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INTRODUCTION

Since its invention about 30 years ago, fractal analysis has
proved to be very useful, and is above all applicable in the
geosciences. Fractal methodologies are appropriate where clas-
sical geometry is not suitable for describing the irregular ob-
jects found in nature (Mandelbrot, 1983). Fractals are most eas-
ily defined as geometric objects with a self-similar property,
which defines that they retain their shape under any magnifica-
tion, i.e. they do not change shape with scale (Feder, 1988; An-
geles et al., 2004). Another fundamental property is their
fractal dimension (D), which yields important insights into the
physical properties of geological materials (Turcotte, 1992;
Dillon ef al., 2001). It can occupy non-integer values, com-
pared to the integer values characteristic of Euclidean objects,
such as 3D cubes or 2D planar surfaces. As an example, a
well-known fractal object, the Koch curve (Fig. 1), has a fractal
dimension of about 1.26, and therefore exhibits properties of
both 1D and 2D objects, as it fills more space than a line (D=1)

and less space than a surface (D = 2). Use of fractal analyses
based on calculation of the fractal dimension has found an ap-
plication in many fields, including geology and geophysics
(Turcotte, 1992), speleology (Kusumayudha et al., 2000), geo-
morphology (Angeles et al., 2004), analysis of fracture net-
works (Bonnet et al., 2001), atmospheric research (Brewer and
Di Girolamo, 2006), river networks analysis (Schuller et al.,
2001), and also in other non-earth sciences, such as medicine,
space sciences, physics, chemistry, economics, and others.

As most fractal analysis software is either specialized or
commercial, it is often hard to find appropriate programs to per-
form analyses. The following paper describes the design, de-
tails of use and applications of the BCFD program, developed
for determination of the fractal dimension of digitized objects
using a box-counting algorithm. The program runs in the MS
Windows environment and is written in Visual Basic 6.0. The
source code is freely available, with the freedom for modifica-
tion to meet the user’s purposes or for onward integration with
other software packages, especially using Visual Basic for Ap-
plications (VBA).
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Fig. 1. Box-counting technique

Only the occupied boxes are shown covering the Koch curve (D =
1.2618); A — 4 boxes (step 2), B— 6 boxes (step 3), C — 20 boxes
(step 4) and D — 44 boxes (step 5); the first step (one box) is not
shown; see also Table |

METHODS

ESTIMATION OF THE FRACTAL DIMENSION USING
THE BOX-COUNTING TECHNIQUE

There are many definitions of dimension, and also many
ways to attempt their determination. The most common dimen-
sions are the self-similarity, compass and box-counting dimen-
sions, and the latter has the most applications in science
(Peitgen et al., 2004). One should note that many natural sys-
tems are self-affine rather than strictly self-similar and thus em-
pirically derived box-counting dimensions for these objects are
only estimates of their true fractal dimension. However, the
box-counting dimension is still probably the most commonly
used, as the principle of its use is rather simple. The digitized
map of an object (for instance a river or fracture network) is
covered by boxes of different side length “s”, and then the
number of occupied boxes N (s) is counted for each box size
(Feder, 1988; Bonnet ef al., 2001). The process is repeated by
reducing the box sizes by half their size (Fig. 1), with the largest
box defined by the image resolution and the smallest box occu-
pying one pixel of computer image. For fractal objects, the
number of occupied boxes N (s) follows the power-law rela-
tionship with the box size s: N (s) - s and the fractal dimension
D is therefore calculated as the slope of linear regression
best-fit line of log-log data: D =—log N (s)/log s.

A typical log-log curve therefore represents a perfectly lin-
ear relationship of data points of the number of occupied boxes
N (s) and the box size s. Such a perfect relationship is valid only
for ideal mathematical fractals such as the Koch curve de-
scribed (Fig. 1). Mathematical fractals are by definition con-
structed from a set of rules, in contrast to natural fractals, and
do not involve any random processes such as geological pro-

cesses. Natural fractals can be classified as statistical fractals,
which are not strictly self-similar and do not preserve their
shape across all scales as do mathematical fractals. Statistical
fractals have only their numerical or statistical measures pre-
served across all scales, and this measure is represented by the
fractal dimension. The relationship of log N (s)-log s data plots
on the graph as a perfect line for mathematical fractals.

Despite the apparent simplicity of the box-counting
method, users should be aware of the potential pitfalls of the
box-counting technique, especially for real geological data. If
the correlation of log N (s)-log s data plots on the graph as a
curve and not as a line (which is typical for natural fractals),
only the valid range (the linear part of the curve) should be ex-
amined. In addition, the unmapped space outside the studied
area should not be included in the analysis and the image exam-
ined must therefore be embraced completely within this area
(Walsh and Watterson, 1993). Most common deviations from a
line of log NV (s)—log s data plots occur as a result of truncation
and censoring effects. Truncation occurs as a shallowing of the
line’s slope at the lower end of the scale range, as for real data,
and the number of smaller objects (e.g., fractures) below some
threshold values can be under-sampled. On the other hand, cen-
soring occurs if the objects analysed pass outside the observed
region, causing steepening of the curve in plots at the upper end
of the scale range (Bonnet et al., 2001). These effects are easily
seen in the log-log plots, and are for the purpose of simplicity
not implemented in the program calculations. To correctly de-
termine the fractal dimensions of real geological objects, calcu-
lations must be carried out carefully, and the fractal structure
should be not only calculated but also verified afterwards by
examination of the log-log plots.

It is necessary to comment that the values of fractal dimen-
sions of river and fracture networks used as geological exam-
ples in this paper are presented for both methods of box-count-
ing: the complete one, using all data points in the log-log plots
(as calculated by BCFD), and the linear one, using only the lin-
ear part of the log-log plots (later determined visually in MS Ex-
cel). It is not the main goal of this paper to discuss the meaning
of the exact values of fractal dimensions for different geologi-
cal data, so the user must examine the data carefully to analyse
only the fractal part.

PROGRAM DESIGN

After opening the file, the program reads the header of the
BMP image. It first checks the image for BMP format and
looks for proper colour depth and resolution (width X height). If
any of these parameters do not match appropriate values, the
program warns the user of the error type and exits. After check-
ing the file, the program consequently reads the image into dy-
namic memory array (pixel ()) by scanning each row starting
from lower left to upper right corner (Fig. 2). Every byte is con-
verted into eight bits of image object information. A bit value of
zero represents white image background and a value of one
represents the black pixel of the object. A hexadecimal value of
81h (10000001 binary) therefore represents the object occupy-
ing the first and the last bits (byte 34 in Fig. 2). The object is
thus read into the virtual screen with the same resolution as the
image. After the object has been read into the array, the
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byte 128
oJo[oJoJo[1]oJoJoJo[1]oJo[oJoJo]oJo]1]o]o[o]o]o0]0l0]0]0] 11010
olo[ofo[o[o[7[o[o[o[o[T[o[o[o[o[o[o[1[o[o[0][0[0][0]0]0[0]1]0]0]0
olo[ofo[o[o[7[o[ofo[o[7[o[o[o[o[o[[o[o[o[o]o[o[o[olo[T[0[0[0]0
olo[oJoJo[o[[o[ofo[o[7[o[o[o[o[o[[o[o[o[o[olo[o[o[1[0[o[0[0]0
o[1][ofoJo[ofo[1[o[o[1[o]o[o[o[o[o[[o[o[o[o[olo[o[o[1[o[o[0[0]0
olo[1[oJo[ofolo[T[o[1[o]o[o[o[o[o[[o[o[o[o]olo[o[o[1[o]o[0[0]0
olo[1]oJo[ofoo[o[1[1[o]o[o[o[o[ofo[1[olo[o]olo[o[1[1[0[o[0[0]0
olo[1]oJo[ofoo[*[o[o[o]o[o[o[o[ofo[1[o[o[o]olo[1[o]o[o[o]o[0]0
olo[1]o[o[o[o[o[o[1[o[o[o[o[o[o[o[o[1[o[o[o]o[o[o[1[o[o[oo[0]0
olo[1]o[o[o[oo[o[1[o[o[o[o[o[o[ofo[1[o[o[o]o[o[T[o]o[o[o[o[0]0
olo[1]oJo[o[oo[o[1[o[o[o[o[o[o[o[o[o[*[o[o]o[o[o[1[o[o[o]0[0]0
olo[ofo[1[o[o[o[o[o[1[o[o[o[o[o[o[o[o[o[1[o]oloofo[1[*[0]0[0]0
olo[ofoJo[*[o[o[o[o[1[o[o[o[o[o[o[o[olo[1[o]o[o[ofo[o[*[o[olo]1
olo[ofoJo[o[1[o[ofo[o[*[o[o[o[o[ofolo[*[o[o]olo[ofolo[*[1 0[]0
olo[ofoJo[o[[o[ofoolo[1[1[o]o[o[olo[*[o[o]o[o[o[olo[o[[1[0]0
olo[ofoJo[ofo[1[o[o[o[o[o[T[o]o[o[olo[*[o[o]o[o[o[olo[ofo[1[0]0
olo[o[oJo[ofolo[*[o[o[o[1[o[o[o[o[o[1[o[o[o]olo[ofolo[o]1[0[0]0
olo[ofoJo[ofolo[*[o[o[o[1[o[o[o[ofo[1[o[o[o]o[o[o[olo[o[[0[0]0
o[1]o[oJo[ofoo[o[1[o[*[o[o[o[o[o[[o[o[o[o]o[o[o[olo[T[o[0[0]0

byte 34 Tol7[o[o[olo[o[o[o[o[1[o[o[o[o[o[o[T[o[o[o[o[o[olo[o]1[o[o[o]0]0
— olo[oJoJo[ofoo[*[o[o[olo[o[o[1[o[o[o[o[o[o]olo[T[o]o[0[0]0
o|or<lolofolo[ofo[1[o]o[o[o[1]o[o[o[o[o[o]olo[o[o[1[o[0]0[0
olo[1]oJoTorelolol1[1 olololol1]o[o[o[olo[o]olo[o[1[1[0[0]0[0
olo[1]oJo[o[o[o[T[ololojololol1fo[o[o[olo[o[olo[T[o]o[o[o]o[0
olo[1][oJo[o[o[o[0[1]0]oJolo]o]1]o[o[o[o[o[o]olo[o[1[o[o[o]o[0]0
olo[1]oJo[ofolo[T[1[o[o]o[o[o[o[7[o]o[ofo[o]olo[T[*[0o[o[o[0[0]0
111 [1[ofo[1[7[o[1]o[oofolo[ofo[1[*[1[o[o[1[1]o[1[o[o[o[0[0]0
olo[ofo[1[1[o[o[ofo[1[T[o[o]o[o[o[olo[o[1[1]o[o[o[o]o[o[oo[0]0
olo[ofoJo[1[o[o[o[o[o[T[o[o]o[o[o[oo[o[o[*]o[o[o[o[o[o[oo[0]0
olofofolol1lofolo[ofo[1[*[o[o[o]o[o[o[o[o[1[o]o[o[o[o[o[o[0]0[0
byte 5 [0]0]0]0]1]10]0]0folololol1ofololofololofo1[ololofolololoolo]l0
0]0]0]0]0]1]0]0jolojololo]1l0]ofolololololo]1[ofol0]0]l0]0]0]0]0
byte 1 byte 2 byte 3 byte 4

Fig. 2. Example image of 32 x 32 pixels, read by program
into 128 bytes from lower left to upper right corner

Values of 1 represent objects, and 0 background

box-counting is performed by subdividing the image into
smaller boxes, and in each of them the pixels of the array are
scanned from the lower left to upper right corner of the box. If
at least one object part (marked by a bit value of 1) is found, the
box is regarded as occupied. As the scanning of each of smaller
boxes reaches the end of the array, the size of boxes is reduced
by half and scanning is repeated. The process is complete when

all the boxes of one pixel size are scanned. The pixels on the
box edges are scanned only once.

Finally, the fractal dimension (D) and squared value of
Pearson’s correlation coefficient (R’), which illustrates the
goodness of fit (Borradaile, 2003), are calculated. D is calcu-
lated as a negative value of the slope of the best linear-fit re-

gression line D = —2 [(x— ;c)(y— })]/ Z[x - 3]2. In

MS Excel, both values are calculated by internal functions, D
by the SLOPE function and R’ by the RSQ function.

Due to the nature of the program, only one-bit (two-colour
black and white) uncompressed bitmap files (*.BMP) are sup-
ported as input files. Supported image resolutions are 256 X 256,
512 %512, 1.024 x 1.024, 2.048 x 2.048 and 4.096 x 4.096 pix-
els. The minimum value is chosen as such because images of
lower resolution cannot faithfully represent fractal and natural
objects, and images greater than the maximum value are slow to
process and are seldom used. The supported resolutions can eas-
ily be added or changed in a single line (Case 4096, 2048, 1024,
512, 256) of code in the subroutine CheckResolution().

Output results are given as a table of box sizes s and corre-
sponding number of occupied boxes N (s) plus the D and R’
values. These results are written on screen and into the text
(*.txt) file. If the checkbox “Write to Excel file” below the
Open button is turned on, output is also sent directly into an MS
Excel spreadsheet, with direct calculation of D and R*. Both
files are written in the same folder as the analysed image, and
the file names are presented in the BCFD output screen (Fig. 3).
Output to Excel is supported and preferred, as it is possible to
further represent the data on charts, include them into other cal-
culations or to check the slope of fitted data for truncation or
censoring effects (Bonnet e/ al., 2001).
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Fig. 3. Screenshot of the program BCFD and MS Excel with finished results
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The program is written in Visual Basic (VB), version 6.0.
This language has become one of the world’s most widely used
programming languages due to its simplicity and ease of use.
Even if BCFD is intended to run as a stand-alone program, it
can straightforwardly be integrated into various applications by
Visual Basic for Applications (VBA). This represents a version
ofthe VB language integrated into applications, which does not
permit development of stand-alone executable files. It is fully
compatible with Visual Basic and is intended for the automati-
zation and customization of applications in other programs
(Hart-Davis, 1999). VBA or compatible versions of Visual Ba-
sic power, for example, some of the most known popular soft-
ware, such as Microsoft Office, AutoCAD (AutoDesk, Inc.),
Statistica (StatSoft, Inc.), Adobe Photoshop (Adobe, Inc.),

Surfer (Golden Software, Inc.), ArcGIS (ESRI, Inc.), and many
others. The code can be also be transferred to other versions of
Visual Basic, such as the 2005 version or the NET platform
(Patrick et al., 2006), without modification or with only minor
modifications.

RESULTS AND DISCUSSION

ANALYSIS OF MATHEMATICAL FRACTAL TEST DATA
AND EUCLIDEAN OBJECTS

The program has been tested with several images (Fig. 4):
three fractals and three Euclidean objects with known fractal

A B

(Highly enlarged central
part of the image)

C

(Highly enlarged left
center part of the image)

Fig. 4. Analysed images (example files in the folder “test_data”)

A — point (enlarged), B— line, C — filled square, D — Sierpinski carpet, E— Koch curve, F — Cantor’s dust (enlarged), G — natural river
network example, H — natural fracture network example no. 1 (see Fig. 5A), I — natural fracture network example no. 2 (see Fig. 5B)
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dimensions plus three natural objects, described in the next sec-
tion. The first comprise familiar self-similar fractal objects: the
Sierpinski carpet (Fig. 4D), the Koch curve (Fig. 4E), and Can-
tor’s dust (Fig. 4F). These fractals have non-integral dimen-
sions and are constructed by an infinite series of iterations
(Feder, 1988; Peitgen et al., 2004), so they belong to the group
of strictly self-similar mathematical objects. All tested images
have a resolution 0f2.048 x 2.048 pixels. This resolution is suf-
ficient to allow faithful representation of fractal objects by
seven iteration steps, so the smallest irregularity on the fractals
is equal to or smaller than one pixel of the image. This require-
ment is important, as the number of iterations affects the value
of D, and too small a number of iterations yields inferior results
(Dillon et al., 2001). Euclidean objects with integral dimen-
sions, used as examples, include a point (Fig. 4A), a line
(Fig. 4B) and a filled square (Fig. 4C).

Results (Table 1) show that the program calculates the
fractal dimension (D,) with perfect or very high accuracy. De-
viations from ideal dimension values (D;) can be attributed to
two facts. First, all tested fractals are, by definition, self-similar
objects constructed by an infinite number of iterations, and in
the example images only the first seven iterations are shown.
As the pixel size achieved on monitor is not infinitely small, to
allow representation of all iterations, some minor error is al-
ways present. Secondly, several fractals such as Koch curve are
triangular objects and are therefore impossible to represent
faithfully on the square grid of the computer screen or array.

ANALYSIS OF NATURAL GEOLOGICAL DATA

Natural data representing a river channel network and two
fracture networks were analysed in order to present some geo-
logical examples of the program application. The first example
is a natural river network (Fig. 4G), digitized from topographi-
cal maps'. The area of the image covers about 8.8 x 8.8 km in
south-west Slovenia. The river network is developed in flysch

rocks of Tertiary age, composed mostly of low-permeability
rocks (marls, mudstones and sandstones). The theoretical limits
of fractal dimensions for river networks are 1 (single straight
channels) and 2, which would imply a fully braided river, fill-
ing the complete terrain. However, the expected dimensions are
lower than 2, because of the geological, topological and hydro-
logical restraints that reduce the ability of the stream network to
develop fully (Schuller et al., 2001). Skeletal images of rivers
were used instead of complete digitized images, as they are
likely to provide better material to estimate the fractal dimen-
sion then the original images (Foroutan-pour ef al., 1999).

The obtained value of D (Table 1) for natural river net-
works (D =1.36) is in agreement with dimensions for river net-
works, which can vary widely (1.28-1.71 according to the
method used; Schuller et al., 2001). Variations occur because
of the self-affine properties of river networks. The fractal di-
mension and self-similar or self-affine properties obtained from
image analysis can be further applied to an understanding of the
behaviour of river network development and the fluvial erosion
topography which influences the networks (Veneziano and
Niemann, 2000). If the log-log plots are afterwards analysed vi-
sually, the fractal dimensions can be higher for only the linear
part of the curve. However, the discussion on exact values of
different fractal properties of rivers or other data and the visual
inspection are not the focus of this paper, and the verification of
the fractal structure must be carried out by the user, based on
the data itself. The user must for instance decide which data
points of the curve to use, and this decision can be very subjec-
tive and cannot be directly implemented in the program code.
The same note applies to the following calculations of fractal
dimensions of fracture networks. Program BCFD should be
therefore viewed as an open-source starting point code with
further possible modifications and upgrades.

Two geological examples of analysed natural fracture net-
works are also given. They are obtained from the “Main” dolo-
mite (analogous to German Hauptdolomit or Italian Dolomia

Table 1
Example objects (Fig. 4) with their theoretical (D,) and calculated (D.) dimensions,
coefficient of determination (R’) and difference (dif.) between D, and D,

Object type Object D. R’ dif. [%)]
Fractal Cantor’s dust 0.6309 (= log2/log3) 0.6367 0.9784 0.92
Fractal Koch curve 1.2618 (= log4/log3) 1.2494 0.9981 -0.99
Fractal Sierpinski carpet 1.8928 (= log8/log3) 1.8994 0.9997 0.35
Euclidean point 0.0000 - 0.00
Euclidean line 1.0000 1.0000 0.00
Euclidean filled square 2.0000 1.0000 0.00
Natural river network (between 1 and 2) 1.3625 0.9699 -
Natural fracture network 1 (between 1 and 2) 1.5111 0.9744 -
Natural fracture network 2 (between 1 and 2) 1.5254 0.9750 -

! EUROWATERNET http://nfp-si.eionet.eu.int/ewnsi/ (accessed on 21.05.2004) and http://eionet-si.arso.gov.si/Dokumenti/GIS/voda/index_eng.htm

(accessed on 18.09.2007)
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Fig. 5. Photographs of dolomite exposures with superimposed
digitized fracture network traces

Principale) of Upper Triassic age (Verbovsek, 2008) in South-
ern Slovenia. Fracture networks were obtained by photograph-
ing the dolomite outcrops, where fractures were well exposed
(Fig. 5A, B), and the traces of the fractures were further digi-
tized into vector format. The width of the superimposed lines in
the photographs is 40 times larger than the one actually used in
digitalization, to make the fractures visible on the photographs.
The width of both photographs is approximately 32 cm. Frac-
tures are digitized inside a square instead of inside a complete
photograph owing to box-counting requirements. Vector for-
mat images were further converted into 1-bit BMP images,
used for processing in the BCFD program.

The values of D for natural fracture networks (D; = 1.51
and D, = 1.53) are almost identical (average value D,, = 1.52)
and are in agreement with the values of fracture networks given
in a review paper by Bonnet et al. (2001). In some tectonic en-
vironments, several generations of fracturing can affect the
rocks, and thus each generation of fractures is younger than the
previous ones. Analysis of separate fracture characteristics
from one generation to the next reveals the fracture networks’
development. Observations by Barton (1995) show that the
first-generation fractures are long and subparallel and network
connectivity is poor. Second-generation fractures are shorter
and form polygonal blocks with first-generation fractures.
Younger fractures are generally shorter, variously oriented,
and form small polygonal blocks. Addition of younger frac-
tures therefore contributes to an increase in the fractal dimen-

sion of the complete network, as first-generation subparallel
fractures exhibit low fractal dimensions, which increase with
the addition of many smaller ones of later generations. The in-
fluence of fracture network evolution can possibly be tested in
the laboratory or by physical experiments rather than in the
field on exposures of dolomite rocks. When outcrops are, for
example, inadequately exposed or fractures are affected by
mineral infillings, this approach becomes inoperable (Barton,
1995). Additionally, the tectonic stresses for each fracturing
episode (from the oldest to the youngest) should be known, and
these data are mostly unavailable. The values of fractal dimen-
sions of fractures networks in dolomites are therefore presented
as a simple example of complete networks, as it was not possi-
ble to divide the fractures into separate generations.

The values of fractal dimensions of natural fracture net-
works can be further used as a parameter or analysed in several
fields of geology. The first examples can be found in the field
of engineering geology, where they are used to analyse the
roughness of rock or soil particles and rock surfaces, to analyse
the distribution of rock fragments resulting from blasting, or to
describe the statistical homogeneity of jointed rock masses
(Vallejo, 1997). A second application can be found in the study
of underground water flow and transport in fractured rocks
based on the interconnectivity and distribution of fractures and
the influence of these two factors on permeability. It has been
recognized that the flow dimension obtained from the well-test
pressure curve is a function of the geometrical fractal dimen-
sion and these geometrical fractal dimensions are always equal
to or greater than the flow dimension (Polek ef al., 1990;
Doughty and Karasaki, 2002). It is the flow dimension that
should be used to characterize a network’s behaviour during
well tests. Knowledge of the geometrical fractal dimension,
which can be acquired by the box-counting method, is there-
fore of great importance in understanding fluid flow and trans-
port in fractured rocks. To illustrate the applicability of the geo-
metrical dimension, we can extrapolate the obtained two-di-
mensional average value of the geometrical fractal dimension
of fracture networks D = 1.52 to three dimensions. Extrapola-
tion can be carried out using the formula D;p = D,p + 1 to ob-
tain a value of D;p = 2.52, as the intersection of a 3D fractal
with a plane results in a fractal with D,p equal to Dyp — 1
(Barton, 1995; Bonnet et al., 2001). The extrapolation is valid
for non-mathematical and isotropic fractals, and fractures in in-
tensely fractured dolomites are indeed close to this idealization.
From these results we can therefore conclude that the flow di-
mension describing the geometry of water flow towards the
water well (Barker, 1988) can reach a maximum value of D;p =
2.52 in the dolomites analysed due to channelling effects
(Polek et al., 1990; Doughty and Karasaki, 2002). For a more
detailed analysis of these applications, more fracture networks
should certainly be studied and checked for truncation and cen-
soring effects, as only two examples are used in this paper to il-
lustrate the applicability.

INFLUENCE OF IMAGE RESOLUTION
ON THE RESULTS

Image resolution does not greatly influence the calculated
values of D, (Table 2), as shown for the example of the
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Table 2

Influence of image resolution on calculated dimension

Resolution D, R? dif. [%]
256 x 256 1.8656 0.9985 ~1.44
512512 1.8881 0.9991 -0.25
1.024 x 1.024 1.8946 0.9995 0.10
2.048 x 2.048 1.8994 0.9997 0.35
4.096 % 4.096 1.8967 0.9997 0.21

Example for Sierpinski carpet (D, = 1.8928, Fig. 4D);
for notation see Table 1

Sierpinski carpet. An original image with a resolution of 6.561
% 6.561 pixels was scaled down in five steps for the analysis.
The coefficient of determination is very high in all cases and
the difference dif. (= 100*(D—D,)/D,) does not show any in-
creasing or decreasing trend, although the deviation is highest
for the lowest resolution. As R’ is very high for all resolutions,
it can be concluded that the fractal dimension is more or less the
same and hence independent of the image resolution. This is in
agreement with observations (e.g., Dillon et al., 2001), which
state that objects with the same form but of different size should
retain a constant fractal dimension. Yet, when using digitized
maps of natural objects, it is better to use high-resolution im-
ages, as these capture more details. Calculated values of D, for
all Euclidean objects are equal to theoretical ones.

COMPARISON WITH OTHER AVAILABLE
BOX-COUNTING PROGRAMS

Very few box-counting programs are freely available on
the internet. Many authors of the works discussed in the fol-
lowing paragraphs do not mention either the method or the pro-
gram used for calculating the box-dimension. Therefore a com-
parison of BCFD with other programs cannot be made faith-
fully, or perhaps cannot be made at all. A short comparison
with other programs is given in the following paragraphs.

The program Fractal Dimension Calculation Software
(Foroutan-Pour et al., 1999) is available for Apple Macintosh
computers. Therefore for reasons of incompatibility it cannot
be tested in the MS Windows environment.

Angeles et al. (2004) have developed a specialized function
in MATLAB® software for automatic box-counting. Their code
is not freely available. In the code they have developed specific
criteria to avoid the double counting of points that fall on box
sides. In BCFD code, the code is designed in such a way that
double counting is not possible.

Tang and Marangoni (2006) used the 2D and 3D algo-
rithms that are now part of the commercial TruSoff’ software
(programs 3D-FD and Benoit). In addition, they also used the

 The MathWorks Inc., http://www.mathworks.com.
* TruSoft International Inc., http://www.trusoft.netmegs.com.
* UTHSCSA ImageTool, http://ddsdx.uthscsa.edu/dig/itdesc. html.

mass dimension method, which is not comparable to the
box-counting method.

Fractscript (Dillon ef al., 2001) is a macro developed for
fractal analysis of multiple objects as part of the free
ImageTool' package. It is written in a dialect language of
Pascal and requires ImageTool to be installed. When compared
with BCFD, the latter can be implemented in a much broader
range of software, as Visual Basic language is integrated as
VBA in a much broader spectrum of programs, as described in
Section 2.2, than ImageTool and Pascal.

Although these programs are not directly comparable with
BCFD due to the different methods or different computer codes
used, it is most likely that BCFD code is easier to integrate into
other programs as it uses Visual Basic and gives output directly
into MS Excel.

Therefore, the only strictly comparable program is VSBC
(Visual Screen Box-Counting; Gonzato, 1998). It is written in C
language and uses PCX image format, which is now virtually
obsolete. The program is small, fast and easy to use; however,
in some cases it gives erroneous results. An image of the Koch
curve (Fig. 4E) is used as an example. If the image is rotated by
90 degrees, the results of box-counting should be the same for
all four rotations, as the image has the same width and height.
BCFD calculates the number of occupied boxes for all rotations
equally (N = 16.899), but VSBC gives different values (N =
23.043 for 0° and 180° angles and N =23.380 for 90° and 270°
angles). BCFD therefore fulfills the quality requirement that
the object’s final value must be independent of rotation and re-
flection (Dillon et al., 2001). The calculated fractal dimension
value produced by BCFD (D = 1.25) is also much closer to the
theoretical value (D = 1.26) than is that produced by VSBC (D =
1.33 for 0° and 180° angles or D = 1.31 for 90° and 270° an-
gles). Similar conclusions can be made for R?, although values
produced by both programs are very high. Image resolution can
be changed in ¥SBC only in the C source code, whereas BCFD
determines box sizes from the image itself. VSBC also has
problems with calculations for single point (Fig. 4A), as it out-
puts the number of occupied boxes as zero, one or two for dif-
ferent box sizes, and the true values, calculated by BCFD, are
one (single point occupied) for all cases.

CONCLUSIONS

The BCFD program was shown to perform box-counting
analysis with high accuracy. It has been tested extensively with
several objects (fractal, Euclidean, and three natural geological
examples — river channels and two fracture networks). Applica-
tion of data values obtained has been presented with a few exam-
ples. The program gives results very close or equal to theoreti-
cally expected values. It is user-friendly and utilizes BMP for-
mat, available to most graphic programs. As the source code is
freely available, it can easily be modified or integrated into any
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image analysis software that uses Visual Basic for Applications
(VBA) or a compatible language as a background engine. As Vi-
sual Basic powers the majority of today’s software applications,
the program can be used broadly, either as a stand-alone or inte-
grated version. It will therefore hopefully be of use to all
geoscientists dealing with fractal analyses of images.

The program (executable version, test files, source code,
and other files) is available on http:/www.geo.ntf.uni-lj.
si/tverbovsek/ programi.html

Acknowledgments. The author thanks G. Gonzato for pro-
viding the executable version of the VSBC program and D. J.
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