Geological Quarterly, 2012, 56 (4): 733-744
DOI: http://dx.doi.org/10.7306/gqg.1065
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Tufas in the Podhale Synclinorium (southern Poland) occur as encrustations on moss and plant remains, crusts, porous, clastic and mas-
sive tufas. The tufas are almost entirely composed of calcite with small admixture of quartz, illite and chlorite. These deposits indicate the
biotic and/or abiotic origin of calcium carbonate. The tufas occur in the vicinity of map-scale and minor fault zones. They precipitate near
fissure springs linked with small faults and fault rocks or seepages along them. Exposures with tufas occur along several oblique and lat-
eral zones. The oblique zones are related to Biatka and Biaty Dunajec faults that have normal components. The lateral zones of tufa oc-
currences are connected with lateral faults limiting the “zone of beds with gentle dips” and extensional brittle structures within the hinge
of the synclinorium. The relationship of the tufa with brittle extensional structures suggests Quaternary tectonic activity of the Podhale
Synclinorium that can be explained by continued uplift in the area studied.
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INTRODUCTION

The occurrence of calcareous tufas in the Polish part of the
Podhale Synclinorium has long been documented (Halicki,
1930; Halicki and Lilpop, 1932). Several occurrances of these
rocks in the Podhale area have been subsequently described
(Birkenmajer, 1958a, 1964; Matecka, 1974; Mastella, 1975;
Watycha, 1976, 1977; Mastella and Mizerski, 1977; Szulc,
1983; Pazdur, 1987; Mastella et al., 1996; Alexandrowicz,
1997); additionally, 80 tufa and travertine sites have been listed
from the Slovak part of the Central Carpathian Paleogene Ba-
sin of the Central Western Carpathians (LeSko, 1958; Zyka and
Vitélensky, 1960; LoZek, 1961, 1964; Fuséan, 1963; Kovanda,
1971; Gross and Kohler, 1980; Cabalova, 1991; Gradzinski et
al., 2008a). Tufas have also been documented in the Tatra Mts.
area (Rabowski, 1930; Gradzinski et al., 2001; Smieja and
Smieja-Krol, 2007) and in the Pieniny Klippen Belt
(Alexandrowicz, 2004 and references therein).

Sites of tufas in the Podhale Synclinorium have been ob-
served in areas of flowing water: (a) in the upper parts of minor
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streams, which are difficult to access; (b) on steep banks of
short tributaries of main rivers and streams; (c) on river terraces
and their slopes. Furthermore, tufa deposits are usually covered
with moss and grass. Therefore, most of the tufa sites have re-
mained unnoticed till present. Detailed field studies focused on
documenting the occurrence of tufas adjacent to fault zones,
have allowed us to recognize 71 tufa sites in the Podhale
Synclinorium (Appendix 1 — supplementary file®). Study of the
tufas is ongoing. This paper describes the distribution and fab-
ric of tufa deposits and indicates their relationships with the tec-
tonics of the Podhale Synclinorium.

GEOLOGICAL SETTING

The Podhale Synclinorium (Mastella, 1975) is composed of
rocks that form part of the Paleogene cover of the Central West-
ern Carpathians (Figs. 1 and 2; Marschalko, 1968;
Ksigzkiewicz, 1972). The Podhale Synclinorium comprises
shales and sandstones of Oligocene to Early Miocene age
(Gedl, 2000a, b; Garecka, 2005), lying on deposits of the
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Fig. 1. Geological sketch-map of the northern part of the Central Western Carpathians with location of the study area
(after Zytko et al., 1989 and Biely et al., 1996, modified)

“Nummulitic Eocene” (Sokotowski, 1959; Watycha, 1968)
that represent the Borové Formation (sensu Gross et al., 1984;
Fig. 3). The thickness of the entire succession is estimated at
2.5-4 km (Gotgb, 1959; Watycha, 1959, 1976, 1977; Mastella,
1975).

The sedimentary sequence in the Podhale Synclinorium
comprises four informal lithostratigraphic units: the Szaflary
Beds in the lowermost part of the succession in the northern
limb of the synclinorium, followed by the Zakopane, Chocho-
6w and Ostrysz Beds in the upper part of the succession across
the entire synclinorium area (Gotab, 1959; Watycha, 1959,
1968; Dudziak, 1983, 1986). The beds correlate with the
Sambron Member and the Huty, Zuberec and Biely Potok for-
mations, respectively, in the Slovak part of the Central Carpa-
thian Paleogene (Gross et al., 1984). Lithostratigraphic bound-
aries between the beds are variously shown on maps by differ-
ent authors (Birkenmajer, 1968; Watycha, 1974, 1976;
Matecka, 1982).

The contact of the Podhale Synclinorium with the
Sub-Tatric units is sedimentary, whereas that with the Pieniny
Klippen Belt is tectonic (Uhlig, 1897, 1903; Birkenmajer,
1958b; Figs. 1-3). Bedding dips are steep near the Pieniny
Klippen Belt and become more gentle towards the south. Dip
values significantly increase again in the zone of the peri-
Pieniny flexure. Further to the south occurs an uplifted “zone of
beds with gentle dips” (Mastella, 1975), followed by an axial
zone (Fig. 2) with mesofolds. The southern limb of the
synclinorium is monoclinal with a narrow belt of tectonic de-
formation near the Sub-Tatric units (Fig. 2). These parallel tec-
tonic zones are cut by large transverse fault zones (Mastella,
1975; Mastella et al., 1996). Two of them, the Biatka and Biaty
Dunajec fault zones cut the Pieniny Klippen Belt to the north
and continue in the Sub-Tatric Units to the south (Fig. 2). These
are scissor faults and they uplift the southern part of the
Podhale Synclinorium and lower the area between the Biatka

and Biaty Dunajec rivers in the northern part of the
synclinorium (Mastella, 1975; Mastella et al., 2012).

The structure of the Podhale Synclinorium began to form as
a result of horizontal N-S compression and its final configura-
tion is the consequence of uplift of the area (Mastella, 1975;
Buday et al., 1967). Mastella (1975) and Ludwiniak (2010)
considered the Late Oligocene/Miocene as the beginning of the
formation of the Podhale Synclinorium. The same age of N-S
compression in the Central Western Carpathians is indicated by
Fodor et al. (1999), although these authors do not exclude that
the compressional regime might have operated as late as the
Middle Miocene. Similar suggestions were made by Vojtko et
al. (2010) based on data from palaeostress analysis in the
Spiska Magura Mts. The uplift of the Podhale Synclinorium
commenced from the Middle Miocene times and continues at
present (Makowska and Jaroszewski, 1987; Anczkiewicz etal.,
2005; Perski, 2008; Smigielski et al., 2012).

METHODS

Fieldwork was carried out across the entire Podhale area us-
ing topographic maps at the scale of 1:10 000. Some 71 locations
with calcareous tufas (Appendix 1) have been documented since
the 1960s, based on our observations as well as archival data of
the Laboratory of Tectonics and Geological Mapping, Institute
of Geology, University of Warsaw (Kedzierska, 2001;
Majewska, 2001; Dziudzik, 2002; Stepczak, 2011). Most of the
tufas were localized by pacing and marked on the topographic
maps. The locations were converted to geographic coordinates
by geoportal. Some of the tufas have been previously reported,
but most are documented for the first time. The number of tufa
sites is variable due to erosion of the existing exposures and cre-
ation of new ones. Observations were carried out along rivers
and streams as well as along their tributaries. The locations of
many tufas coincide with map-scale faults and fault zones
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Fig. 2. Location of tufa outcrops on a geological sketch-map of the Podhale area (compiled after Watycha, 1974, 1976; Mastella, 1975; Bac-Moszaszwili et al., 1979; Malecka, 1982)
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Fig. 3. Schematic geological cross-section through the Podhale Synclinorium

(Fig. 2) as well as mesofaults (Figs. 4-6). The tufas were sam-
pled for thin section preparation and geochemical analyses. The
mineralogical composition of the tufas was determined with a
DRON-1 diffractometer in the Institute of Geochemistry, Miner-
alogy and Petrology, University of Warsaw. Petrographic obser-
vations were performed on selected samples of tufa using a po-
larized microscope at the Institute of Geology, University of
Warsaw and scanning electron microscope in the Institute of
Geological Sciences, Polish Academy of Sciences in Warsaw.

TERMINOLOGY

Freshwater carbonate terminology has developed over the
decades. Many studies describing the etymology and origin of
the terms travertine and tufa, used widely in the literature, are
listed by Pentecost (2005). The lithology of the deposits stud-
ied, their textures, the presence of plant and their imprints allow
us to use the term calcareous tufa (Szulc, 1983; Pedley, 1990;
Gradzinski, 2010) or meteogene travertine (sensu Pentecost,
1995) for most of their occurrences. Tufas have their carbon di-
oxide source in shallow circulation waters (Chafetz and Folk,
1984). The linkage of the deposits studied with fault zones, the
morphological forms of some of them (e.g., mounds) and iso-
tope data (Pazdur et al., 1988) suggest that these deposits may
derived carbon dioxide from deep circulation waters and thus
can be regarded as travertine (Chafetz and Folk, 1984; Pedley,
1990) or thermogene travertine (Pentecost, 1995). However,
the final assignment of the deposits studied as travertines de-
pends on stable isotope analysis. Thus, we consequently use
herein the term calcareous tufa for all the types of freshwater
carbonate deposits in this region.

MACROSCOPIC OBSERVATIONS

Several independent classifications of freshwater carbon-
ates based on different criteria have been proposed (Julia,
1983; Szulc, 1983; Chafetz and Folk, 1984; Rutkowski, 1991;
Pentecost and Viles, 1994; Ford and Pedley, 1996). During

fieldwork, we have used the classification based on macro-
scopic textural and morphological criteria proposed by
Gruszczynski and Mastella (1986).

Several textural varieties of tufas were distinguished during
the studies. The most common are thin coatings (Fig. 2—e.g., 7,
34, 62), up to several mm thick, forming crusts on plant remains
and tree roots on slopes of stream terraces and on pebbles and
surfaces on stream bottoms (Figs. 4 and 7A, J, K). Crusts occur
in areas of low flow or seeping water and occur in a variety of
forms ranging from smooth covers, through nodular forms to
aggregates of small calcite crystals (Figs. 4 and 7K). Fre-
quently, the irregular crust surfaces develop in areas of plant
growth and over deposit-cemented plant debris. Crusts cover
areas ranging in size from a few to tens of square metres. These
forms have been observed in almost all tufa outcrops in the
study area.

A special form of tufa is represented by fragile calcareous
encrustations on moss (Fig. 2 — e.g., 22, 52, 32) occurring on
slopes of main stream valleys or their tributaries in areas of low
flow or seeping water. These may form calcified moss curtains
in shaded overhangs (Figs. 5 and 7) of up to few metres in high
and several metres in width. Beneath the moss curtains, in
cave-like niches, there occur characteristic speleothem forms of
variable shape.

Tufas with a highly porous texture, frequently hard but lo-
cally soft and poorly lithified (Fig. 2 —e.g., 22, 33, 34) occur on
the stream bottoms (Fig. 8), on stream terraces as well as in the
seepage zones of stream terrace slopes (Fig. 7). They can cover
an area of up to several square metres and may exceed a few
metres in thickness. Porous tufas frequently show a laminated
fabric and occasionally a texture typical of stromatolites.

Clastic tufas, porous, hard (Fig. 2 — e.g., 6, 22, 36, 37) ce-
menting alluvial gravel, fragments of local rock, breccia,
oncoids, peloids or older tufa clasts (Fig. 7F) form on stream
valley slopes (Fig. 6). Their thickness varies and may exceed
several metres. Occasionally, blocks of clastic tufas detached
and displaced downwards, were found in the stream bottoms.

Massive tufas, hard, locally thinly bedded, frequently with
a laminated fabric (Fig. 2 — e.g., 18, 22, 33) form on terraces
and terrace slopes as well as on stream valley slopes (Fig. 5).
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Fig. 4. Tufas

A — active crusts (yellow) (no. 7) in the Ligasowski Stream; B — sketch of outcrops no. 7 and 8 (after Dziudzik, 2002, modified);
C - active calcareous tufa covered by moss (no. 11) in the Kotelnica Stream; D — sketch of outcrops no. 10 and 11 (after Dziudzik, 2002, modified);
explanations and scale as in B; E — speleothems in shaded niche beneath encrusted moss (no. 11)
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Fig. 7. Textural types of tufas on the basis of morphological scheme of tufa deposits (after Gruszczynski and Mastella, 1986, modified)

A - Ligasowski Stream (no. 8); B, D, E — Suchy Stream (no. 17); C — Czarnogo6rski Stream (no. 40); F — Suchy Stream (no. 18; fot. M. Ludwiniak); G — Osturnianski Stream (no. 69);
H, I — Czerwonka Stream (no. 33); J — Gliczarowski Stream (no. 22); K, L — Niedziczanka Stream (no. 53)
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Fig. 8. Active porous tufa colonised by plants, the bedrock
of the Niedziczanka Stream, outcrop no. 53

Their thickness varies between particular outcrops and may ex-
ceed several metres.

Massive, clastic and porous tufas (Fig. 7) build bodies of
different size and geometry, from tabular or fan-like shapes
through cascades to mounds (Figs. 4 and 5). The spatial distri-
bution of different tufas is heterogeneous with a complex inter-
nal arrangement (cf. Alexandrowicz, 1997). They may con-
tinue into crusts and plant encrustations at their margins that lo-
cally spread into the stream bed.

Tufas often occur on the outer washed-over stream banks
and in the inner reaches of streams in areas of small tributaries.
They precipitate near fissure springs linked with small faults
and breccia zones or seepages occurring in their prolongations.
The relationships of tufas to faults have been observed in indi-
vidual exposures as well as in series of exposures located along
map-scale faults. An example is the occurrence of tufas along
lateral faults limiting a “zone of beds with gentle dips” (Figs. 2
and 3), particularly evident in the southern part of the
Kaniowski Stream (Fig. 2; outcrops no. 34, 35) to the east in the
region of Kacwin (Fig. 2 —no. 63, 66, 68). Another example is
the well-known exposure of tufas in the region of Gliczaréw
(Halicki, 1930), where a map-scale fault contacts the Biaty
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Dunajec fault zone (Fig. 2, no. 22; Mastella, 2001; Mastella et
al., 2012). The tufa crop outs within bogs on the northern flat
part of the Gliczarowski Stream valley (Fig. 5). It occupies an
area of about 6 hectares in a fan-like form.

A unique occurrence of tufa has been noted on the southern
slope of the Suchy Stream valley (Fig. 2, no. 18). A series of tufa
mounds, exceeding several metres in height and diameter, oc-
cupy a field of about 1 hectare between two minor tributaries of
the Suchy Stream (Fig. 6). It is the largest occurrence of deposits
in such a morphological form in the Podhale Synclinorium.

COMPOSITION AND FABRIC OF THE TUFAS

X-ray diffraction study shows that the tufa consists mainly
of calcium carbonate with a small admixture of quartz, illite
and chlorite (Fig. 9). It is consistent with XRD data from the
Slovak part of the Paleogene sedimentary cover (Zyka and
Vtélensky, 1960; Cabalova, 1991). The calcium carbonate
content is about 95% in most samples. Thus most tufas are
white in colour with various shades of grey; occasionally,
they are also yellow or brown.

The tufas display varied macro- and microscopic porosity,
sub-divided after Choquette and Pray (1970) into intergranular,
mouldic, shelter and framework porosity. Intergranular poros-
ity has been observed in clastic tufas (Fig. 7F, G). This has been
observed in clasts of local rock as well as in older tufas
(Fig. 7G). Mouldic porosity commonly occurs in tufas that ce-
ment plant fragments and tree roots (Fig. 7C, D). It is also fre-
quent in clastic tufas (Fig. 7G). Shelter porosity has been found
beneath leaf surfaces and other flat plant fragments. Moss ce-
mentation by calcium carbonate produces tufas with high
framework porosity (Fig. 7H, I). These tufas often have a po-
rous and fragile texture.

Microscopic observations show that the tufas consist of two
polymorphs of crystalline calcium carbonate: dominant calcite
(Fig. 7E) and rare aragonite. Primary calcite crystals are fre-
quently fine anhedral, only occasionally coarse euhedral. Small
voids and hollows in tufas with porous framework contain
sub-euhedral calcite crystals. Aragonite is represented by small
crystals randomly distributed within the porous tufas or by
small clusters of crystals.
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Fig. 9. Example of X-ray diffraction identification of mineralogical composition of tufas

Cal - calcite, Il — illite, Chl — chlorite, Qz — quartz; Czarnog6rski Stream (outcrop no. 40)
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Fig. 10. Palisade (PC) and drusy (DC) calcite within tufa cavities

Crossed polarisers, Dzianiski Stream, outcrop no. 4

Encrustations on moss, crusts on plant remains and porous
tufas consist mainly of micrite, typical of microbial cements
(Figs. 7L and 10). Crusts, porous soft deposits and massive
forms of tufa frequently show laminated fabric with light- and
dark-coloured laminae (Fig. 7C, D, L). The laminae are white
or white-brown and grey or brown in colour, respectively. Indi-
vidual laminae range from sub-millimetric to 2 mm in thick-
ness. In most samples the lamination appears to be
heteropachous. In most of the crusts, individual laminae consist
of micrite. Thick massive tufas and clastic tufas also show
sparite crystals within individual laminae (Fig. 7G). Radiating
structures that are concentrically laminated are common in
massive tufas (Fig. 7D). Calcite deposition within biofilm lay-
ers around clasts of different origin is common in the clastic
tufas (Fig. 7G).

Primary fabric-selective porosity produces cemented cavi-
ties. Cavities in tufas are frequently infilled by sparite drusy
crystals up to 1 mm in size (Fig. 10). A palisade habit of crys-
tals of such fringe cements has been also observed in associa-
tion with micrite tufas of different types (Fig. 10).

TUFA DEVELOPMENT

According to mollusc data (Halicki, 1930; Urbanski, 1932;
Alexandrowicz, 1984) and stable isotope analysis (Pazdur,
1987; Pazdur et al., 1988) tufas in the Podhale Synclinorium
have developed from Late Glacial to Holocene times. Many
years of field observations indicate that tufa deposits are con-
tinuing to form. Commonly, these deposits may be disinte-

grated and destroyed by mechanical (floods) or chemical pro-
cesses (dissolution), and than later partly or completely rebuilt
at the same locality or in its close vicinity.

The tufa accumulations in the Podhale Synclinorium have
been influenced by the sedimentary environment as well as by
physico-chemical and biological conditions. Calcite precipita-
tion on plants, debris and tree roots — the basic nuclei of crystal
growth — produces deposits with irregular fabric and high po-
rosity (Figs. 7B, H and 10) that are characteristic of most initial
tufa deposits (Pedley, 2000; Viles and Pentecost, 2008).

Tufa fabric indicates the biotic and/or abiotic origin of cal-
cium carbonate deposits (Fig. 7C, D, L). A laminated texture in
micritic tufa may point to seasonal accumulation, locally con-
nected with the growth of algae that form stromatolites simi-
larly to those investigated by Gradzinski (2010). These tufas
may form in both low and high energy environments.

Well-defined lamination (Fig. 7D) is also characteristic of
tufas determined as calcareous sinter (Szulc, 1983 and refer-
ences therein) indicating abiotic precipitation of calcite. The
physico-chemical deposition of calcium carbonate indicates
high energy environments and may occur at the outlets of
springs and at waterfalls (Szulc 1983; Pentecost and Viles,
1994; Zhang et al., 2001).

The location and composition of clastic tufa deposits indi-
cate high energy environments, probably connected with
fall-off processes generated on valley slopes (Vazquez-Urbez
etal., 2012). However, the presence of oncoids and admixtures
of quartz sand within clastic tufas (Fig. 7G) point to flowing
water environments, probably small fluvial channels (cf.
Vazquez-Urbez et al., 2012). Additionally, alternating micro-
bial and chemical cements may indicate variable conditions
during diagenesis of the deposits. All these indicate a complex
process of clastic tufa development.

All tufas produce porosity which can be filled by secondary
cements during migration of carbonate-rich water. Thus,
sub-euhedral, palisade and drusy calcite crystals found in voids
and cavities are probably of secondary origin (Figs. 7G and 10).
This process may lead to the formation of massive fabrics in
tufas. Depositional processes may be succeeded by diagenesis,
which can be of meteoric origin.

It is known that precipitation of freshwater carbonates is in-
duced by: (a) pH increase of fluids from which calcium carbon-
ate precipitated resulting from e.g., algal growth, (b) factors
controlling CO, degassing of fluids, e.g., assimilation of CO,in
photosynthesis, bacterial and algal activity, increase in fluid
temperature or acceleration of diffusion resulting from turbu-
lent flow and/or decrease of partial pressure (Chafetz and Folk,
1984; Gruszczynski and Mastella, 1986; Ford and Pedley,
1996). Freshwater carbonate deposits form in waters with pH
values in the range of 5 to 9 (Szulc, 1983) corresponding to al-
kaline waters (Pazdro and Kozerski, 1990). The waters associ-
ated with tufa occurrences in the Podhale region belong to
acratopegae, i.e., they are two-ion waters characterized by pH
values in the range of 7.7 to 8.6 (Kedzierska, 2001; Majewska,
2001; Dziudzik, 2002).

It is significant that the local freshwater carbonates associ-
ated with faults are almost exclusively assigned to travertines.
They include unique sites such as those in the regions of
Levoca and Liptovsky MikulaS (Slovakia) described by
Gradzinski et al. (2008b). These deposits show a characteristic
fabric and indicate an enrichment in CO, of endogenic origin
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characterized by relatively high values of §'*C. The lithology
and textures of the deposits studied in the Podhale
Synclinorium are typical of calcareous tufas. However, few of
them form bodies of distinct morphological shape (Fig. 2 — no.
18, 40) typical of travertines. Moreover, the tufas precipitate
mainly near springs and seepages associated with minor and
map-scale faults of the major fault zones that reach the
Paleogene sedimentary sequence. Additionally, the §**C values
of tufas from the Gliczardw region (Fig. 2, no 22) obtained by
Pazdur et al. (1988, table 1) indicate partial enrichment in CO,
of deep circulation waters. In this view, the calcareous tufas de-
posited in the Podhale Synclinorium likely precipitated from
mixed waters of deep circulation and meteoric origin (cf.
Gradzinski, 2010, Lucky site). The existence of thermal waters
in the Podhale Synclinorium is documented in boreholes
(Sokotowski, 1991; Chowaniec and Poprawa, 1998;
Chowaniec et al., 1999). According to our field observations
most of the springs at which tufas precipitate do not freeze in
winter. This suggests that tufa development may be related to
the tectonics of the Podhale Synclinorium. These data may sug-
gest that thermal waters or waters enriched in CO,, migrating
along faults, leached calcium carbonate from the Paleogene
sedimentary sequence or the Mesozoic basement and precipi-
tated it on the surface as calcareous tufas.

DISCUSSION AND CONCLUSIONS

Travertines and tufas are considered to be indicators of tec-
tonic activity and can be used as a tool for identification of a
nearby fault trace (Hancock et al., 1999; Brogi et al., 2012), of
estimating the age of tectonic activity (Sibson, 1987; Altunel
and Hancock, 1993; Hancock et al., 1999; Brogi et al., 2010) or
of the permeability of faults and associated brittle structures
(Brogi, 2004, 2012) that played a role as conduits of fluids
(Cain et al., 1996; Sibson, 1996, 2000).

In this view, tufa occurrences in the Podhale Synclinorium
may be regarded as a result of tectonic activity of this region
during Quaternary times. It is characteristic that exposures with
tufas occur in the vicinity of map-scale as well as mesofault
zones (Figs. 2, 4 and 5). Regionally, exposures with tufas occur
in several zones, oblique and lateral in relation to the
synclinorium axis. The oblique zones are consistent with the
Biatka and Biaty Dunajec fault zones, with a normal compo-
nent across fault planes. Additionally, the concentration of tufa
exposures in the Kacwinska Rzeka and Niedziczanka streams

region may indicate the presence of a map-scale fault zone in
the eastern part of the synclinorium, similar to the Biatka and
Biaty Dunajec fault zones. The lateral zones occur within the
“zone of beds with gentle dips” and in the axial zone of the
synclinorium (Fig. 2). The former is related to lateral faults lim-
iting “zone of beds with gentle dips”. The latter lateral zone is
related to extensional brittle structures in the hinge zone of the
synclinorium resulted from buckling of the Podhale
Synclinorium during the Neogene (Mastella, 1975). Associa-
tion of tufas with brittle structures indicates their probable re-
cent and present-day permeability maintained by active tecton-
ics in the Podhale Synclinorium.

The tectonic activity of the Podhale region is documented by
thermochronological, geomorphological, instrumental and
macroseismic, geodetic as well as satellite image analysis data.
The K-Ar, Ar-Ar, and Rb-Sr as well as fission track geochronol-
ogical data indicating constant uplift of the area (Kovac et al.,
1994; Baumgart-Kotarba and Kral’, 2004; Anczkiewicz et al.,
2005; Smigielski et al., 2012). Data from apatite fission track
analyses (Anczkiewicz et al., 2005) indicate that the eastern part
of the Podhale Synclinorium underwent a younger and larger up-
lift in comparison with its western part, dated to between 6 and
10 Ma. This is consistent with progressive/gradual offset of the
basement along the Biaty Dunajec and Biatka fault zones
(Mastella, 1975; Pomianowski, 1995, 2003). Evidence of Qua-
ternary fault activity is provided by data of geomorphological
analyses performed along the Biatka River (Baumgart-Kotarba,
1981; Szczesny, 1987). The present tectonic activity is also con-
sistent with earthquakes of low amplitude recorded in the area of
Biatka River fault zone, and in the Zakopane region (Guterch
and Lewandowska-Marciniak, 2002; Guterch et al., 2005 and
references therein). The larger relative uplift of the Zakopane re-
gion in comparison to the Nowy Targ region was interpreted
from SAR interferometry data (Perski, 2008) that is consistent
with previous data of geodynamic measurements obtained by
Makowska and Jaroszewski (1987). All the data confirm re-
gional extension during the uplift of the study area, stimulating
tufa development.
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