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Hettangian clay mineral assemblages from the Holy Cross Mts. margin (southeastern part of the epicontinental Polish Basin) were mostly
controlled by climatic conditions and weathering regime. Hettangian claystones and mudstones were deposited in continental and ma-
rine-margin palaeoenvironments in a warm climate, mostly with year-round humidity. The pronounced, long-term greenhouse condi-
tions intensified chemical weathering in the hinterland. Reworking and redeposition of ancient sediments caused by tectonics and/or by
sea-level changes and early diagenesis may have modified the clay mineral content in the earliest Hettangian. Burial diagenesis and
telodiagenesis changed the clay mineral composition only locally.
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INTRODUCTION

A wide range of geochemical, sedimentological,
lithological and palaeontological evidence suggests that the in-
terval at the end of the Triassic and the beginning of the Juras-
sic was a time of major environmental changes. In the Late Tri-
assic the supercontinent Pangaea began to fragment. Rifting
events were accompanied by reorganization of the subsidence
pattern and by basaltic volcanism that formed the largest igne-
ous province in Phanerozoic time (Marzoli ef al., 1999, 2004;
Hames et al., 2000). Carbon-isotope anomalies have been re-
ported worldwide that may indicate coeval global disturbances
in biogeochemical cycles. Carbon dioxide outgassing and
global warming, induced by flood basalt volcanism of the Cen-
tral Atlantic Magmatic Province (CAMP), as well as a sea-level
lowstand (Hallam, 1997) might have triggered the sudden re-
lease of methane hydrates and a positive feedback mechanism
that in turn caused greenhouse effect, catastrophic climate
change and pronounced biological turnover at the end of the
Triassic (Palfy ef al., 2000, 2001; Hesselbo et al., 2002, 2007,
Guex et al., 2004). The Triassic—Jurassic boundary interval is
characterized by evidence of global warming. Such evidence
derives from many palacobotanical and geochemical studies

(e.g., Fowell and Olsen, 1993; McElwain ef al., 1999; Palfy et
al., 2001; Hesselbo et al., 2002; Jenkyns et al., 2002; Cohen
and Coe, 2002, 2007), but on the other hand a “cool phase” co-
incident with the T—J transition was postulated by Hubbard and
Boulter (2000). Changes in sea-water Os-isotope and Sr-iso-
tope (Fig. 1) records indicate that erosion and weathering of the
CAMP started soon after its emplacement (Cohen and Coe,
2002, 2007). At the beginning of the Sinemurian much of the
basaltic cover had been removed by chemical weathering (Co-
hen and Coe, op. cit.). Such accelerated weathering and erosion
would not have been possible without a substantial increase in
rainfall. The aridity-humidity pattern is another controversial
problem of Rhaetian—Hettangian time. Generally, the changes
in climate-sensitive minerals, sediments and palacosols reflect
increasing humidity (e.g., Halllam, 1985; Arndorff, 1993;
Ruffell et al., 2002; Ahlberg et al., 2003; Merk et al., 2003), but
the pattern of climate change was complicated and may not
have been expressed globally.

RESULTS

In the area studied (Fig. 2) clay deposits are particularly
common in three formations of the Lower Jurassic: the Zagaje
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Fig. 1. Variations in the Sr-isotope composition of seawater, expressed as the *’Sr/*Sr ratio, from
the latest Triassic to the Mid-Jurassic (after Cohen and Coe, 2007, simplified by the author)

Note the sudden increases of ’Sr/*Sr ratio in the latest Rhaetian and early Toarcian in response to the
intensification in continental weathering followed global warming. Black line indicate the latest
Rhaetian—Hettangian time interval
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Fig. 2A — studied area and the extent of the Hettangian basin; B — location of boreholes
and exposure (mentioned in text and shown on Figure 5) on a background of the simplified
geological map of the Holy Cross Mts. region

Db — Dabrowki, Gr — Grodek, MK — Mroczkéw—Kraszkdéw, Mr — Mirzec, Pd — Podole,
St — Sottykéw (Odrowaz), SP — Stare Pole
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Table 1

Lithostratigraphical subdivision of the Lower Jurassic
and the clay deposits content on the Holy Cross Mts. margin
(based on Pienkowski, 2004 and Kozydra, 1968)

Stage Lithoformation Clay depf(;: is content
hiatus
Toarcian Borucice Fm. 5
Ciechocinek Fm. 25
Drzewica Fm. 5
Pliensbachian
Gielniw Fm. 10
Sinemurian Ostrowiec Fm. 5

Fm., the Przysucha Ore-bearing Fm. and the Ciechocinek Fm.,
of Toarcian age (Table 1). In the Hettangian successions, clay
mineral assemblages comprise predominantly detrital kaolinite
and illite with subordinate chlorite and only trace amounts
of smectite, but differences in the quantitative mineral compo-
sition are common. In many Hettangian horizons/strata very
high kaolinite content was observed. The general results of the
studies in 1968-2006 are given in Table 2 and illustrated in
Figures 3 and 4.

The clay mineral assemblages of the alluvial-lacustrine
Zagaje Fm. (earliest Hettangian) display significant variations
in the kaolinite/illite (K/T) and Al,O5/K,0 ratio. In particular,
the basal alluvial clay deposits are characterized by a predomi-
nance of kaolinite or illite that occurs in variable proportions. In
many cases the original clay mineral assemblage of Zagaje Fm.
was mildly to strongly transformed by early diagenetic pro-
cesses in swampy environments, where significant hydro-
chemical and Eh—pH changes took place. Kaolinite is in gen-
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Fig. 3. Kaolinite vs. illite content in the claystones and mudstones of se-
lected Lower Jurassic formations from the Holy Cross Mts. margin (on
the basis of data from Kozydra, 1968 and Maliszewska, 1968)

Note the difference between Hettangian (Zagaje Fm., Przysucha Ore-bear-
ing Fm.) and Lower Toarcian (Ciechocinek Fm.) clay mineral content

eral the most abundant clay mineral in the Przysucha Ore-bear-
ing Formation (middle-late Hettangian). Clay minerals in the
restricted marine (lagoonal) claystones and mudstones of
Przysucha Ore-bearing Fm. show some quantitative variability.
Deposition in the quiet brackish-marine environments possibly
protected the detrital clay minerals from pedogenic and early
diagenetic overprint.

Table 2

The main results of the clay mineral composition and Al-, K-oxides content in the Hettangian clay deposits
(compiled by the author on the basis of analyses from 1968-2006)

Formation Age Environment | MI/Q | K** | I(Ch,I-S)** I(Cllf{—s) AlLO; | KO A]l(zz%/ C;:zeﬁitﬁggels Source of data
Branski
1.3 58 42 1.4 19.70 | 2.05 9.6 | K>I>Ch (I-S) (2007)*
Branski (1988*,
brackish- 1.4 60 40 1.5 2522 | 2.23 11.3 K>I>Ch 1990%, 1993*%)
PRZYSUCHA mid— marine - -
ORE-BEARING late (lagoon, — |6l 39 1.6 - - - K>I>Ch P lflngké’lv)vik‘
FM. Hettangian delta, -
embayment) | 73 | 57 43 13 | 2985 | 245 | 122 K>1 Maélfgzg;vfka
Kozydra
3.6 53 47 1.1 27.21 | 2.77 9.8 K21 (1968)
16 | 58 ) 14 | 2686 | 241 | 120 | K>I>Ch (I-9) Braﬁf‘;;gggg*’
continental | _ | 53 47 1.1 - - ~ | keI>Ch(rs) | Pienkowski
ZAGAJE FM earliest (floodplain. (1981)
: Hettangian lake, 2 Maliszewska
swamp) 3.0 | 48 52 0.9 | 2485|255 | 98 7K (1068)
_ Kozydra
2.7 49 51 1.0 24.23 | 2.81 8.6 1=K (1968)
Ch — chlorite, I — illite, [-S — illite/smectite mixed-layers, K — kaolinite, MI — clay minerals, Q — quartz (and the rest of minerals); * — unpublished;

** — ¥MI=100%
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Fig. 4. Average general mineral composition (A) and clay mineral composition (B) in the claystones and mudstones from
Hettangian formations (on the basis of data from Pienkowski, 1981, 2004 and unpublished studies of the author)

POF — Przysucha Ore-bearing Fm., SF — Sktoby Fm., ZF — Zagaje Fm.

INTERPRETATION AND DISCUSSION

Detrital clay minerals are key to understanding past
changes in weathering regime, because they represent the final
product of the continental weathering process. Climate changes
may control the clay mineral composition directly via the tem-
perature and precipitation conditions on the continent, or indi-
rectly via feedback mechanisms involving sea-level changes,
arid episodes and sediment reworking (e.g., Singer, 1984;
Chamley, 1989; Thiry, 2000; Cedric et al., 2006). Clay miner-
als in the Hettangian claystones and mudstones of the Holy
Cross Mts. area are largely detrital and show a generally weak
diagenetic overprint due to moderate burial and to the fairly
closed hydrological system (Branski, 2007). Telodiagenetic
transformation developed only locally after the Late Creta-
ceous/Paleogene inversion of the Mid-Polish Trough (cf
Kozydra, 1968).

In the Hettangian, the area studied was located at approxi-
mately 45° palaeolatitude in a wide zone of warm-temperate
climate (Chandler et al., 1992; Sellwood and Valdes, 2006).
The typical Hettangian clay mineral assemblage corresponds to
a warm-temperate climate with year-round humidity (cf.
Singer, 1984; Chamley, 1989; Ahlberg ef al., 2003) character-
istic for mid latitudes. However, the abundance of detrital
kaolinite in many Hettangian beds is consistent with the con-
cept that the sediments were derived from the erosion of a
“tropically” weathered cover (e.g., Wilson, 1972; Chamley,
1989; Arndorff, 1993). The extensive fluvial-lacustrine and

delta-lagoonal systems acted as traps for the kaolinite formed
on the hinterland. Most probably, the kaolinisation was further
intensified by exchange of CO, with the Hettangian green-
house atmosphere. Recent studies indicate a sudden intensifica-
tion in continental weathering following a “greenhouse” effect
at the Triassic—Jurassic boundary (Cohen and Coe, 2007).
There is much sedimentological evidence (flooding events,
storm deposits) for heavy rainfall and violent weather condi-
tions also in the Polish Basin (Pienkowski, 1981, 2004). Such
phenomena are typical of a greenhouse effect. Generally,
kaolinite is the most abundant clay mineral in the Przysucha
Ore-bearing Formation (mid-late Hettangian). The tectonic
quiescence and relatively low relief of the terrain, combined
with “greenhouse” conditions (high temperatures and intense
rainfall), would have greatly favoured chemical weathering
rather than mechanical erosion. The kaolinite to illite ratio in
the Przysucha Ore-bearing Formation appears to vary geo-
graphically and vertically (Fig. 5). The lateral changes
(Fig. 5A) reflect the provenance and mineralogical diversity of
parent rocks and soils in the source areas. A decrease in
kaolinite content at the top of the Hettangian (Fig. 5B), may
have been caused either by a temperature decrease and/or rain-
fall reduction, which followed waning of a greenhouse effect
and transient sea-level fall in the latest Hettangian.

The relations between clay minerals in the Zagaje Fm. are
more complicated, particularly in the lower part of the succes-
sion. The influence of the source area rocks can be observed in
the different character of the basal clay assemblages, reflecting
the degradation of Norian or Rhaetian deposits. These sedi-
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Fig. 5. Variations in the mineral composition of claystones and mudstones from the Przysucha
Ore-bearing Fm. depending on: A — locality of boreholes, B— rate of deposition
(based on unpublished studies of present author)

Explanations as in Figure 2 and Table 2

ments were redeposited in various amounts to produce illite or
kaolinite spikes in basal beds of the Hettangian succession.
Changes in the erosion rate and in consequence in the illite or
kaolinite content in the the basal beds of Hettangian might have
been influenced by a sea-level lowstand (Pienkowski, 2004)
and tectonic reactivation (Branski, 2006) coupled with possible
arid episodes and subsequent erosion of older Norian or
Rhaetian deposits. Usually, the lithological, sedimentological
and mineralogical record of the lower Hettangian corresponds
with generally warm and humid conditions (Gierlinski et al.,
2003; Pienkowski, 2004; Branski, 2007). The very minor con-
tent of smectite in the successions indicate that there were no
severe seasonal aridity phases. However, one should bear in
mind that the acidic conditions that characterized swampy en-
vironments in the earliest Hettangian, would lead to early
diagenetic transformation of Al-smectite into kaolinite (cf.
Saez et al, 2003). Some fossils of xeromorphic plants

(Hirmeriella muensteri) and the presence of common charcoal
in the Softykow exposure (Reymandéwna, 1991;
Weisto-Luraniec, 1991; Ziaja, 1991; Gierlinski et al., 2003)
suggest the continuation of episodic and/or seasonal dryness,
despite the stepwise rise of humidity in the transitional
palaeoclimatic phase.

CONCLUSIONS

The Hettangian clay mineral composition from the Holy
Cross Mts. margin was mostly controlled by greenhouse clima-
tic conditions and intense chemical weathering.

Reworking of the ancient sediments and the early
diagenesis could modify significantly the clay mineral content.

The burial diagenesis and telodiagenesis changed the clay
minerals composition only in a local scale.
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