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Kaolinite peaks in early Toarcian profiles from the Polish Basin —
an inferred record of global warming
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In lower Toarcian clay deposits (Ciechocinek Fm., V111 depositional sequence of the Lower Jurassic) from three boreholes from the Pol-
ish Basin, illite-dominated sedimentation representing the lower part of studied interval was interrupted by enhanced kaolinite input.

=

Levels of high kaolinite/illite ratio at the VVI11b/V1l1c parasequence boundary suggest strong continental weathering in a humid-subtropi-
cal to tropical climate related to the phase of the early Toarcian global warming recorded at the top of the tenuicostatum Zone and corre-
lated with isotope curves from a number of European sections. Kaolinite enrichment may be locally enhanced by reworking of

pre-Jurassic kaolinitic rocks and differential settling. Diagenetic processes were not sufficient enough to transform the initial kaolinite,
but may have altered smectite and mixed-layers into illite and/or chlorite.
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INTRODUCTION

The early Toarcian (Early Jurassic, ~183 Ma ago) was a
critical time in Earth history, characterized by pronounced neg-
ative carbon isotope excursion (CIE) recorded in marine or-
ganic matter, marine carbonate and terrestrial wood (e.g.,
Hesselbo et al., 2000, 2007; Schouten et al., 2000; Rohl et al.,
2001; Jenkyns et al., 2002; Kemp et al., 2005; Hermoso et al.,
2009) as well as perturbations to other isotopic systems. The
disruptions were associated with an oceanic anoxic event — the
Toarcian OAE (Jenkyns, 1988), a pronounced transgression
(Hallam, 1997, 2001), carbon production crises (e.g., Mattioli
etal., 2004, 2009; Tremolada et al., 2005), an increase in atmo-
spheric CO, content, global greenhouse warming (Bailey et al.,
2003; Cohen et al., 2004; McElwain et al., 2005; Hesselbo et
al., 2007), and a second-order global mass extinction (e.g., Lit-
tle and Benton, 1995; Palfy and Smith, 2000; Wignall et al.,
2005). Brief but extreme climatic events spanning mainly the
tenuicostatum-falciferum biochronozonal transition were re-
lated to massive injections of isotopically light carbon most
probably from oceanic methane hydrate and/or intense volca-
nic degassing in the Karoo-Ferrar large igneous province of
southern Gondwana (Hesselbo et al., 2000, 2007; Palfy and

Smith, 2000; Kemp et al., 2005; Suan et al., 2008). Some au-
thors point to thermal metamorphism of organic-rich deposits
(McElwain et al., 2005; Svensen et al., 2007), changes in
palaeoceanography (Bailey et al., 2003; van de Schootbrugge
etal., 2005; Wignall et al., 2005) or extensive biomass burning
(Finkelstein et al., 2006) as a main reason. The substantial in-
crease in global temperature (McArthur et al., 2000; Bailey et
al., 2003; Rosales et al., 2004; Suan et al., 2008) and abundant
rainfall caused a substantial increase in continental weathering
and in sediment supply (Bailey et al., 2003; Cohen et al., 2004,
2007; Hesselbo et al., 2007).

Marine clays represent a final product of the continental
weathering process and may reveal global climatic fluctuations.
Clay mineralogy has been successfully used in palaeoclimate in-
terpretations especially of Mesozoic rocks (e.g., Singer, 1984;
Chamley, 1989; Ruffell et al., 2002; Ahlberg et al., 2003;
Deconinck et al., 2003; Schnyder et al., 2006; Raucsik and Varga,
2008; Godet et al., 2008; Dera et al., 2009; Hesselbo et al., 2009).
Recently, the present author used clay minerals in Hettangian
palaeoclimate interpretation (Brarski, 2009). The present paper
comprises the results of clay mineralogical research into lower
Toarcian successions in two boreholes (Brody-Lubienia BL-1 and
Suliszowice 38 BN; Fig. 1) from the southern marginal part of the
Polish Basin and additionally of the Mechowo IG 1 borehole in its
central part (Pomerania region).
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Fig. 1. Location of boreholes examined

A —area shown on Figure 1B and the extent of the Toarcian basin in Poland (after Pierikowski, 2004); B — geological sketch map of Southern Poland
without Cenozoic deposits (after Dadlez et al., 2000, simplified)
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Fig. 2. Selected X-ray diagrams of lower Toarcian samples (<0.002 mm fraction) (carried out by W. Narkiewicz)

A - kaolinite-dominated claystone with very subordinate illite and only trace amount of chlorite (Brody-Lubienia borehole, depth 159.0 m);
B - kaolinite-dominated claystone with subordinate illite and chlorite (Suliszowice borehole, depth 321.5 m); C — kaolinite-dominated claystone with sub-
ordinate illite and chlorite (Mechowo borehole, depth 347.5 m); D — illite-dominated mudstone with minor amount of kaolinite and very subordinate
chlorite (Mechowo borehole, depth 310.5 m); black line — air-dried sample, green line — glycolated sample, red line — heated sample (550°C)
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EXPLANATION OF THE PROFILES
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Fig. 3. Explanations for the sedimentological profiles on Figures 4, 5 and 6
(after Pienkowski, 2004, modified)

MATERIAL AND METHODS

In the present study 64 samples from clay-rich lower
Toarcian beds were examined using X-ray diffraction
(Phillips PW diffractometer with CuKa radiation) in the labo-
ratory of the Polish Geological Institute — National Research
Institute. The analyses ran on untreated, glycolated and
heated samples of the <2 um fraction (Fig. 2). Clay mineral
identification was made according to the procedure of Moore
and Reynolds (1997). Afterwards, the present author calcu-
lated the indices: kaolinite/illite (K/I), kaolinite/illite+chlorite
(K/I+Ch) and kaolinite/quartz+feldspar (K/Q+F). SEM anal-
yses were also performed.

RESULTS

According to Pienkowski (2004), greenish-grey
mudstones, claystones and heterolithic deposits of the
Ciechocinek Fm. (lower Toarcian — VIII depositional se-
quence) were developed in a large, shallow, brackish-marine
embayment and in lagoons (see for details Figs. 3-06).

Previous mineralogical analyses lower Toarcian claystone
and mudstones performed on bulk rock samples only from
Southern Poland showed a distinct predominance illite over
kaolinite (Kozydra, 1968; Maliszewska, 1968; Leonowicz,
2005). They were briefly summarized by the present author
(Branski, 2007).
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Fig. 5. Lower Toarcian clay min eralcom po si tionand min er al og i daldi cefrom the Suliszowice borehole
(with detailed sedimentological profile after Pieiikowski, 2004)

Note the gradual increase in kaolinite content but well expressed kaolinite maximum above the VIIIb-VIlIc parasequence boundary;
for explanations see Figure 3

Fig. 4. Lower Toarcian clay min eralcom po si tionand min er al og i daldi cefrom the Brody-Lubienia borehole
(with detailed sedimentological profile after Piefikowski, 2004)

Note a kaolinite spike at 159.0 m suggesting extreme continental weathering in a humid-subtropical to tropical climate
(most probably related to the onset of the main phase of early Toarcian global warming); for explanations see Figure 3
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The clay fraction of recently examined samples comprises
kaolinite (16-82%), illite (14-70%) and chlorite (0-44%).
Smectite was almost never observed. The section correspond-
ing to the VIl1b and V1llc parasequences was especially exam-
ined (Figs. 3-6). The age of parasequence VIlIb represents the
tenuicostatum Zone, and parasequence Vllic is roughly com-
prised of falciferum Zone deposits (Pierkowski, 2004). It
should be noticed that a difference in clay mineral distribution
occurs between the lower interval of the sections (approxi-
mately from the sequence boundary located at the
Pliensbachian/Toarcian boundary to the maximum flooding
surface) and the upper interval (up to the VIlic/VIId
parasequence boundary; Figs. 4-7; Table 1). In the lower inter-
val the average kaolinite amounts are minor (~23% in
Suliszowice and ~ 26% in Mechowo to ~43% in Brody-Lubie-
nia) while those of illite are major (between 38 and 53%). In the
upper interval kaolinite becomes dominant (on average 33% in
Mechowo and 41% in Suliszowice to ~56% in Brody-
Lubienia) by comparison with illite (50 and 37%, and 31%, re-
spectively). The content of chlorite is considerable and ranges
from 13-19% (in Brody-Lubienia) and 17-21 (in Mechowo) to
22-31% (in Suliszowice).

At the base of the upper interval in Brody-Lubienia profile
there is a surge of kaolinite (up to 82%) offset by a significant
depletion of illite (~14%) and chlorite (~4%; Fig. 2A). The
kaolinite spike at 159.0 m is very well marked in the curves of
the kaolinite/illite and kaolinite/illite+chlorite ratios (Fig. 4).
The abundance of fine-grained degraded kaolinite is shown
also via SEM observations (Fig. 8A and B). In the Suliszowice
section, the kaolinite content increases more gradually from the
base of Ciechocinek Fm. to the lower part of the parasequence
Vllic (Fig. 5). The kaolinite maximum, though, (Fig. 2B) is
well expressed in the curves of the all mineralogical indices. In
Mechowo borehole a few cyclic variations at the 10-20 m scale
in kaolinite/illite ratios are observed, but the most distinct in-
crease in kaolinite content is seen in the lower part of the
parasequence VIllc (Figs. 2C and 6). It is noteworthy that, in all
sections, the interval with the highest kaolinite content is repre-
sented mostly by open embayment deposits punctuated by
prograding nearshore sediments (Piefkowski, 2004).

INTERPRETATION AND DISCUSSION

The author focuses on kaolinite content because of its
strong climatic dependence and significant resistance under
moderate diagenetic conditions. Kaolinite typically dominates
in mature soils that develop as a result of intense chemical
weathering in a tropical or humid-subtropical climate. The de-
trital clay mineral suites in the Toarcian mudstone and shale
samples show a weak diagenetic overprint due to low
(Suliszowice) or moderate (Brody-Lubienia, Mechowo) burial
and to closed diagenetic systems (Branski, 2008). The burial
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Fig. 7. Average clay mineral compositions in the early Toarcian
claystones and mudstones from lower and upper intervals
in the boreholes studied

Note the enhanced kaolinite enrichment in the Brody-Lubienia borehole
and the predominance of kaolinite in the upper interval of all studied sec-
tions; for “lower” and “upper” intervals see Figures 4-6 and explanations
in text

diagenesis was never strong enough to transform the initial
kaolinite into illite and/or chlorite, but part of the illite and
chlorite may have come from transformation of smectite
(cf. Dera et al., 2009).

In the most cases isotope and micropalaeontological data
from the tenuicostatum Zone suggest moderate climate control
(e.g., Suan et al., 2008; Mattioli et al., 2008), although there is a
distinct negative C-isotope excursion correlated with a positive
O-isotope excursion, that record a short-lived warming just at
the Plienshachian—Toarcian boundary (Hesselbo et al., 2007;

Fig. 6. Lower Toarcian clay min eralcom po si tionand min er al og i daldi cefrom the Mechowo borehole
(with detailed sedimentological profile after Piefikowski, 2004)

Note a few kaolinite pulses in the upper interval of the lower Toarcian; for explanations see Figure 3
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Fig. 8. SEM images of kaolinite clay specimen from the Brody-Lubienia BL-1 borehole, depth 159.0 m (taken by L. Giro)

Note very fine (0.2-2.0 um) degraded kaolinite plates and crystals of pyrite; K — kaolinite, Q — quartz, Py — pyrite

Suan et al., 2008). The moderate climate coincides with the
higher illite and chlorite content in the lower interval studied
due to prevention from extended hydrolysis. In the upper part
of the lower Toarcian interval kaolinite becomes the dominant
clay mineral, suggesting mostly warm and humid climate con-
ditions (Figs. 4-7; Table 1).

In the Brody-Lubienia borehole initially illite-rich sedi-
mentation was interrupted by a sudden amplified kaolinite in-
put at the top of the VIIlb parasequence (Figs. 2A, 4 and 8).
A more gradual mineralogical change was also recorded in
Suliszowice borehole (Fig. 5). In the Mechowo borehole the
kaolinite increase is oscillatory (Fig. 6). In this part of the
Ciechocinek Fm. one may observe deposits representing a con-
spicuous shallowing event marked in the whole basin
(Figs. 4-6), that was connected with a decrease in the basin
depth as a result of enhanced continental weathering and sedi-
ment supply (Piedkowski, 2004; Cohen et al., 2004;
Pierlkowski and Schudack, 2008). It is compatible with the idea
(Hesselbo et al., 2007), that the shallowing event at the
tenuicostatum-falciferum biochronozonal transition may be

linked with early Toarcian global greenhouse warming, but
may misleadingly simulate the effects of sea level fall. The new
data presented in this paper are also consistent with the results
of most recent clay mineral studies on Toarcian deposits from
other parts of Europe (cf. Raucsik and Varga, 2008; Dera et al.,
2009). Levels of the high (up to 6.0!) kaolinite/illite ratio at the
VIb/VIlIc parasequence boundary interval (Fig. 4) suggest
extreme continental weathering in a humid-subtropical to tropi-
cal climate related to the onset of the main phase of global
warming that was recorded in Europe on many isotope curves
at the top of the tenuicostatum Zone. In the more densely sam-
pled Mechowo borehole we may suspect the effects of brief
palaeoclimatic fluctuations (Fig. 6) that most probably corre-
spond to Milankovitch cycles. The evolution of kaolinite con-
tent in the deposits may correspond to these short-term climate
variations because the formation of kaolinite on continents and
its deposition in marine sediments seems to have been almost
contemporaneous during the Early Jurassic (Dera et al., 2009).
Kaolinite enrichment may be locally enhanced by erosion and
reworking of pre-Jurassic kaolinitic rocks and proximal deposi-

Table 1

Av er agelay min er alcom po si tioand min er al og i daldi cesn the early Toarcian
claystones and mudstones from studied boreholes

Profile Composition and indices
K[%] | 1[%] | Ch[%] | K/l | K/N+Ch | K/IQ+F

L upper interval | 56 31 13 2.25 1.58 1.65
Brody-Lubienia BL-1 -

lower interval | 43 38 19 1.24 0.79 0.86

. . upper interval | 41 37 22 1.14 0.73 1.19
Suliszowice 38 BN -

lower interval 23 46 31 0.49 0.30 0.73

upper interval | 33 50 17 0.74 0.54 1.03
Mechowo 1G 1 -

lower interval 26 53 21 0.51 0.36 1.03

K - kaolinite, I —illite, Ch — chlorite, Q — quartz, F — feldspar; for “lower” and “upper” intervals

see Figures 4-6 and explanations in text
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tion of kaolinite due to differential settling in shallow marine
environments surrounded by continents. Some decrease of
kaolinite relative to the illite content above the kaolinitic inter-
val discussed may reflect an interruption in the weathering cy-
cle or a change in the source of clay minerals as a result of ero-
sion. Alternatively it may reflect hot but less humid climatic
conditions that may have slowed chemical weathering.

CONCLUSIONS

Distinct changes in the clay mineral contents in the
Brody-Lubienia, Suliszowice and Mechowo boreholes reflect
marked climatic change during the early Toarcian. Other fac-
tors (provenance, differential settling and diagenetic transfor-
mation of smectites) may, though, cloud the palaeoclimate sig-
nal. However, an increase in kaolinite content is inferred to be a
direct result of amplified chemical weathering even though part
of kaolinite was derived from older sedimentary rocks.
Kaolinite abundance at the V111b/V1l1c parasequence boundary

reflects an increase in temperature and especially in year-round
rainfall related to the onset of the early Toarcian global warm-
ing that was recorded at the top of the tenuicostatum Zone on
isotope curves in other European sections. The kaolinite pulses
in the upper interval of the lower Toarcian (Mechowo bore-
hole) were possibly controlled by astronomically forced
changes in climate, superimposed upon longer-term global
warming.
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