Malacological characteristic of the Weichselian Upper Pleniglacial (MIS-2) loess profile in Tłumaczów (SW Poland)

Witold Pawel ALEXANDROWICZ1, *, Dariusz CISZEK2 and Magdalena GOŁAS-SIARZEWSKA1

1 AGH University of Science and Technology, Faculty of Geology, Geophysics and Environment Protection, Chair of Environmental Analysis, Cartography and Economic Geology, Al. Mickiewicza 30, 30-059 Kraków, Poland
2 Polish Geological Institute – National Research Institute, Lower Silesian Branch, Al. Jaworowa 19, 53-122 Wrocław, Poland

The profile of silty sediments in Tłumaczów was the subject of detailed lithological and malacological analyses. Abundant malacofauna represented by typical loess species were found in the sediments. The variability of the species composition and ecological structure of faunal assemblages provided the basis for the reconstruction of the sedimentary environment and characteristics of the climatic conditions that prevailed during the deposition of the sediments. The results of analyses indicate that the described sediments belong to the youngest loess series related to the Weichselian Upper Pleniglacial (MIS-2). The sequence of molluscan assemblages shows considerable similarities to the described faunas found in numerous loess profiles in southern Poland. It differs substantially from the malacological sequences recognized in loess profiles in Western and Southern Europe. This proves the significant and climate-determined diversification of malacoconoes during the Weichselian Upper Pleniglacial (MIS-2) in Europe.

Key words: loess, malacofauna, Weichselian Upper Pleniglacial (MIS-2), Sudetes, southern Poland.

INTRODUCTION

Loesses and loess-like sediments occurring in southwestern Poland form a number of isolated covers of various thickness. The studies of loesses in the Sudetes region were initiated by German geologists at the end of the 19th century and in the first half of the 20th century. In the after-war period, many locations were finally described in detail. Numerous regionally focused studies were also published concerning sedimentation processes and the stratigraphic aspects of silty sediments in southwestern Poland (e.g., Jary, 1996, 2007; Jary et al., 2002). Loess formations occurring in the Kłodzko Basin were studied by several authors, among the most prominent being Walczak (1952, 1957) and Cegła (1972). They noted a large outcrop in the village of Tłumaczów and mollusc shells present in the loess (Walczak, 1952, 1957). More exhaustive studies of these loesses were conducted in the 1990s. The lithology of the sediments was characterized and their stratigraphic position was determined at that time (Chlebowski et al., 2004), as were the initial malacological analyses (Alexandrowicz et al., 2001).

The malacofauna of loesses and other silty deposits in southwestern Poland is largely unexplored. Although references to the presence of mollusc shells can be found in several studies (e.g., Walczak, 1952, 1957, Jary, 2007). This fact is of considerable importance not only in considerations regarding the local environmental conditions in which the sedimentation of aeolian dust occurred, but also in the context of regional reconstructions. A great number of locations with loess malacofauna in central and southeastern Poland (e.g., Alexandrowicz, 1986, 1991a, 1995, 2001a; b; Alexandrowicz et al., 1989; Alexandrowicz and Urban, 2002), as well as in western Ukraine (Alexandrowicz et al., 2002; Alexandrowicz and Dmytruk, 2007) have been described. Loess malacofauna have also been thoroughly investigated in the area south of the Carpathians and the Sudetes (e.g., Lożek 1965, 1969, 1991, 2001; Sürmei, 1995, 2005; Krošl and Sürmei, 1995; Sürmei and Krošl, 2002) as well as in eastern and western Europe (e.g., Remy, 1968; Puissegur, 1976, 1978; Rousseau, 1987, 2001; Rousseau et al., 2001, 2002; Antoine et al., 2001; Limondin-Lozouet and Gauthier, 2003; Moine, 2008). Unlike the aforementioned regions, southwestern Poland and the eastern part of Germany have relatively scarce malacological documentation. Deeper exploration of loess malacoconoes in those areas is very important for the discussion concerning the diversity of mollusc fauna during the Weichselian Upper Pleniglacial (MIS-2) in Europe, and consequently the diversity of conditions in which the sedimentation of the youngest loess cover occurred. Therefore, the profile in Tłumaczów constitutes a substantial element of these considerations.

* Corresponding author, e-mail: wpalex@geol.agh.edu.pl
Received: November 9, 2012; accepted: April 6, 2013; first published online: June 6, 2013
GEOLOGICAL SETTING

The outcrop in Tlumaczów represents a loess cover developed in the northwestern part of the Kłodzko Basin, within the Ścinawka Depression (Chlebowski et al., 2004). The presented loess profile is situated near the mouth of the Wodzića River, where it enters the Ścinawka River, ca. 6 km south of Nowa Ruda, in Tlumaczów (Fig. 1). The outcrop is located at ca. 390 m above sea level in a flattened area on the southeastern slope of a low hill (Fig. 1). The GPS coordinates of the site are: 50°33'12" N and 16°26'52" E. The substrate of the silty sediments are red sandstones classified as Lower Permian.

The loesses in Tlumaczów form a 10 m wide and 5.5 m high vertical wall (Fig. 2). It is possible to isolate three distinctly separate strata. From the bottom, the following layers can be distinguished:

- 5.50–3.00 m – reddish and light brick red loesses. Discontinued, yellowish and rust-coloured laminas, up to 3 cm-thick, occur in the southern part of the outcrop. A layer containing small clasts (up to 1 cm across) of lower Permian sandstones lies at the lowest section of the silty sediments. The entire layer is rich in mollusc shells. The upper boundary is irregular and at some places hardly visible.

- 3.00–0.60 m – yellowish loesses with numerous vertical crevices. Irregular and often lenticular streaks, brown-red in colour, can be found. They are enriched with sandy material. Numerous small clasts of sandstones. Coarser sandstone clasts ranging up to several centimetres in size occur sporadically. Mollusc shells are present in the loesses.

- 0.60–0.00 m – a dark brown silty sediment with few sandstone clasts almost entirely affected by soil processes. This level does not contain mollusc shells.

MATERIAL AND METHODS

LITHOLOGICAL ANALYSIS

The analysis of granularity was based on the material obtained from 17 samples representing the entire profile (Fig. 3). The Casagrande’s areometric method was used to determine the granular composition. The proportion of each fraction was
established, and the standard granularity parameters (median –Md, mean size –Mz, sorting –σ, skewness –Sk and kurtosis –K; Folk and Ward, 1957) were determined. The content of organic matter, carbonates and iron oxides inside the profile was also ascertained. The results of a heavy mineral analysis conducted by Chlebowski et al. (2004) were used in the interpretations as well.

MALACOLOGICAL ANALYSIS

The malacological study involved using 16 samples (Fig. 4). The locations of the sample collection correspond exactly to the locations of samples collected for the lithological analysis. The separate samples weighed ca. 2 kg each and represented 30–40 cm thick intervals. The material was subjected to flushing on a 0.5 mm mesh, and after drying all shells and shell fragments whose species rank could be clearly identified were selected. No molluscan remnants occurred in the sample from the roof part. The whole profile contained 8 taxa of land snails represented by more than 5000 specimens. The number of taxa varied from 4 to 7 per sample, with the number of specimens ranging from 53 to 1309 (Fig. 4).

The malacological analysis was carried out based on the methods described by Ložek (1964), Alexandrowicz (1987) and Alexandrowicz and Alexandrowicz (2011). Individual species were classified into three ecological groups:

- F – shade-loving species;
- O – species of open habitats;
- M – mesophilous species.

Hygrophilous and aquatic species did not occur in the analysed material. The ecological requirements of particular species of snails were determined on the basis of a number of studies, and especially publications by Ložek (1964, 1965), Alexandrowicz (1987, 2004), Alexandrowicz and Alexandrowicz (2011). The percentage shares of species and ecological groups allowed a malacological diagram and a two-component diagram to be developed, which provided the basis for the palaeoecological interpretations. Characteristic mollusc assemblages were also identified. Based on their sequence, it was possible to reconstruct the evolution of the environment, as well as derive a number of stratigraphic conclusions. Statistical analysis was conducted using PAST software (Hammer et al., 2001), and Morisita’s formula (Morisita, 1959) was used to describe the degree of overlap among the samples. On the basis of this data, a dendrogram, that illustrates clusters of samples containing faunal assemblages of similar composition and ecological structure, was developed.

RESULTS

LITHOLOGICAL ANALYSIS

The dominant fraction in the grain-size composition of the profile is definitely the silty fraction. Its proportion ranges from 47 to 63% (on average 59%). The content of coarser fractions is equal throughout the profile, with an average ranging from 20–23%. Only in the lowest section of the sequence and inside the brown-red lenses in the upper part of the profile is the proportion of the coarse fractions higher and occasionally exceeds 30%. The vertical distribution of the clay fraction is not very diversified, with its content amounting to 8–15% (Fig. 3). The me-
The malacocoenosis found in the location in Tłumaczów comprises solely forms commonly noted in loess profiles (loess species sensu Ložek, 1964, 1965) and includes only 8 taxa (Table 1). Quantitative proportions of species vary distinctly between the individual sections of the sequence, which implies climatic fluctuations and the ensuing changes in the habitat features that occurred during the sedimentation of the deposits.

The molluscan fauna found in loesses exposed in Tłumaczów is characterized by a marked predominance of specimens belonging to two ecological groups: snails typical of dry and open habitats (O) and euryecological species preferring biotopes with a slightly higher moisture (M). Shells of Arianta arbustorum – a species categorized as a form typical of shaded environments in traditional ecological classifications (Ložek, 1964; Alexandrowicz, 1987; Alexandrowicz and Alexandrowicz, 2011) – appear in the middle interval of the discussed sequence. The differences in proportions of the two mentioned groups noted in the vertical profile indicate the environmental changes which took place during the accumulation of the loess. The dominant component of the bottom part of the profile (samples 1–6) are mesophilous forms. The most characteristic is a considerable proportion of Trichia hispida, accompanied by Succinea oblonga, as well as Vallonia tenuilabris, which does not occur in the higher sections. The species of open habitats are evidently rarer (Fig. 4). In the abovementioned interval malacofauna is the most diverse in terms of species composition. The middle part of the profile (samples 7–8 and 12–14) is marked by a considerably greater share of species of open environments, represented by: Pupilla loessica, P. muscorum

![Fig. 4. Malacofauna of loess profile in Tłumaczów](image-url)

Pr – profile (for explanation see Fig. 2), S – samples, N – number of species (NT) and specimens (NS), MF – malacofauna
densegyrata and P. muscorum. The assemblage is supplemented by Succinea oblonga. A major characteristic of the middle interval of the profile is the abundant occurrence of Arianta arbustorum shells (samples 9–11). The increase in the proportion of mesophilous taxa reveals itself in the roof fragment of the outcrop, where Succinea oblonga clearly predominates (samples 15 and 16). At the same time a rapid disappearance of Pupilla loessica becomes apparent (Fig. 4).

MOLLUSCAN ASSEMBLAGES

The taxonomic analysis enabled us to separate faunistic assemblages of different species composition, and especially with different ratios between individual taxa. Based on the dendrogram analysis (Fig. 5), four main types of fauna could be defined.

Fauna with Trichia hispida: this association was identified in samples 1–6. It demonstrates the widest diversity in species composition and relatively large numbers of specimens. Apart from the nominal taxon, the major components of this assemblage are: highly abundant Succinea oblonga, as well as the species found mostly in the roof part of the discussed section; namely: Pupilla loessica, P. muscorum densegyrata and P. muscorum. Vallonia tenuilabris is less abundant, and occurs only in this section of the sequence. The malacofauna with a species composition and ecological structure presented above indicates a cool, but not Arctic climate and a moderately humid substrate. It therefore probably corresponds to a slightly warmer and more humid period preceding the main phase of the aeolian dust accumulation. Assemblages with a similar composition and structure were noted in numerous profiles of Weichselian loess distributed across the whole of Europe (e.g., Ložek, 1965, 2001; Rousseau, 1987, 2001; Alexandrowicz, 1995, 2011a; Sümegi, 1995, 2005; Krolopp and Sümegi, 1995; Rousseau et al., 2001, 2002; Alexandrowicz et al., 2002; Alexandrowicz and Dmytruk, 2007; Moine, 2008).

Fauna with Pupilla: this is a relatively sparse malacofauna is marked by the predomination of the Pupilla genus taxa: Pupilla loessica, P. muscorum densegyrata and P. muscorum.

Table 1

<table>
<thead>
<tr>
<th>E</th>
<th>Taxon</th>
<th>Samples – Tłumaczów</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Arianta arbustorum (Linnaeus, 1758)</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Pupilla loessica Ložek, 1954</td>
<td>9 48 8 10 8 48 136 31 6 136 142 156 196 236 46 8</td>
</tr>
<tr>
<td>O</td>
<td>Pupilla muscorum densegyrata Ložek, 1954</td>
<td>6 17 42 76 36 21 82 12 21 482 171 70 48 88 45 13</td>
</tr>
<tr>
<td>O</td>
<td>Pupilla muscorum (Linnaeus, 1758)</td>
<td>4 6 56 59 29 56 24 3 12 211 23 8 11 41 29 22</td>
</tr>
<tr>
<td>O</td>
<td>Vallonia tenuilabris (Standberger, 1875)</td>
<td>17 6 6 17 17 8</td>
</tr>
<tr>
<td>M</td>
<td>Columella columella (G. von Martens, 1830)</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Succinea oblonga Draparnaud, 1801</td>
<td>12 29 45 41 49 44 59 7 15 421 136 94 107 172 147 137</td>
</tr>
<tr>
<td>M</td>
<td>Trichia hispida (Linnaeus, 1758)</td>
<td>38 44 68 62 45 93</td>
</tr>
<tr>
<td>Total species</td>
<td></td>
<td>6 7 6 6 6 6 4 4 5 5 5 4 4 4 4</td>
</tr>
<tr>
<td>Total specimens</td>
<td></td>
<td>86 166 225 265 184 270 301 53 78 1286 476 331 362 537 267 180</td>
</tr>
</tbody>
</table>

E = ecological groups of molluscs (after Ložek, 1964; Alexandrowicz, 1987; Alexandrowicz and Alexandrowicz, 2011); F = shade-loving snails; O = open-country snails; M = mesophilous snails.

Fig. 5. Molluscan assemblages of loess profile in Tłumaczów
A companion species is *Succinea oblonga*. A particularly characteristic feature is the great abundance of *Pupilla loessica* – a species typical of the periods of increased aeolian dust accumulation (e.g., Alexandrowicz, 1991b, 1995, 2011a, b; Alexandrowicz et al., 2002). The fauna described was found in samples 7–8 and 12–14. It is an association characteristic of periods associated with a cold and polar climate. It also indicates drying of the habitats and intensified accumulation of loess dust. The discussed fauna is considered one of the most typical assemblages occurring in loesses. It was described in numerous locations throughout Europe (e.g., Ložek, 1965, Puisségur, 1976, 1978; Rousseau, 1987, 2001; Alexandrowicz et al., 1989, 2002; Alexandrowicz, 1995, 2011a, b; Sümegi, 1995, 2005; Krolop and Sümegi, 1995; Rousseau et al., 2001, 2002; Antoine et al., 2001; Sümegi and Krolop, 2002; Alexandrowicz and Dmytruk, 2007; Moine, 2008) and is usually connected with the Upper Pleniglacial of the Weichselian Glaciation (MIS-2).

Fauna with Arianta arbustorum: it is a reach assemblage with large numbers of specimens. Its characteristic features are: firstly, the presence of the nominal taxon, which is accompanied by numerous individuals of *Succinea oblonga*, and secondly, a rapid reduction in the significance of *Pupilla loessica*. Such a transformation of the assemblage structure denotes a substantial change in environmental conditions, and principally an increase in habitat humidity. The assemblage in question occurs in samples 9–11. Malacocoenoses with similar composition were described in several loess locations in southern Poland and western Ukraine (Alexandrowicz, 1995; Alexandrowicz et al., 2002) and were usually associated with phases of intensified slope processes. The profile in Tłumaczów exemplifies such a similar situation.

Fauna with Succinea oblonga: this association occurs in the highest part of the profile – samples 15 and 16. It is characterized by a highly pronounced predominance of the nominal taxon and sparse occurrence of the genus *Pupilla*. The assemblage is typical of cold climates and indicates a progressive increase in the humidity of habitats. At the same time, it is evidence of a gradual reduction in the intensity of loess dust accumulation. The fauna outlined above was identified in locations of loess formations in Europe (e.g., Ložek, 1965, 2001; Rousseau, 1987, 2001; Alexandrowicz et al., 1989, 2002; Alexandrowicz, 1991b, 1995, 2011a, b; Sümegi, 1995, 2005; Krolop and Sümegi, 1995; Rousseau et al., 2001, 2002; Sümegi and Krolop, 2002; Alexandrowicz and Dmytruk, 2007; Moine, 2008).

DISCUSSION

The granulometric composition of the sediments in Tłumaczów suggests their aeolian origin. This conclusion is supported by the high calcium carbonate level observed throughout the whole profile, together with the lack of carbonates in the local rock saprolites. Therefore, the profile must be composed of an allochthonous CaCO₃-rich material that originates from outside the range of Permian rocks, which constitute the substrate of the profile. On the other hand, the reddish colour of the sediments and the locally occurring clasts of Permian sandstones indicate that a slope material representing local saprolites was periodically incorporated into the loess formation process.

The loess profile in Tłumaczów depicted above contains relatively sparse molluscan fauna. However, the clear diversification in the composition and structure of assemblages that has been noted provides evidence for the changes in sedimentary environmental characteristics, which are mostly determined by regional climatic conditions, modified to a certain extent by local factors. Thus, the sequence of assemblages in the vertical profile permits the reconstruction of the environmental evolution on one hand, and the drawing of stratigraphic conclusions on the other.

The age of loesses in Tłumaczów locality was established on the basis both of regional researches of loesses covers in southwestern Poland (Jary, 1996, 2007; Jary et al., 2002) and malacological data from numerous localities in southern Poland (Alexandrowicz, 1995). The malaco fauna occurring the described deposits contains cold-loving snails (*loess species; Ložek, 1955*). Although these are essential components of molluscan assemblages associated with other cold phases of the Pleistocene (glacials) but only during MIS-2 they show such a characteristic succession and only in this period they may be used as stratigraphic indicators (Alexandrowicz, 1995, 2011a, b; Alexandrowicz et al., 2002).

In the initial period a cold, but relatively moist climate predominated, and the loess dust accumulation was not very intensive (fauna with *Trichia hispida*; Fig. 6). The intercalation enriched in coarser material, which forms the bottom part of the profile, is a record of the periodical intensification of slope processes. The mentioned interval involves a relatively small share of heavy minerals with a platy habit. Such minerals are considered particularly typical of formations accumulated via a dominating aeolian factor. It indicates a slow pace of loess sedimentation on one hand, and an increased humidity of the climate on the other (Chlebowski et al., 2004). In the higher section, discontinuous laminas enriched in sandy material occur. They are most likely a result of gravity-induced creep of the fine-grained roof saprolite layer. The lack of continuity of these laminas and their small thickness suggest the process is only on a minor scale (Alexandrowicz et al., 2004; Chlebowski

Fig. 6. Phases of development of loess series in Tłumaczów

D – two-component diagram, F – shade-loving snails, O – species of open habitats, M – mesophilous forms
et al., 2004). Towards the top, a gradual increase in the proportion of *Pupilla loesica* occurs. This indicates the drying of habitats, progressive cooling of the climate and a gradual rise in the pace of loess sedimentation (e.g., Lożek, 1965, 2001; Sümegi, 1995, 2005; Krolopp and Sümegi, 1995; Alexandrowicz, 1995, 2011a, b; Alexandrowicz et al., 2002; Alexandrowicz and Dmytruk, 2007).

The aforementioned fauna is particularly often noted in the loesses from the Last Glacial, exposed in the area comprising the Central Polish Uplands (Alexandrowicz, 1985, 1991b, 1995, 2011a, b; Alexandrowicz et al., 2002; Alexandrowicz and Dmytruk, 2007).

Owing to radiocarbon analyses of samples obtained from intervals containing fauna with *Trichia hispida*, which were conducted in several locations, it is possible to determine the timeframe within which the assemblage occurred. It covers the period of 25–21,000 years BP, directly prior to the phase of intensive loess sedimentation (Jersak, 1973; Maruszczak, 1980, 1996; Alexandrowicz, 1991b, 1995; Jary, 2007; Moska et al., 2011, 2012).

Above the interval described, loesses containing a sparse mollusc assemblage with numerous shells of species from the genus *Pupilla* (fauna with *Pupilla*) can be found. Such depauperation is related to the deteriorating living conditions of the molluscs, which was determined by both the progressive cooling of the climate and the intensive loess accumulation (Fig. 6). This interpretation is also confirmed by the results of heavy mineral analysis (Chłebowski et al., 2004). The strong influence of the aeolian vector phenomenon can be seen. Fauna with *Pupilla* typifies a severe and dry climate, bearing distinct continental features. Malacoconoses with a similar composition and structure were found in numerous locations in Europe (e.g., Remy, 1968; Puisségur, 1976, 1978; Rousseau, 1997, 2001; Alexandrowicz et al., 1989, 2002; Alexandrowicz, 1995, 2011a, b; Sümegi, 1995, 2005; Krolopp and Sümegi, 1995; Lożek, 2001; Rousseau et al., 2001, 2002; Antoine et al., 2001; Sümegi and Krolopp, 2002; Limondin-Lozouet and Gauthier, 2003; Alexandrowicz and Dmytruk, 2007; Moine, 2008). Radiocarbon and OSL dating performed in many locations in southern Poland indicates that fauna with *Pupilla* is closely connected with the period 21–15,000 years BP (Alexandrowicz, 1995; Moska et al., 2011, 2012).

The relevant interval includes intercalations of deposits containing a significant admixture of coarser fractions (gravel and sandy). The heavy mineral composition is, however, typical of aeolian formations (Chłebowski et al., 2004). A prominent change in the character of the molluscan assemblage can be seen in the section in question, which manifests itself primarily in the structural transformation of the assemblage. The fauna with *Arianta arbustorum* found here indicates a periodical increase in the humidity of habitats, and the presence of a considerable sandy fraction admixture in the sediments, as well as Permian sandstone clasts, resulting from the development of solifluction processes on the slopes (Fig. 6). The parallelist drop in the number of *Pupilla loesica* implies a deceleration in the loess sedimentation process. The occurrence of *Arianta arbustorum* shells in loess profiles was noted in many locations of such sediments in southern Poland (Alexandrowicz, 1985, 1986, 1991a, b, 1995, 2001, 2011a, b; Alexandrowicz and Urban, 2002) and western Ukraine (Alexandrowicz et al., 2002; Alexandrowicz and Dmytruk, 2007). Similarly to the profile in Tłumaczów, this finding primarily concerns intervals correlated with phases of intensified slope processes.

The youngest part of the sequence contains loesses with a substantially reduced calcium carbonate level and a smaller proportion of minerals characterizing the aeolian vector (Chłebowski et al., 2004). The malacoфаuna found in this interval indicates a moistening of habitats and a slight, but probably progressive warming of the climate (Fig. 6). The alteration of climatic conditions and the slowdown or even complete cessation of loess sedimentation caused the development of fauna with *Succinea oblonga*. This malacoconose is one of the most characteristic assemblages occurring in loess profiles. It is almost always found in their roof part, marking the end of deposition phases of the sediments. Results of studies carried out in a large number of locations in central Europe support this conclusion (Lożek, 1965, 1991, 2001; Alexandrowicz, 1985, 1991b, 1995, 2011a, b; Sümegi, 1995, 2005; Sümegi and Krolopp, 2002; Alexandrowicz et al., 2002). Radiocarbon dating from loess profiles in the Malopolska Upland (Alexandrowicz, 1995) show that the phase falls in the period from 15–14,000 years BP.

DISCUSSION AND CONCLUSIONS

The malacoфаuna described in the Tłumaczów profile is characteristic of loess formations. Both composition and structure of separate assemblages, as well as the sequence in which they occur in the vertical profile, show a strong resemblance to numerous locations of loesses described in southern Poland, as well as the profiles of loess-like sediments in the Carpathians (Alexandrowicz, 1989, 1991, 2002; Ciesielski et al., 2010). Detailed malacological studies in the aforementioned areas enabled a model to be defined, of changes in malacoфаuna and the sequences of faunal assemblages during the accumulation of loess covers associated with the Weichselian Upper Pleni glacial (MIS-2) (e.g., Lożek, 1965, 1969, 1991, 2001; Remy, 1968; Puisségur, 1976, 1978; Alexandrowicz, 1985, 1991b, 1995, 2011a, b; Rousseau, 1987, 2001; Alexandrowicz et al., 1989, 2002; Sümegi, 1995, 2005; Krolopp and Sümegi, 1995; Rousseau et al., 2001, 2002; Antoine et al., 2001; Sümegi and Krolopp, 2002; Limondin-Lozouet and Gauthier, 2003; Alexandrowicz and Dmytruk, 2007; Moine, 2008). The aforementioned model applies both to the character of the sedimentary environment and the stratigraphical aspects. Based on the diversification of habitat types, it is possible to distinguish three loess varieties containing different assemblages of fauna. The first type includes sediments deposited in dry habitats, mostly on high plains and gently inclined slopes. The characteristic feature of the malacoconoses found there is low species diversity and predomination of taxa typical of open and relatively dry environments, namely: *Pupilla muscorum, M. muscorum densegrata, P. loesica* and *Vallonia tenulabris*, almost always accompanied by *Succinea oblonga*, and sometimes also by *Arianta arbustorum* and *Trichia hispida*. Classified as the second type are loesses accumulating in the beds of valleys and in lower parts of slopes. The malacoфаuna occurring there is usually marked by greater species diversity. Apart from typical "loess species", cold-loving forms typical of habitats with highly increased humidity are also present, such as: *Columella columella*, *Vertigo genesi*, *Vertigo geyeri* and *Vertigo parcedentata*. The third type encompasses sediments formed by loessial material, but accumulating in aquatic environments. The presence of cold-loving molluscs characteristic of shallow bodies of water, such as *Gyraulus laevis, Galba truncatula, Pisidium obtusale laponicum* and *Pisidium stewarti* is a distinctive feature (e.g., Alexandrowicz, 1985, 1991b, 1995). Given the composition of the fauna described in the Tłumaczów profile, it can be classified as the first of the types presented above. Radiocarbon dating together with the results of malacological analyses performed in numerous loess profiles in southern Poland, have al-
lowed one to discern several climatic phases (Jersak, 1973; Maruszczak, 1980, 1996; Alexandrowicz, 1995). The earliest one (cool and humid), not represented in Tłumaczów, covers the period 32–25 ka BP. A minor warming phase is distinguishable between 25 and 21 ka BP. This period entails the appearance of characteristic fauna with Trichta hispida found in the lower interval in the Tłumaczów sequence. The subsequent phase (21–15 ka BP) is marked by a very cold, polar and dry climate. This phase involves a very intensive accumulation of loesses and the development of the distinctive fauna with Pupilla (middle part of the profile). In Tłumaczów, as in several locations in the Kraków region within a loess series, intercalations and laminas enriched in sandy material, or even small rock clasts, can be found. It is a consequence of a periodical intensification of slope processes, which is most likely due to local, small-scale phenomena. The last phase of the loess accumulation constitutes a period of progressively rising humidity and a slight warming of the climate (15–14 ka BP).

Faunal assemblages dominated by Succinea are its characteristic feature.

The above-presented sequence of faunal assemblages is typical of loesses in southern Poland, as well as western Ukraine (Alexandrowicz, 1985, 1995, 2001, 2011a; b; Alexandrowicz et al., 1989, 2002; Alexandrowicz and Urban, 2002; Alexandrowicz and Dmytruk, 2007). Compared with numerous other locations of loess faunas described in other European countries it shows fairly substantial differences. This observation contradicts Ložek’s views (1965) concerning the considerable homogeneity of the loess faunas of Europe. Loesses situated in an area south of the Carpathians and the Sudetes are usually characterized by a far more diversificated molluscan fauna (Ložek, 1965, 1969, 1991, 2001; Súmegi, 1995, 2005; Krolopp and Súmegi, 1995; Súmegi and Krolopp, 2002; Marković et al., 2008). Particularly significant is the abundance of the xerophilous species, which manifest at considerably higher temperatures. These forms do not occur in locations north of the Carpathians. Further southwards, these disparities become more pronounced. In western Europe it is possible to distinguish two evidently different areas: namely the western and the central zones (Moine, 2008). The first one includes the southem part of the British Isles and northern France and is marked by the occurrence of faunistic assemblages, with a less diversified species composition. Characteristic forms include: Pupilla muscorum, Columella columella, Succinea oblonga and Trichta hispida (Gao et al., 2000; Gautin and Clouquet, 2008; Moine, 2008). The assemblages found in the central area – in the Rhine Valley and Germany – have a much more diversified species composition (Remy, 1968; Puisségur, 1976, 1978; Rousseau, 1987, 2001; Rousseau et al., 2001, 2002; Antoine et al., 2001; Limondin-Lozouet and Gauthier, 2003; Moine, 2008).

The causes of this divergence are difficult to determine explicitly and they can include climatic or topographic factors, as well as reflect specific local conditions in the case of some profiles (Moine, 2008).

In this context the distinctness of malacocenoses found in the loesses of western Ukraine and southern Poland, including the location in Tłumaczów, can be interpreted as an effect of the cold, polar, but relatively dry climate prevailing in those areas during the Weichselian Upper Pleni-glacial (MIS-2), combined with the considerably stronger influence of continental conditions. Another characteristic feature is the abundant occurrence of two Asian species in the locations in southern Poland; namely: Pupilla loesica and Vallonia tenuilabris, which migrated along with progressive cooling of the climate from central Asia to the loess areas of Europe.

Acknowledgments. The authors are greatly indebted to Prof P. Súmegi, Prof Z. Jary and an anonymous reviewer for critical valuable remarks. This study has been sponsored by the AGH University of Science and Technology through the University grant no. 11.11.140.175.

REFERENCES

