A), in contrast to how it is represented on geological maps. It consists of two sets of steep faults cutting diagonally through the overthrusts and folds, regardless of their lithology. The faults of the set D_R with azimuths ca. 15° dominate (Fig. 5A — rose diagram). They are arranged into
three distinct fault zones extending approximately along the valleys of the Oslawa river, Hoćzewka stream, and the lower course of the Solinka river (Fig. 5A). The fault zone of the Hoćzewka and lower Solinka (Fig. 5A) extends clearly to the south to the fault cutting across the Bystre tectonic slices along the Jabłonki stream (A. Śliążka, 1959; L. Mastella, 1995). Similar directions of faults were observed by A. Pszczółkowski (1968). The described fault zones as well as individual accompanying faults with the same direction have a component of right-lateral movement. The faults of the D_2 set are less numerous and are usually dispersed (Fig. 5A). Both sets intersect at an angle close to 50°. The described features and regional analogies suggest that both sets are conjugate and synchronous, and the σ_1 azimuth of ca. 40° is similar to that measured near the southern boundary of the Silesian unit in this part of the Carpathians (Fig. 9).

THE SILESIAN NAPPE BETWEEN THE DUNAJEC AND SKAWA RIVERS

This area is considered after M. Książkiewicz (1972) as a structurally uniform domain within the Silesian nappe. The Silesian nappe in this area consists of flat, indistinct folds and it is divided into the northern and southern parts by the strongly tectonically sliced Lanckorona–Żegocina zone, extending east-west. The northern part is built mainly of Cretaceous strata ranging from the Lgota Beds through Istebna Beds, while the southern part is built mainly of Palaeogene strata, mainly the Krosno Beds (M. Książkiewicz, 1972). The western boundary is marked by the fault extending along the Skawa river valley. The tectonic style of the Silesian nappe changes eastward of the Dunajec river to one of distinct folds (M. Książkiewicz, 1972). From the south the studied area includes also a fragment of the Magura nappe.

The fault pattern, as interpreted from the air photos, mainly radar images, is regular all over this area, both in the Silesian nappe and in the adjacent fragment of the Magura nappe. It consists mainly of two sets — the NNW–SSE and the NE–SW ones, diagonal to the strike of the main regional structures, similarly as over the whole area described earlier. The directions of faults are independent of the lithology of the dissected rock series.

The analysis of images, supplemented with the author’s and A. Konon’s (1996, 1997) field studies indicates that here the described faults had a strike-slip phase in their evolution, as conjugate synchronous shears: NNW — right-lateral (D_R), NE — left-lateral (D_L) and were formed after the formation of the folds and overthrusts in this part of the Outer Carpathians. The post-thrust age of the faults of this type was accepted for the western part of the discussed fragment of the Silesian nappe by M. Książkiewicz (1974) and also partly by P. Aleksandrowski (1989).

The area near the Rożnów reservoir. The fault pattern was studied here over an area of 140 km² in the Silesian nappe east of the Rożnów reservoir and in the Magura nappe to the west of the reservoir (Figs. 1B, 6). The directions of the two fault sets are nearly identical in both areas — 150–155° (D_R) and 30–35° (D_L) (Fig. 6, diagrams 1 and 2). The 2θ angle is about 60°, and the azimuth of σ_1 — about 5°.

The fault pattern consists of uniformly dispersed faults of both sets (Fig. 6). The faults with NNW strikes though clearly predominating (Fig. 6) are not grouped into distinct fault zones. The faults marked on the map (J. Burtan et al., 1976) do not appear on the radar image. Only the meridional fault east of the Rożnów reservoir (op. cit.) is manifested on the radar image as a concentration of faults of both sets. It can be thus suggested that no significant horizontal displacements occurred in this area after the formation of the described fault pattern.

The area of Myslenice. The studied fragment, about 140 km² in area, extends in the southern, strongly folded and thrust part of the Silesian nappe near its contact with the overthrust of the Magura nappe (M. Książkiewicz, 1972, fig. 8). The fault pattern consists of uniformly dispersed faults of
A small concentration of the known here DR sets, similarly as in the (Fig. 18). extension during the formation of the discussed fault pattern.

The area of Żywiec

The area extends over ca. 200 km² (Fig. 1B) in the Silesian and Magura nappes. The fault pattern consists of the DR faults with azimuths 140°–155° and DL faults with azimuths 25°–30° (Fig. 5B). The 2θ angle is between 55 and 65°. The σ₁ azimuth is ca. 175° (Fig. 9). While both sets are uniformly distributed, the less numerous DL faults form two fault zones with azimuths ca. 30°. The more distinct of them lies on the eastern side of the Żywiec reservoir and the second, more dispersed one is near Kocot (Fig. 5B). The faults clearly cut through the Magura nappe overthrust, maintaining the same direction in the Silesian and Magura nappes (Fig. 5B).

Analysis of the fault pattern on geological maps 1:200 000

The analysis of the fault pattern revealed by field studies and interpretation of air photographs and radar images were supplemented with the analysis of faults shown on geological maps 1:200 000, sheets Jasło (P. Nescieruk et al., 1992), Nowy Sącz (J. Burtan et al., 1981) and Bielsko-Biała (J. Golonka et al., 1978). The striking feature of the fault pattern in this area is the clear domination of steep faults of one set with widely changing (within 30°) orientations (op. cit.) The faults of this set that are identified in the field form usually wide zones of tectonic disruption, cataclasites and breccias, similarly as the T set faults in the Central Carpathian Depression (Pl. II, Fig. 13). These are usually oblique slip-faults in which the direction of movement along the fault plane changes even along one fault. Similarly as earlier described faults in the Central Carpathian Depression, these faults were found by W. Zuchiewicz and A. Henkel (1993) to be approximately perpendicular to the strike of the regional tectonic structures (J. Golonka et al., 1978; J. Burtan et al., 1981; P. Nescieruk et al., 1992). Their azimuths, as was noted by S.

NNW–SSE oriented fault zone is formed by the faults of DR set concentrated along the Cedron stream.

Figs. 7, 8. Rose diagrams of fault directions in the area of Myślenice (A) and Wadowice (B)

The radius of the diagrams A and B represents 20%.

Fig. 7. Rose diagrams of fault directions in the area of Myślenice (A) and Wadowice (B)

The radius of the diagrams A and B represents 20%.

Fig. 8. Rose diagrams of transverse faults T drawn after geological maps 1:200 000, sheets Bielsko-Biała, Nowy Sącz and Jasło

Numbers on the lower left sides of the diagrams indicate percentage values of the diagram radius.

Rezety uskoków poprzecznych zespołu T wykonane na podstawie map geologicznych w skali 1:200 000, ark. Bielsko-Biała, Nowy Sącz i Jasło

Liczby z lewej dolnej strony rozet oznaczają wartość procentową promieni. **Fig. 8. Rose diagrams of transverse faults T drawn after geological maps 1:200 000, sheets Bielsko-Biała, Nowy Sącz and Jasło** Numbers on the lower left sides of the diagrams indicate percentage values of the diagram radius. Rezety uskoków poprzecznych zespołu T wykonane na podstawie map geologicznych w skali 1:200 000, ark. Bielsko-Biała, Nowy Sącz i Jasło. Liczby z lewej dolnej strony rozet oznaczają wartość procentową promieni.
Doktor and M. Graniczny (1982) approximately correspond to the described σ_1 of D_R and D_L sets. This additionally confirms that these are T set faults. Their origin should be the same as of the faults of this set in the Fore-Dukla unit and its margin. Taking into account the evolution of the stress field in various parts of the Polish Carpathians (P. Aleksandrowski, 1989; L. Mastella, 1975, 1988) one may suppose that these faults are the youngest and have been formed during the post-orogenic uplift of the Carpathians under conditions of vanishing submeridional compression.

The faults of the D_R and D_L sets on the studied maps are not numerous, but they almost always correspond to the faults detected in the field and on the radar images.

THE FAULT PATTERN AND JOINTS

The directions of the fault pattern described above largely correspond to the directions of the two conjugate sets of joints (D_1 and D_2) and the T set (L. Mastella et al., 1997; W. Zuchiewicz, 1997a, b) observed by us and reported by other authors (M. Książkiewicz, 1968; P. Aleksandrowski, 1989; W. Zuchiewicz, A. Henkiel, 1993; L. Mastella et al., 1997; W. Zuchiewicz, 1997a, b). These sets change their orientation from the east to the west, maintaining stable position with respect to the regional fold structures. The D_1 and D_2 joint sets display a tendency to left- and right-lateral displacement along them, respectively (L. Mastella et al., 1997). As in the case of D_1 and D_2 faults, the 2θ angle of D_1 and D_2 joint sets is about 60° (W. Zuchiewicz, A. Henkiel, 1993; L. Mastella et al., 1997). The analogy is so close that in the areas of Myślenice, Fore-Dukla zone and in its southern margin the 2θ angle is lower than the dominant one and is 30-48° for the D_L and D_R faults as well as the joint sets D_1 and D_2, as it is shown by the author’s observations. The joints there are hybrid shears formed at negative values of σ_3. This constata-

The results of the field studies and air photo interpretation, especially radar images, indicate that a dense pattern of steep faults is present in the studied fragment of the Polish Outer Carpathians. It consists mainly of two sets, D_R and D_L, of faults diagonal to the strike of major regional structures and of a less dense set T of faults transverse to these structures.

The D_R and D_L faults are mostly strike-slip faults reactivated as dip-slip faults. In the strike-slip faults the D_R faults were right-lateral and the D_L ones — left-lateral. Their azimuths display a regional variation: D_R — from about 10° in the east to about 150° in the west, and D_L — from 60 to 25°, respectively. The results of the structural analysis indicate that they form a system of conjugate simultaneous shears with
dominant 2θ angle of about 60°. Locally the value of this angle is smaller. In the Fore-Dukla unit and its direct vicinity it is about 35° and in the Myślenice area near the overthrust of the Magura nappe on the Silesian nappe — about 48°. In both cases this is probably the result of extension in the direction of strike of the regional structures during the formation of the described faults.

It may be concluded that the system of D_R and D_L faults originated in a triaxial field of stresses in which only locally σ_3 attained small negative values. The calculated direction of compression, corresponding to the axis of the main stress (σ_1), varies regionally from about 40° in the east (except the Fore-Dukla unit strongly dissected by thrusts, where σ_1 = 25°) through about 0° in the central part to about 175° in the western end of the studied section of the Western Outer Carpathians (Fig. 9).

The pattern of T set faults consists mainly of faults transversal to the regional structures, so that faults with azimuths 35° dominate in the east and 165° — in the west (Fig. 8). Their directions correspond approximately to the σ_1 directions of the D_R and D_L fault system (Figs. 8, 9). This seems to indicate that the T faults formed under a significant extension over the whole area in the direction perpendicular to then vanishing compression of the stage of the D_R and D_L fault formation. Therefore the system of D_R and D_L is older than the T faults.

Both, the D_R and D_L faults and the T faults cut through the regional structures in the Silesian, Dukla and Magura nappes and the zones of their overthrusts. This indicates that the discussed pattern of faults formed already after folding and thrusting of the nappes. The regular pattern of faults and the stability of its directions in all tectonic units in the area indicate that they are primary faults, formed in the regionally homogeneous stress field (R. Freund, 1974). It also indicates the lack of major horizontal movements in this part of the Carpathians after their formation.

The directions of the described fault pattern coincides well with the pattern of joints oblique and perpendicular to the regional structures. Also the value of the 2θ angle and its regional variation in the fault pattern and joint pattern are the same. This may indicate nearly simultaneous origin of the joints and faults.

The review of papers by other authors (N. Oszczypko, A. Tomañ, 1985; M. Cieszkowski et al., 1992) may suggest that the D_R and D_L fault system originated in the early Sarmatian when the Magura nappe was finally pushed (M. Cieszkowski et al., 1988). It was only probably from that time when the joints of shearing system (D_R and D_L — L. Mastella et al., 1997) began to appear. The T faults (and probably also the T joints) should be attributed to post-orogenic uplift of the studied area which, according to M. Cieszkowski et al. (1992), should be referred to the end of Neogene Period.

Acknowledgements The authors thank Doc. Dr. hab. Marek Graniczny and his team, for providing access to the radar images and assistance in their interpretation. We also thank Dr. Marek Jarosinski for his discussion and critical remarks on the draft of this text.

Translated by Grzegorz Haczewski

REFERENCES

ANALIZA SIECI USKOWKOWEJ WYBRANYCH OBSARÓW
Z POLSKIEJ CZĘŚCI KARPAT ZewnTrnych

Streszczenie

Opracowanie dotyczy sieci uskokowej na wybranych obszarach polskiej części Karpat zachodnich (fig. 1A). Analizy opierają się na własnych badaniach, interpretacji zdjęć lizniczych, w tym radarowych, oraz mapach geologicznych (fig. 1B). Podglądały się metodami klasycznymi, uzupełnia-
ny variantsy analizy strukturalną (tabl. I, fig. 10, 11; tabl. II, fig. 12). Stwierdzono,
że na badanych obszarach występuje gosta i regularna sieć strumieni uskokowych.
Skała się ona głównie z dwóch zespołów: Dą i D2, uskoków skośnych do rozległych struktur regionalnych i zespołu T — poprzecznych do tych struktur (fig. 2–7). Wszystkie one wykazują regionalną zmienność uzupełni-
ów: Dą — od około 100° na wschód do około 150° na zachód, D2 —

odpowiednio do około 60° do około 25°. Ich kierunki są niezależne od litologii przeciwnych przez nie kompozycji skał. Uskok D₃ i D₄ są uszkakami przesuwczymi: Dₛ — prawoskrętnymi, a D₊ — lewoskrętnymi. Tworzą one system ścięć przeciwnych równocznych o dominującym kącie 29 około 60°. Lokalnie, w jednostce przedeuklideskiej i jej północnym obramowaniu oraz w rejonie Myślenic kąt ten jest znacznie mniejszy — 35–48° i uskoki nabierają charakteru ścięć hybrydowych. Powstały one w trójsiodowym polu naprężeń, w którym, w wyniku rozciągania zgodnego z przebiegiem struktur regionalnych, Obj przyjmowała lokalnie wartość ujemną (fig. 3). Obliczona kierunk kompresji (odpowiadający c₀) zmienia się regionalnie od około 40° na wschodzie do około 175° na zachodzie (fig. 9). Sieć uskoków T składa się głównie z dużych uskoków poprzecznych do rozciągłości struktur regionalnych tak, że w części wschodniej dominują uskoki o azymucie około 35°, a w zachodniej około 165° (fig. 8). Ich azymuty pokrzyczają się z kierunkami c₀, (fig. 9). Wynikałoby z tego, że uskok T powstawały przy występującym już na całym obszarze rozciąganiu prostopadłym do kierunku zanikającej już kompresji z etapu powstawania uskoków D₃ i D₄. W tej sytuacji usoki te są starane od uskoków T. Zarówno usoki Dₛ i D₊ jak i T dominują regionalne struktury w płaszczowinie śląskiej, dukłideskiej i magurskiej oraz nasunięcia tych jednostek. Wskazuje to, że omawiana sieć uskoków powstała już po sfaladowaniu i nasunięciu tych płaszczowin.

EXPLANATIONS OF PLATES

PLATE I

Fig. 10. Strike-slip left-lateral fault with a fault drag. Azimuth of the plane is shown next to the fault line; strike and dip of strata are also shown. The arrows show the direction of strike-slip movement. Tectonic window of Mazany Dolne. Exposure of the Krosno Beds in the Konina river between Niedźwiedź and Konina.

Fig. 11. Small en echelon low-angle faults and fault-drag near a right-lateral strike-slip fault. Forn-Dukla unit — Bystre slika. Exposure of the Gloszyn Beds in the Jablonka stream at Jablonka village.

Drobné usok kultúrnych niskoúlovec i podgoucia warstv przy usoko-ku przesuwczym prawoskrętłym. Jedenostka przedeuklideska — niska

PLATE II

Fig. 12. Breccia with en echelon joints in the zone of a left-lateral strike-slip fault. Central Carpathian Depression. Exposure of the Otryt Sandstone in the Stojnica river.

Breccia z kluśowymi spękami w strefie usoków przesuwczego lewoskrętnego. Centralna depresja karpacka. Odsłonięcie piaskowców z Otrytu w korycie rzeki Stojnicy.

Fig. 13. Fault zone. Central Carpathian Depression. Exposure of the middle part of the Krosno Beds in the Solinka river at Buk.

Strefa usokowa. Centralna depresja karpacka. Odsłonięcie środkowej części warstw krośnieńskich dobrych w korycie rzeki Solinka we wsi Buk.
Leonard MASTELLA, Ewa SZYNKARUK — Analysis of the fault pattern in selected areas of the Polish Outer Carpathians
Leonard MASTELLA, Ewa SZYNKARUK — Analysis of the fault pattern in selected areas of the Polish Outer Carpathians