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Post-glacial vegetation and environment of the Labanoras Region,
East Lithuania: implications for regional history
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Multiproxy data (pollen, plant macrofossils, **C dates and loss-on-ignition measurements) obtained from the Bevardis and Verpstinis
lakes in the Labanoras area (East Lithuania) were used to reconstruct a vegetation history and to reveal major environmental features dur-
ing post-glacial time. Biostratigraphical data indicates ongoing sedimentation in Verpstinis Lake since the final stages of the Allered.
The pollen data shows that Pinus-dominated forest flourished during the Allered, while the Younger Dryas was characterized bAy open
shrub/herb/grass vegetation with highly abundant Juniperus. These are evidences of severe climatic conditions in the area. The *C data
suggests that sedimentation started in Bevardis Lake with the onset of the Holocene. Picea immigrated into the Verpstinis Lake sur-
roundings in the Late Glacial, just before 11 500 cal yr BP according to the palynological evidence. The expanding deciduous taxa, e.g.,
Corylus (ca. 10 200-10 000 cal yr BP), Alnus (8200-8000 cal yr BP), and broad-leaved species with Ulmus (ca. 10 000 cal yr BP), Tilia
(7700-7400 cal yr BP) and Quercus (5200 cal yr BP), formed a dense mixed forest where Picea appeared at 7300-6800 cal yr BP. Both
diagrams show only negligible human impact. It seems that natural factors were responsible for the formation of vegetation cover and en-
vironment in the study area throughout the post-glacial.
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INTRODUCTION

Recent palaeoenvironmental studies combining pollen,
plant macrofossil and diatom data with the results of **C and
19Be isotope investigations, optically stimulated luminescence
(OSL) measurements as well as geochemical and lithological
data have provided a detailed Late Glacial and early Holocene
environmental history of Lithuania (Bitinas, 2004; Molodkov
and Bitinas, 2006; Seiriené et al., 2006; Rinterknecht et al.,
2008; StanCikaité et al., 2008, 2009b). The vegetation history
was better understood after the discovery of Pinus sylvestris L.
macrofossils dated back to ca. 13 700 cal yr BP (StanCikaité et
al., 2008), and Picea sp. seeds in deposits of Allered age in
southeastern Lithuania (StanCikaité et al., 1998). Moreover, an
early Holocene (ca. 10 600 cal yr BP) immigration of the latter
taxa to northeastern Lithuania was recently indicated on the ba-
sis of plant macrofossil data (Stancikaité et al., 2004, 2009b),
and the main stages of the Late Glacial environmental history

have been discussed in the context of North Atlantic climatic
events of the Last Termination (Stancikaite et al., 2008).

Relatively few studies have been lately devoted to the Ho-
locene environment and vegetation in Lithuania (Balaka-
uskas, 2003; Kabailien¢ et al., 2009; Mazeika et al., 2009;
Seirien¢ et al., 2009). Most of the data for this time-interval
was obtained from archaeological sites where environmental
changes have been examined in the context of human activity
(Stancikaiteé et al., 2006, 2009a, b). The Holocene vegetation
history has been studied mostly using biostratigraphical data
obtained a few decades ago, or from even earlier when numer-
ous sediment profiles were examined throughout the country
(Kabailien¢, 2006). The existing sparse radiocarbon data for
these pollen records was insufficient for a detailed regional
correlation of the vegetation history. In order to shed more
light on the Holocene environmental history and to improve
the chronology of vegetation development, sediment cores
representing different parts of Lithuania were selected for a
multiproxy study.
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As the eastern part of Lithuania is situated close to the mar-
gin of the Late Weichselian (Vistulian) Glaciation, the area was
liberated from ice relatively early, providing new land for im-
migration of the Late Glacial vegetation. During the Holocene
when deciduous trees expanded from refuges situated in south-
eastern and southern Europe (Bennett ef al., 1991; Willis et al.,
2000), this part of Lithuania served as a key area for the further
establishment of taxa in the region. Moreover, a new data sug-
gests that isolated patches of trees existed between the Scandi-
navian ice sheet and the Ural Mountains during the Late Gla-
cial and early Holocene. These small populations acted as ini-
tial nuclei for population expansion and forest development in
the early Holocene (Viliranta ef al., 2010). These refuge areas
may also have influenced immigration of particular species to
Eastern Lithuania.

The aim of this study is to describe patterns of the post-gla-
cial vegetation with a particular emphasis on Holocene vegeta-
tion dynamics in the Labanoras Region, East Lithuania, and to
discuss this in the context of the regional vegetation history.
Immigration, flourishing and extinction of distinct taxa, as well
as the main stages of environmental variation are discussed in
this paper. The multiproxy data of pollen, plant macrofossil,
"C and loss-on-ignition (LOI) measurements from the two
sediment sequences obtained from Bevardis and Versptinis
lakes were used to achieve this goal and to improve our knowl-
edge of Late Glacial and Holocene forest dynamics in this part
of the Baltic Region.

STUDY AREA

The first study locality (55°11730"N, 25°52"26"E) is situ-
ated at Verpstinis Lake (11 ha, 156 m a.s.l) within the

Berzalotas Highmoor (Fig. | B) in Eastern Lithuania. The partly
overgrown lake, up to 4 m deep, is predominantly surrounded
by highmoor vegetation. The highmoor is in a centre of the
Zeimena Plain that is a part of a glaciofluvial outwash plain
stretching beyond the marginal deposits of the Late
Weichselian (Vistulian) Glaciation (Guobyte, 2002). Depres-
sions of this slightly undulating plain were filled with lakes,
which later transformed into bogs and highmoors.

Another sediment sequence was taken in the eastern part
(55°10°55"N, 25°44’42"E, 167 m a.s.l) of Bevardis Lake
(Fig. 1A)situated in the western part of the Zeimena Plain. This
small (ca. 0.4 ha) lake is surrounded by a 0.7 ha bog of transi-
tional type.

This part of Lithuania is characterized by a continental clima-
tic regime. The average annual precipitation varies from 650 to
700 mm, the major part of which falls during the warm season.
The mean temperature varies from —6.3°C in January to 16.8°C
in June. The mean temperature of the year is about 5.5°C.

METHODS

CORING AND SAMPLING

Multiple sediment cores were obtained from Bevardis and
Verpstinis lakes using a Russian corer (1 m long chamber with
a 5 cm inner diameter). After visual description of the sedi-
ments (Fig. 2), the cores obtained were sub-sampled at 2 cm
resolution for pollen (the Bevardis and Verpstinis cores) inves-
tigations and at 5 cm resolution for plant macrofossil (the
Bevardis core) and loss-on-ignition (the Bevardis core) studies.
Bulk samples of 4-5 cm were taken for conventional '“C dating

from both cores.
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Fig. 1. Location of the study sites

A — Bevardis Lake in the thermocarst lakes complex; B — Verpstinis Lake in Berzalotas Highmoor
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Fig. 2. Lithological descriptions of the Verpstinis and Bevardis lake cores
with results of LOI for the Bevardis Lake sequence

A — lithology of Verpstinis Lake; B — lithology and results of loss-on-ignition performed on the sediments from Bevardis Lake

POLLEN ANALYSIS

The sub-samples of 1-3 cm? for pollen analysis were pre-
pared using a standard chemical procedure (Erdtman, 1936;
Grichiuk, 1940), including treatment of the sediments with a
heavy liquid (Cdl, + KI). A known amount of Lycopodium
spores was added in order to calculate pollen concentrations
(Stockmarr, 1971). 500 terrestrial pollen grains were counted
from each sample using a light NIKON microscope. Pollen
identification was based on Moore et al. (1991). Taxa are pre-
sented as percentages of the sum of arboreal (ZAP) plus
non-arboreal (XNAP) taxa (XAP + ZNAP = XP). For calcula-
tion and presentation of pollen, diatom and plant macrofossil
data the programs TILIA and TILIA-graph (Grimm, 2000)
were applied.

Along with the visual inspection, a stratigraphically con-
strained cluster analysis (CONISS — Constrained Incremental

Sums of Squares cluster analysis; Grimm, 1987) was used for
the subdivision of the pollen and plant macrofossil diagrams
into local zones.

PLANT MACROFOSSIL SURVEY

80 samples were individually analysed by means of a plant
macrofossil survey. The collected remains, which had been ex-
tracted from the sediment samples (390 cm?®in volume) by wet
sieving (screens with mesh sizes of 0.2 and 0.5 mm) were ana-
lysed using NIKON SMZ 1500 microscope, at a magnification
of x20-60. Identification of the material collected was based on
Berggren (1969, 1981), Grigas (1986) and Cappers et al.
(2006) in combination with the reference collection at the Insti-
tute of Geology and Geography (Vilnius). The plant
macrofossils are presented as various identified specimens/sed-
iment volumes and classified into groups (trees and shrubs, wa-
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ter plants, plants of wetland and xeromesophytes) to aid in the
interpretation of vegetation history. Botanical nomenclature
follows GudZinskas (1999).

RADIOCARBON (*C) DATING

Samples representing the Verpstinis and Bevardis cores
were selected for the determination of **C age in the Radioiso-
tope Research Laboratory, Institute of Geology and Geogra-
phy, Vilnius and the Kiev Radiocarbon Laboratory, the
Ukraine. All together 11 bulk samples from the Bevardis and 3
from the Verpstinis cores were investigated. All dates used in
the manuscript were calibrated to calendar years BP using the
calibration curve of Reimer et al. (2004) within the calibration
software OxCal v3.10 (Bronk Ramsey, 2001).

Time scales were constructed on the basis of two-order
polynomial interpolation between available conventional *C
dates (the midpoint of the +15) and biostratigraphical data in
case of the Verpstinis core. All ages are given as calibrated
years before 1950 AD (cal yr BP).

LOSS-ON-IGNITION (LOI)

In order to improve the lithological description, calcium
carbonate (CaCOs) and organic matter contents were deter-
mined for the Bevardis Lake core. The sediments were dried at
500°C for 4 h to obtain the loss-on-ignition (LOI). The deter-
mination of calcium carbonate content followed Gedda (2001),
and the amount of mineral matter was calculated by eliminating
organic matter and carbonate contents from the total dry matter.
In total, 133 samples were investigated.

RESULTS

LITHOLOGY AND LOI RESULTS

Lithological subdivision is based on visual sediment in-
spection of the Bevardis and Verpstinis sections supplemented
with the LOI results in the case of the Bevardis core. The lower
part (755-885 cm) of the 885 cm long Bevardis section consists
of a30 cm long interval of mineral material (>95%; Fig. 2). The
upper part of the core (15-755 cm) mainly consists of organic
matter (up to 98%) with admixtures of CaCO; (ca. 2-3%) at
certain intervals.

Similarly, the 510 cm long Verpstinis core sequence is
made up of terrigenous material at the bottom (493-510 cm)
and organogenic sediments with admixtures of gyttja
(300-470 cm) from a depth of 470 cm upwards (Fig. 2). A thin
interlayer of gyttja was discovered at a depth of 470-493 cm.

PALYNOLOGICAL RESULTS

The pollen data have been described in terms of local pollen
assemblage zones (LPAZ) based on visual and statistical evalu-
ations of the pollen spectra. Eight LPAZ were established for
the Verpstinis (Table 1 and Fig. 3) and six for the Bevardis pol-
len diagrams (Table 2 and Fig. 4) respectively.

PLANT MACROFOSSIL SURVEY

Four plant macrofossil zones (LMAZ) were determined in
the diagram of the Bevardis core (Table 3). The selected taxa

Table 1

Local pollen assemblage zones in Verpstinis Lake

LPAZ | Depth [cm] Description
~ Betula has a peak of 56.2% and AP sum stays high in this zone. Artemisia and Calluna form continuous curves.
Vp-8 100-140
Number of broad-leaved trees decreased upwards.
Alnus (17.5%) culminates in this zone and Betula increases showing 42.5%. The total AP sum reaches 95.7%
Vp-7 140-247 and is the highest throughout the diagram. Number of broad-leaved pollen decreases approaching
the upper boundary of the zone.

Quercus (6%) culminates in this zone and number of Picea increases showing up to 10%. Number of NAP decreased

Vp-6 247-327 down to 3-4%. Representation of Alnus and Betula is the lowest throughout the diagram.
Sum of NAP reaches up to 9%.
Deciduous species e.g., Corylus (up to 10.4%), Alnus (up to 11.1%) and Tilia (up to 4.2%), established in this zone.
Vp-5 327-418 Number of Picea increases upwards (up to 9.7%) and Ulmus (up to 6.8%) culminates in this zone. The total amount
of NAP as well as the number of identified species is the low throughout the zone.
Vp-4 418-455 Poaceae culminates in this zone and shows 31.8%. Number of AP pollen increases upwards including Corylus,
Alnus and Ulmus forming continuous curves.
Ve-3 455-477 This zone is characterized by Picea culmination (up to 15%) along with remarkable rise
of Betula curve (up to 37.2%). Number of NAP decreased showing about 14.6%.

Determination of this zone is based on the culmination of NAP (up to 26.2%) with Artemisia predominating (11.4%).

Vp-2 477-497 Simultaneously Juniperus increased up to 15.2%. The total value of AP species
decreased when compared with Vp-1 and is about 73%.
V-1 497-502.5 Pinus culminates in this zone showing up to 82.6%. Betula reaches up to 18% and number
' of Alnus and Corylus is negligible. The total amount of NAP reaches 5.6% and that of AP —94.1%.
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Fig. 3. Percentage pollen diagram for the Verpstinis Lake sediment sequence

AP —arboreal pollen, P + C — Poaceae and Cyperaceae, QM — quercetum mixtum, t. — type;
analysed by Stancikaité and Gaidamavicius (2007)
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Table 2

Local pollen assemblage zones in Bevardis Lake

LPAZ | Depth [cm]

Description

Bp-5 25-320

Bp-4b 320-384

Bp-4a 384-515

Bp-3 515-625

Bp-z

625-755

Bp-1 755-879

Corylus shows some rise of the curve approaching the upper limit of the zone (up to 12.4%) as well as Alnus (6.7%).
Number of Pinus pollen increase up to 80.3% in this zone. Picea curve lowered to 3.2% with some rise
in the upper part of the zone. Number of broad-leaved trees decreased even more and NAP number is negligible.

Picea (22.3%) culminates in this zone and number of Betula (up to 17%), Corylus (up to 7.4%), Alnus (up to 10%)
and broad-leaved species (up to 17.2%) increases. Mostly of NAP taxa occurred sporadically.

Number of the broad-leaved species decreased in this zone while representation of Pinus (up to 71.6%) and Picea
(up to 13.9%) increased in comparison with the previous one. Amount of Betula and Alnus decreased as well.
NAP sum is negligible in this zone.

Broad-leaved species e.g., Ulmus (up to 10%), Quercus (up to 5.5%) and Tilia (up to 5.7%) culminates
in this zone alongside with Corylus (up to 12.4%) and Alnus (up to 13.5%). Number of Picea increases
upwards (up to 9%). The total amount of NAP as well as the number of identified species
is the low throughout the zone.

Betula culminates in this zone showing 24.1%. Amount of Corylus and Ulmus pollen increases upward reaching 9.7%
and 3.3% respectively. Number of NAP pollen decreased in comparison with the previous zone.

Determination of this zone is based on the high Pinus representation (up to 80.2%). Betula reaches 22.9%
in the uppermost part of the zone. Alnus, Picea, Corylus and Ulmus are represented continuously while the rest AP taxa
occur sporadically. Chenopodiaceae has a peak of 3.8% while other NAP species are registered
in a separated spectra only. Total sum of NAP reaches up to 13.4%.

are shown on the diagram (Fig. 5). The plant macrofossil taxa
(fruits, seeds, oospores, needles and leaves) were grouped ac-
cording to their habitats, e.g., water plants, plants of wetland,
xeromesophytes and particular group of trees and shrubs.

CHRONO- AND BIOSTRATIGRAPHY

The chronology of the indicated environmental variations
is based on the results of **C dating (Table 4 and Fig. 6) and
biostratigraphical information obtained both on the regional
and local scales.

According to the biostratigraphical data, the oldest sedi-
ments are recorded in the bottom part of the Verpstinis Lake
core, where abundance of Pinus pollen (Vp-1, Fig. 3) changed
to shrub/herb/grass communities with a high amount of
Juniperus (Vp-2, Fig. 3), suggesting initial deposition during a
relatively warm climate stage followed by rapid climatic deteri-
oration. This palaeobotanical record correlates well with the
Allered/Younger  Dryas  biostratigraphical ~ boundary
(Kabailiene, 1993) dated back to ca. 12 600 cal yr BP in Lithu-
ania (Stancikaite et al., 2008, 2009b).

The development of pollen spectra in the Verpstinis Lake
core shows an increase in Picea and Betula pollen and concom-
itant decrease in NAP (Vp-3, Fig. 3). The earliest post-glacial
immigration of spruce to eastern and northeastern Lithuania
was dated back to 10 798-10 491 cal yr BP according to the
conventional *C date or to 11 507-9739 cal yr BP according to
accelerator mass spectrometry (AMS) information (StanCikaité
etal., 2004, 2009b), thus suggesting a similar age for the Picea
peak recorded in the Verpstinis Lake core (Vp-3, Fig. 3). Since
the *C data obtained (8180-7980 cal yr BP; Table 4) is not in
agreement with this chronological information, it was rejected
from the age-depth model (Fig. 6).

According to the *C data (10 160-9980 cal yr BP,
Ki-10954; Table 4), sedimentation in Bevardis Lake started
before 10 000 cal yr BP. Organogenic strata started to form af-
ter 10 000 cal yr BP, together with the sudden rise in pollen
concentration. The rise was likely related to growing vegeta-
tion cover due to immigration of new deciduous species such
as Corylus at ca. 10 200-10 000 cal yr BP (Bp-2, Fig. 4 and
Vp-4, Fig. 3).

The next stage of forest formation coincided with Ulmus
immigration (ca. 10 000 cal yr BP; Vp-3, Fig. 3 and Bp-2,
Fig. 4) followed by Alnus (8200-8000 cal yr BP; By-2, Fig. 5)
and other broad-leaved species. Although sparse, broad-leaved
species were present among the forest vegetation until
ca. 4000 cal yr BP (end of Vp-6, Fig. 3). In the Bevardis Lake
pollen diagram (Be-4a, Fig. 4), a low number of deciduous trees
between 6200 and 4000 cal yr BP was followed by a small peak
dated to ca. 3800 cal yr BP (Bp-4b, Fig. 4).

Picea appeared in the region at 7300-6800 cal yr BP
(Fig. 6) as seen in the Bevardis Lake pollen spectra (Bp-3,
Fig. 4). However, Picea seeds (Bu-3, Fig. 5) were not discov-
ered in the sediments until ca. 5000 cal yr BP (Fig. 6). In the
Verpstinis Lake environment, the amount of Picea pollen
started to increase at ca. 6800 cal yr BP (Vp-5, Fig. 3). Accord-
ing to the *C data obtained, Picea flourished in the Labanoras
area until ca. 2500-2000 cal yr BP (onset of Bp-5, Fig. 4 and
Bw-4, Flg 5)

The uppermost parts of both cores consist of sediments de-
posited during the last few thousand years (Fig. 6). The pollen
and plant macrofossil data (Vp-8, Fig. 3; Bp-5, Fig. 4 and By-4,
Fig. 5) shows that Pinus, Betula, Alnus and Corylus vegetation
covered the entire area near the lake rim. This indicates no trace
of human activity.
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Fig. 4. Percentage pollen diagram for the Bevardis Lake sediment sequence

For explanations see Figure 3; analysed by Stan¢ikaité and Gaidamavicius (2007)

DISCUSSION

The results obtained provide information on the post-gla-
cial vegetation and environmental history of the Labanoras Re-
gion, East Lithuania, and allowed the interpretation of regional
vegetation dynamics.

According to the Verpstinis Lake pollen data, sedimenta-
tion started here shortly before 12 600 cal yr BP or during the
latest Allered Interstadial (Walker et al., 1999). The climate re-
gime, with high mean temperature and humidity, was favour-
able for pine-dominated forest. The appearance of Pinus sug-
gests that the mean July temperature was higher than +12°C
(Kultti et al., 2006). The flourishing of pine may indicate se-
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Table 3

Plant macrofossil zones in Bevardis Lake

LMAZ

Depth [cm]

Description

Bu-4

Bum-3

Bm-2

45-330

330-515

515-690

Dominant of this zone is Pinus. It together with scattered remains of Picea and Betula reach from 40 up to 100%
of all finds. Water plant taxa occur sporadically and their remains are negligible. Carex species are main component
of group of wetland plants and Carex nigra predominate among them.

Trees predominate in this zone. Pinus culminates there alongside with Betula sect. Albae. Finds of Picea
are registered in the upper part of zone. Water plants are represented by continuous finds of Chara, Nymphaea alba
and several remains of other species (e.g., Nuphar lutea, Najas flexilis, Sparganium erectum, S. natans, Potamogeton).
Different species of Carex represent group of wetland plants in this zone.

Remains of water plants culminate in this zone and finds of Chara predominate among them. Big amount of plant
macroflora compose of tree remains. Pinus dominates in this zone. Scatered fruits of Betula sect. Albae and Alnus glutinosa

Bu-1 690-845

are registered too. Sphagnum, Bryales and Carex are represented continuously while the rest taxa
of wetland (e.g., Comarum palustre, Eupatorium cannabinum) occur sporadically.

Determination of this zone is based on the high Sphagnum representation (it composed mine part of sediments).
Remains of other plants are scattered. Menyanthes trifoliata and some species of Carex are registered in the lower
most and upper most part of this zone.

vere conditions, particularly in winter, i.e. increasing
continentality (Walker, 1995). The formation of open, pine or
pine-birch dominated forest was recorded in areas along the
eastern margin of the Late Weichselian ice sheet during the
Allerad (Zernitskaya, 1995; Veinbergs and Jakubovska, 1999;
Ralska-Jasiewiczowa et al., 2004; StanCikait¢ et al., 2004,
2009a; Saarse et al., 2009; Heikkild et al., 2009; Wacnik, 2009;
Amon et al., 2010; Novik et al., 2010). In some areas of south-
eastern Lithuania (StanCikaite et al., 1998) and Eastern Latvia
(Heikkila et al., 2009), growing spruce was forming a denser
vegetation cover. At the same time the distribution of the
light-demanding  species  Juniperus,  Artemisia  and
Chenopodium indicated the existence of open areas. The latter
provided a source for terrigenous material transported into lake
basins, as it was recorded in the Verpstinis Lake core where
light grey gyttja with silt accumulated (Fig. 2).

Vegetation changed considerably in the area after ca. 12
600 cal yr BP. Representatives of light-demanding species
Juniperus and Selaginella selaginoides as well as pioneer taxa
Chenopodium and Helianthemum flourished here. The vegeta-
tion pattern indicated a climatic situation similar to the GS-1d
event (Lowe et al., 2008) or Younger Dryas cooling. The
amount spruce (Picea) pollen increased and reached 5.8% in
the late Younger Dryas, while the amount of two major repre-
sentatives of the Allered forest, birch and pine, decreased con-
siderably. The post-glacial chronology as well as the migration
pattern of spruce has been long discussed (Moe, 1970; Hafsten,
1992; Giesecke and Bennett, 2004; Giesecke, 2005; Latatowa
and van der Knaap, 2006), however, new information on its
history in the eastern Baltic and neighbouring regions was ob-
tained recently. In SE Lithuania, Picea sp. seeds were found in
deposits of Allered age (StanCikaité et al., 1998), and became
established in Western Lithuania in the late Younger Dryas,
(Stancikaite et al., 2008). The pollen and plant macrofossils
show an early Holocene, ca. 11 507-10 790 cal yr BP, immi-
gration of this tree into northern and northeastern Lithuania
(Stancikaite et al., 2004, 2009b). Similarly, the stomatal and
plant macrofossils showed spruce expansion at ca. 12 900-11
700 cal yr BP into eastern (Heikkila et al., 2009) and briefly be-

fore 10 200 cal yr BP into Central (Kangur et al., 2009) Latvia.
Spruce had already arrived in the Late Glacial and early Holo-
cene even in Scandinavia (Kullman, 2000, 2002; Segerstrém
and Stedingk, 2003; Giesecke, 2005). However, in Northern
Estonia where spruce pollen were discovered in Allergd depos-
its, “Picea macroremains have not been found in the Haljala se-
quence, the presence of Picea at the end of the Allered still re-
mains open...” (Saarse et al., 2009). A fact that spruce arrived
into the Labanoras environs shortly before 11 500 cal yr BP
correlates very well with the regional pattern (Fig. 7). The pres-
ence of Picea suggests that a continental climate with warm
summers (about 10-13°C) and moist soil conditions (Giesecke
and Bennett, 2004) predominated in the region during the final
stages of the Younger Dryas.

Pollen data suggest remarkable vegetation changes in the
area during the initial stages of the Holocene. The birch and
spruce forest development culminated at ca. 11 200-10 800 cal
yr BP. The peak was followed by birch, pine and deciduous
Ulmus and Corylus expansion. As suggested by Giesecke et al.
(2008) “...the disappearance of Picea pollen in the beginning of
the Holocene and the readvance of Betula—Pinus forest may in-
dicate that the shift from the Younger Dryas was foremost a
shift in winter temperatures and from a continental climate dur-
ing the Younger Dryas to a more oceanic climate in the early
Holocene”. Simultaneously the number and variety of herbs,
shrubs and grasses gradually decreased indicating consolida-
tion of the vegetation cover. This climatic amelioration caused
the deposition of peat with gyttja in Verpstinis Lake. The bio-
logical productivity increased, and the lake became partly over-
grown. Similarly, Bevardis Lake started to convert into a bog
with the deposition of peat after 10 000 cal yr BP.

Early Holocene climatic warming was followed by the in-
troduction of new deciduous species. The earliest recorded pol-
len peaks of Corylus, Ulmus and Alnus reflected the regional
rather than a local distribution pattern. Corylus was the first to
appear in the area at ca. 10 200-10 000 cal yr BP. Italy and
Western France were major refuge areas for this faxon during
the Last Glaciation, although there are also indications of this
plant on the Hungarian Plain (Bennett et al., 1991). Hazel
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Fig. 5. Plant macrofossil diagram for the Bevardis Lake sediment sequence

br. — branch, ed. — endocarp, fr. — fruit, Iv. — leaf, nd. — needle, 0o. — oospore, sc. — scale, sd. — seed; analysed by Kisieliené (2010)

which is very common in early forest development may grow
on different soils as compared to thermophylous taxa (Huntley
and Prentice, 1993). Therefore Corylus could spread easily in
the study area where sandy habitats predominated. The early
Holocene immigration of this tree to northeastern Poland was
dated to ca. 9450 cal yr BP (Wacnik, 2009), while it arrived to
Estonia before 10 000 cal yr BP (Saarse, 2004). In central and

northwestern Belarus Corylus appeared at ca. 9700 cal yr BP
(Zernitskaya and Kolkovskij, 2003; Novik et al., 2010). Possi-
ble migration routes for this tree to the eastern Baltic region
from the south-west and west (Miotk-Szpiganowicz et al.,
2004; Saarse, 2004) explain the recorded differences of the im-
migration chronology (Fig. 7).
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Table 4

C uncalibrated (BP) and calibrated (cal yr BP) dates from Bevardis and Verpstinis

No. | Depth [cm] 14C [yr BP] Calibrate?eggzeo/ggal yr BP] Laboratory code Dated material
Bevardis Lake
1 150-155 940 +120 960-730 Vs-1430
2 205-210 1730 £190 1870-1410 Vs-1448
3 255-260 2050 +130 2160-1870 Vs-1431
4 305-310 2340 £150 2700-2150 Vs-1428
5 355-360 2770 £200 3250-2700 Vs-1434
6 385-390 3630 £170 4250-3700 Vs-1429 bulk organic
7 480-485 5470 +240 6500-5900 Vs-1435
8 540-550 6420 +100 7430-7250 Vs-1959
9 650-655 6620 +310 7850-7150 Vs-1968
10 660-665 7030 £280 8200-7600 Vs-1951
11 750-755 8830 +120 10.160-9980 Ki-10954
Verpstinis Lake
1 240-245 3480 +250 4100-3450 Vs-1449
2 405-410 5900 +250 7050-6400 Vs-1450 bulk organic
3 470-475 7270 £100 8180-7980 Ki-11400

Ash trees followed hazel in the area investigated. Even
though Ulmus appeared as one of the first deciduous trees dur-
ing the initial stages of the Holocene in Lithuania (Kabailien¢,
2006) and neighbouring countries (Ralska-Jasiewiczowa and
Latatowa, 1996), this plant immigrated to the Labanoras area
not earlier than ca. 10 000 cal yr BP. The latter fact can be ex-
plained by predominance of poor sandy soils in the study area
while this taxon is very vulnerable to drought and requires
moist and fertile soil (Grime et al., 1986). Ulmus expanded
from southeastern Europe suggesting its refuge had been in
Southern and Central Europe (Rudner and Stimegi, 2001; Wil-
lis and Tjeerd, 2004) including the Hungarian Plain (Willis et
al., 2000) and the Eastern Carpathians (Bjorkman et al., 2002,
2003). In NE Poland the arrival of Ulmus is dated at ca.
94 50 cal yr BP (Wacnik, 2009), in northwestern Belarus at ca.
10200-9700 cal yr BP (Novik et al., 2010), and in Latvia at ca.
10 000-9500 cal yr BP (llves and Medne, 1979), indicating
overall climatic amelioration, formation of fertile soils and in-
creasing humidity. However, in Western Estonia the earliest re-
cords of Ulmus were dated at 10 700-10 800 cal yr BP suggest-
ing a western immigration pathway (Veski, 1998).

Alnus was the last deciduous tree which immigrated to the
Labanoras Region during the early Holocene. It is still widely
accepted that in this part of Europe Alnus was established in
the early Holocene; however, recent publications on pollen
and plant macrofossil data suggest a Late Glacial age of this
tree in Western Lithuania (Stancikaité et al., 2008) and North-
ern Poland (Latatowa and Boréwka, 2006). Such early estab-
lishment of Alnus in the western part of the Baltic region may
imply a migration route from the west. The western migration
route sheds light on the history of Alnus in Estonia where al-
der was established at ca. 9500 cal yr BP, or even earlier de-
pending on the site and region (Veski, 1998; Saarse et al.,
1999). Furthermore this chronology fits very well with the

history of Alnus in northwestern Lithuania where alder was
dated at ca. 9000-8800 cal yr BP (StanCikaité et al., 2006).
Evidently, the western route of alder expansion as well as its
post-glacial chronological framework has to be studied more
carefully in the Baltic region.

Alnus appeared in the Labanoras area and all of Eastern
Lithuania at ca. 8200-8000 cal yr BP, almost at the same time
as in northeastern Poland where the earliest pollen peaks were
dated back to 8160 cal yr BP (Wacnik, 2009). Alder was estab-
lished somewhat earlier in Latvia, i.e. at ca. 8800-8600 cal yr
BP (llves and Medne, 1979), and even earlier in Belarus. In
southwestern Belarus, the earliest peak of the Alnus pollen
curve was dated back to ca. 9400-9300 cal yr BP, while in the
northwestern part the amount of alder pollen increased consid-
erably at ca. 8600 cal yr BP (Novik et al., 2010). Since the re-
sults of DNA analysis show that the majority of north and cen-
tral European areas were occupied by alder derived from the
Carpathian refugia (Srodon, 1981; King and Ferris, 1998), its
immigration to Baltic countries via Belarus is easily explicable.
In our opinion, the Alnus history was mainly influenced by lo-
cal factors such as the quality of soil, number of suitable habi-
tats and hydrological conditions in the Labanoras area. Poor
sandy soils, typical for the marginal area of the Weichselian
Glaciation, of the Labanoras Region were highly unsuitable for
the early immigration and prosperity of this tree.

The expansion of Alnus, Corylus and Ulmus was followed
by the time-transgressive immigration of Tilia which was re-
corded in the Labanoras area between 7700 and 7400 cal yr BP.
This tree prefers habitats with rich, mineral-humic soils, quite
different from those in the study area, which is why the amount
of Tilia pollen is rather low in the both diagrams (Figs. 3 and 4).
Moreover is highly possible that the earliest pollen grains dated
back to ca. 8000 cal yr BP originated at quite a long distance.
The southern part of Romania and the Hungarian Plain
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Fig. 6. Age-depth curves for the sediments of the Bevardis and Verpstinis lakes

(Bjorkman et al., 2003) have been indicated as possible refugia
areas of this taxon during the Last Glaciation. The earliest im-
migration of lime, dated back to 9200-9600 cal yr BP, was re-
corded in northwestern Belarus (Novik et al., 2010) and shortly
later, at 8500-8000 cal yr BP, Tilia started to expand into
southeastern Estonia (Niinemets and Saarse, 2009) and Eastern
Latvia (llves and Medne, 1979). Nearly at the same time, i.e. at
ca. 8160 cal yr BP, this plant reached northeastern Poland
(Wacnik, 2009). Such a relatively late immigration of lime to
northeastern Poland and the delayed arrival of this taxon to the
Labanoras area were determined by local conditions, e.g., lack
of the proper habitats, rather than by the regional features. The
distribution of lime depends very much on the degree of cli-
mate continentality (Kupryjanowicz et al., 2004) which may
have increased due to the 8200 cal yr BP climatic reversal
caused by cold winters, humid summers and strong seasonal
contrasts (Seppé et al., 2005).

Quercus and Fraxinus were the last broad-leaved species
established in the area investigated. In the Verpstinis pollen di-
agram (Fig. 3), the rational limit of the Quercus pollen curve
was recorded at ca. 5200 cal yr BP. At that time the proportion
of Quercus pollen exceeded 2% indicating its local origin
(Huntley and Birks, 1983). In addition, the low level of ash pol-
len confirms the fact that both trees were insignificant in the lo-
cal forest community. The empirical limit of ash was dated at
ca. 5500 cal yr BP. However, the palaeobotanical data shows
that Quercus and Fraxinus were established much earlier else-
where in the region. For example, in northeastern Poland they
were established at ca. 8160 cal yr BP (Wacnik, 2009), in
southeastern Estonia at ca. 8500-8000 cal yr BP (Niinemets
and Saarse, 2009), whereas in Northern Estonia oak did not ap-
pear until ca. 6700 cal yr BP (Saarse and Veski, 2001). Oak im-
migrated to Eastern Latvia at ca. 8100-8000 cal yr BP (llves
and Medne, 1979). The earliest finds of Quercus pollen were
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dated back to 9500-9400 cal yr BP in the central part of
Belarus (Elovicheva and Bogdel, 1987) and back to ca. 8600
cal yr BP in the northeastern part of the country (Novik et al.,
2010). Presumably both trees immigrated from the south-east
or south that coincides with the two migration routes estab-
lished on a European scale (Milecka et al., 2004). It should be
pointed out that the expansion of these trees to Northern Eu-
rope has mainly been controlled by the climatic factors during
the initial stages of the colonization; however, the importance
of secondary factors including local topography, hydrology,
quality of soil cover and so on increased later. The Holocene
thermal maximum, which started at ca. 8000 cal yr BP (Seppa
and Poska, 2004), was generally responsible for the expansion
of these trees to the eastern Baltic region, while the delayed ex-
pansion of oak to the Labanoras area may have been deter-
mined more by secondary factors, e.g., scarcity of soil cover
and lack of suitable habitats.

Flourishing of broad-leaved forest is the next important
factor which characterizes the vegetation history in the region
throughout the Holocene. Undoubtedly the Holocene thermal
maximum distinguished at 8000-4500 cal yr BP (Seppa and
Poska, 2004) played a leading role in this process. The pol-
len-stratigraphical data reflect progressively warmer and drier
summers at that time that may be interpreted as indications of
increasing climatic continentality (Seppa and Poska, 2004).
The broad-leaved forest reached its development maximum at
ca. 7400-5100 cal yr BP in Estonia (Saarse and Veski, 2001).
In the northeastern part of Poland, the thermophilous trees at-
tained the optimum of their Holocene development between
7300 and 6000 cal yr BP (Kupryjanowicz, 2007). The
Quercetum mixtum pollen sum shows that these trees were

present in the Labanoras area from 7400 to 4200 cal yr BP. Evi-
dently, the prospering of the broad-leaved forest started nearly
simultaneously throughout the region while its decline differs
in time and may have been caused by both natural and
anthropogenic factors. In case of Labanoras, this recession was
coincident with the cooling that followed the Holocene thermal
maximum briefly after 4500 cal yr BP. In northwestern
Belarus, the first elm decline was dated back to ca. 5700 cal yr
BP followed by the lime and oak recession between 4700 and
4500 cal yr BP (Novik et al., 2010). In Estonia, the gradual re-
treat of broad-leaved trees caused by climatic and
anthropogenic factors as well as by fungal diseases started even
earlier at ca. 6300-5700 cal yr BP (Saarse and Veski, 2001).
The decline of broad-leaved species was followed by the
prospering of shady forest where Picea gained a renewed im-
portance. The amount of Picea pollen is low in the Bevardis
and Verpstinis diagrams (Figs. 3 and 4), while the amount of
spruce increased from ca. 7300-6800 cal yr BP onwards. The
chronological framework is similar to that in Western Lithua-
nia where the pollen data suggests a negligible input of spruce
by 7400-7300 cal yr BP (Stancikaite et al., 2006). Spruce
re-appeared somewhat earlier in the neighbouring areas, i.e. at
ca. 8800 cal yr BP in northwestern Belarus (Novik et al., 2010)
and at ca. 8400 cal yr BP in southeastern Estonia (Saarse, 2004)
and Eastern Latvia (llves and Medne, 1979). This early appear-
ance of spruce in the eastern part of the region fits well with the
E-W and NE-SW immigration routes of this tree indicated in
Latatowa and van der Knaap (2006). However, the appearance
of Picea in the Suwalki Lake District, northeastern Poland, at
ca. 5700-5900 cal yr BP indicates a remarkable delay
(Obidowicz et al., 2004; Kupryjanowicz, 2007). We assume
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that Picea immigrated later there because of local factors such
as soil conditions and lack of favourable sites in the marginal
area of Weichselian Glaciation. Generally the re-establishment
of Picea in the region is close in time with the so-called “8.2”
climatic event dated back to 8600-8000 cal yr BP (Seppa and
Poska, 2004). This short-lasted climatic deterioration may have
limited the expansion of deciduous trees, providing space for
the spruce. Furthermore, the development of spruce forest may
possibly be a response to a wet and cool climate with colder and
snowier winters (Seppa and Poska, 2004). Spruce dominated
woodland in the Labanoras area until ca. 2400-2200 cal yr BP.
The area was covered with dense shady forest and experienced
a generally stable climatic regime. The prospering of spruce
ended somewhat earlier in the neighbouring regions, i.e. at
ca. 3000 cal yr BP in southeastern Estonia (Niinemets and
Saarse, 2009) and northeastern Poland (Obidowicz et al.,
2004). This widespread late Holocene spruce decline caused by
the increasing human impact and climate change was recorded
in western areas of Central and Eastern Europe (Latatowa and
van der Knaap, 2006).

During the last two thousand years, the earlier dominance
of spruce and broad-leaved species ended, and the diversity of
the local forest increased considerably. The pollen data indicate
that Betula, Pinus, Corylus and Salix as well as herbs and
grasses gained more ground in the area. The distribution of the
cereals Cerealia and Triticum and ruderals such as Artemisia
and Chenopodiaceae points towards a human presence in the
area even though this impact was negligible, and the develop-
ment of vegetation was driven mostly by natural factors.

CONCLUSIONS

The results of multiproxy (pollen, plant macrofossils, **C
and LOI) studies has revealed the pattern of evolution of the
palaeoenvironment in the Labanoras area (Eastern Lithuania)
during the post-glacial interval.

During the Allered Interstadial, the development of forest
cover started with Pinus and Betula stands in the area. Despite
the fact that tundra-dominated vegetation existed in the area
throughout the Younger Dryas cooling, an influx of Picea was

recorded shortly before 11 500 cal yr BP suggesting a rise in the
mean temperature accompanied by increasing humidity.
Spruce declined shortly after the onset of the Holocene, and ha-
zel was the first newly established deciduous tree in the area.
Corylus arrived at ca. 10 200-10 000 cal yr BP and was fol-
lowed by Ulmus at ca. 10 000 cal yr BP. They were established
here later than in the rest of Lithuania, this being likely deter-
mined by local factors such as poor sandy soils typical for mar-
ginal areas of the Late Weichselian Glaciation. Alnus arrived
and started to expand along with the above-mentioned species
at ca. 8200-8000 cal yr BP, though its representation was
rather low in the area throughout the Holocene. Tilia appeared
at ca. 7700-7400 cal yr BP, while Fraxinus with Quercus were
established even later at ca. 5500 and ca. 5200 cal yr BP re-
spectively. The time-transgresive, delayed immigration and
low abundances of these broad-leaved taxa were caused by
scarse soil cover and lack of suitable habitats. Nevertheless,
broad-leaved trees were present in the Labanoras forests until
ca. 4000 cal yr BP, likely because of generally warm and humid
conditions. However, some climatic instabilities at
ca. 7300-6800 cal yr BP may have favoured Picea expansion
in the region. Spruce dominated the woodland until
ca. 2400-2200 cal yr BP in the Labanoras surroundings. Dur-
ing the last few thousand years, both the decline of spruce and
subsequent formation of a Betula- and Pinus-dominated forest
were driven by natural factors because the minor traces of hu-
man impact on the both diagrams show only negligible human
activity in the area.
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