Cretaceous–Paleogene boundary problem in Libya: the occurrence of the foraminiferal species *Abathomphalus mayaroensis* (Bolli) in the Western Sirt Basin

Sefau Omar Tshakreen and M. Adam Gasiński


The position of the K/P boundary in wells in the Western Sirt Basin of Libya is problematic. The biostratigraphic definition of the K/P boundary in the subsurface is based on the extinction of the eponymous taxon of the standard latest Maastrichtian foraminiferal *Abathomphalus mayaroensis* Zone. We have unambiguously recognised this taxon from the Sirt Basin subsurface sections for the first time. All the latest Maastrichtian foraminiferal assemblages are dominated by planktonic foraminiferids. Some of specimens are pyritised, indicating organic flux to the basin floor, causing oxygen deficiency in the depositional environment. The occurrence of characteristic bathypelagic and some epipelagic species indicates that the environment of deposition is outer shelf–middle continental slope.

Sefau Omar Tshakreen, Petroleum Research Centre (National Oil Corporation), Tripoli, Libya; M. Adam Gasiński, Jagiellonian University, Institute of Geological Sciences, Oleandry 2a, PL-30-063 Kraków, Poland; e-mail: gasinski@geos.ing.uj.edu.pl (received: September 5, 2003; accepted: December 6, 2003).

Key words: Libya, Western Sirt Basin, Cretaceous/Paleogene (K/P), foraminiferids, palaeobathymetry, oxygen deficiency deposits.

INTRODUCTION

Identification of the Cretaceous/Paleogene (K/P) boundary in the subsurface and its correlation with the surface of the western margin of the Sirt Basin was recognised as an important problem in the 1960’s (cf. the discussion between A. Desio and E. P. Lehmann in: Lehmann, 1964). Despite many attempts (Jordi and Lonfat 1963; Lehmann, 1964; Barr and Berggren, 1980; Tmalla, 1992) the exact position of the Cretaceous–Tertiary boundary in the Sirt Basin remains uncertain. This was due largely to the absence of *Abathomphalus mayaroensis* (Bolli), the eponymous taxon of the standard latest Maastrichtian foraminiferal zone in the Sirt Basin (Tmalla, 1992, 1996). This absence has made the correlation of the open marine deposits of the basin with the world stratigraphic standards for the K/P boundary insecure. Shallow marine deposits of the western margin of the Sirt Basin also contain fossil records too scarce to precisely establish a boundary. Moreover, neither the iridium anomaly nor any other symptom of a catastrophic event at the K–T boundary has been found in the deposits of the Sirt Basin studied to date (Eliagoubi and Powell, 1980).

Identification of the K/P boundary has been one of the purposes of the Western Sirt Basin project (WSB Project no. 2383), carried out by Petroleum Research Centre of Libya and Teknica Petroleum Services Ltd. of Calgary, Canada. This paper summarises the attempt to establish the position of the K/P boundary in wells located in the Western Sirt Basin (Fig. 1). Biostratigraphic definition of the K/P boundary in the subsurface is based on the presence and extinction of the eponymous taxon of the standard latest Maastrichtian foraminiferal *Abathomphalus mayaroensis* Zone. The K/P boundary in the Sirt Basin is a Type 1 sequence boundary (Jerzykiewicz et al., 2002), making it extremely useful for stratigraphic correlation across the basin. An attempt at such high-resolution correlation is presented in this paper.

Preliminary results of the Late Cretaceous of the Western Sirt Basin (Tshakreen et al., 2002) indicated that foraminiferids from the samples studied are abundant, diverse and relatively well preserved. The most recent studies of the Sirt Basin reveal the presence of earliest Paleocene deposits.

K/P BOUNDARY IN LIBYA

The Cretaceous–Paleogene boundary has been recognised in Libya as one of the most important stratigraphic boundaries as early as in 1960’s (Jordi and Lonfat, 1963; Lehmann, 1964).
Subsequently, Barr and Berggren (1980) and Tmalla (1992) discussed the problem of the K/P boundary and established its approximate position.

Barr and Berggren (1980) placed the Cretaceous/Tertiary (Maastrichtian/Danian) contact at the base of the Socna Mollusc Bed in surface exposures, along the western margin of the Sirt Basin (i.e. between the Lower and the Upper Tar members of the Zmam Formation). According to them, the microfossils from the western margin of the basin indicate that there was a marked shallowing of the seas at the end of Maastrichtian time but no break in deposition has been postulated. Moreover, the K/P boundary in the deeper parts of the Sirt Basin is marked by an abrupt lithological change, reflecting a widespread and sudden shift in depositional environment. According to Barr (1972) this change is the result of shallowing of the Late Maastrichtian seas and a subsequent strong transgressive surge at the beginning of the Danian. However, such changes may result from global eustatic fluctuations as well as local tectonic events (Gasiñski, 1997; Arenillas et al., 2000; Dupuis et al., 2001). Accordingly, the Maastrichtian/Danian boundary in the subsurface of Sirt Basin has been placed at the boundary between the Kalash Limestone and the Hagfa Shale (cf. Barr and Weegar, 1972).

Tmalla (1996) questioned the correctness of placing the K/P boundary at the contact between the Kalash Limestone and the Hagfa Shale in the Northern Sirt Basin (well A1a-NC29A). In absence of Abathomphalus mayaroensis, Tmalla used other planktonic species to establish the position of the K/P boundary. He proposed a local Eoglobigerina minutula Zone for the earliest Paleogene biostratigraphic interval which lies between the Cretaceous–Tertiary boundary and the Subbotina pseudobulloides Zone. As a result, Tmalla (1996) concluded that the K/P boundary should be placed within the uppermost part of the Kalash Limestone.

According to Tmalla (1992, 1996) Abathomphalus mayaroensis is virtually absent from subsurface sections in Libya. This fact makes the correlation of the open marine deposits of the basin with the world stratigraphic standards for the K/P boundary problematic.

GEOLOGICAL SETTING

The geology of the Western Sirt Basin has been summarised by Shakoor and Shagroni (1984) as well as by Gumati and Kanes (1985) and Gundobin and Yevdokimov (1985). Most recently, the geology of Sirt Basin has been described by Jerzykiewicz et al. (2002).

About 200 samples collected from ditch cuttings of two wells located in the Western Sirt Basin (Fig. 1) have been examined in the interval between 685–1203 m depth (Fig. 2). Stratigraphically, these sediments belong to the Kalash Limestone and the Hagfa...
Shale (Barr and Weegar 1972; see above) and are composed of black and grey marlstones, marly shales and shales (Fig. 2).

METHODS

Sample disintegration by heating and freezing in Glaubert salt was applied. Some, very soft samples were only washed. The residue was washed through a set of sieves (100–65 µm in diameter). Specimens were identified under stereoscopic and SEM microscopes. All laboratory analyses were undertaken at the Micropalaeontological Laboratory of the Institute of Geological Sciences of the Jagiellonian University. Studied specimens of *A. mayaroensis* are housed at the Jagiellonian University Geological Museum (coll. WSB/ING UJ/2001).

MICROPALAEONTOLOGICAL PART

Description of the nominal species:

*Abathomphalus mayaroensis* (Bolli, 1951)

(Fig. 3a–e)

_Globotruncanana mayaroensis* Bolli, 1951, pp. 190, 198, pl. 35, figs. 10–12. *Abathomphalus mayaroensis* (Bolli), Bolli, Loeblich and Tappan, 1957, p. 43, pl. 11, figs. 1a–c.

_Holotype._— Subsurface section in the Guayaguayare area, County of Mayoaro, Southeastern Trinidad.

_Remarks._— Specimens of _A. mayaroensis_ resembling Bolli’s holotype were found in the Sirt Basin (Fig. 3a, b). These forms possess the beaded keel structure (Fig. 3d, e), characteristic flat morphology of the test and spinose/rugose surface. Rugosities are arranged in parallel rows (Fig. 3e). The diameters of the forms studied are similar to the holotype from Trinidad. However, some specimens have been identified as “cf.” because they possess features of *Abathomphalus mayaroensis* as well as of _Globotruncanana arca* (“intermediate forms”; Fig. 3f–h). These specimens of _A. mayaroensis_ are quite similar to those recently described from the Polish Carpathians (Gasiński et al., 2001).

This species is rare in the studied samples; they only sometimes exceed of 2% of the total planktonic assemblages. In general, planktonic associations constitute about 80% of the whole foraminiferal assemblages.

Following Postuma (1971, pp. 50–51), _A. mayaroensis_ has two beaded keels; the primary apertures are interiomarginal, umbilical, covered by a tegillum. Barr (1972, pp. 26–27, pl. 5, figs. 1–2) noted that _A. mayaroensis_ chambers on the umbilical side are ornamented by short irregular radial costae. According to him, this species is never abundant in Libya, although rare specimens have been found from the Upper Maastrichtian chalk in a number of wells in the N-Sirt Basin and from outcrops in N Cyrenaica.

Robaszynski et al. (1984, p. 274, pl. 45, figs. 5, 6, 9, pl. 46, figs. 4–5) characterise _A. mayaroensis_ as having: an extramural-umbilical primary aperture, chamber surfaces ornamented with rugosities arranged in a meridional pattern. The spiral side shows chambers gradually increasing in size as added. In lateral view, this species has a very low trochospire and two keels composed of radially arranged rugosities. According to these authors, this species differs from the Late Maastrichtian *Abathomphalus intermedius* (Bolli) in the presence of two keels on all chambers.

Caron (1985, p. 42, fig. 21.10–11) noted that _A. mayaroensis_ possess two peripheral keels which are composed of short, radially oriented costellae. This species differs from _A. intermedius_ (Bolli) in the presence of a double keel on all chambers of the last whorl.

Hart et al. (in: Jenkins and Murray, 1989, p. 308) characterise this species by its “bow-tie” morphology and ornamentation.

Lybian micropalaeontologists have attempted to describe this species. Ashour (1996) illustrated (pl. 2, fig. 2) _A. mayaroensis_ from the Sirt Basin, but this specimen do not resemble *Abathomphalus mayaroensis* (the illustrated specimen has a solid keel and does not indicate any traces of the characteristic test ornamentation of _A. mayaroensis_).

Tmallà (1996) mentioned that _A. mayaroensis_ had never been encountered in the well A1a-NC29A. Hence, he adapted the _G. conica_ Zone of Eliagoubi and Powell (1980) as the equivalent of the _A. mayaroensis_ Zone in the latest Maastrichtian. He also noted the scarcity of _A. mayaroensis_ in the El Kef section (following cited authors). According to Eliagoubi and Powell (1980), _A. mayaroensis_ has never been recovered from any of the localities studied by them in Libya. Therefore, they established the *Globotruncanana contusa* Subzone (within the _G. conica_ Assemblage Zone) as the biostratigraphical equivalent of the _A. mayaroensis_ standard Zone.

Shakoor and Shagroni (1984) did not list _A. mayaroensis_ within the Maastrichtian foraminiferan assemblages of Libya.

Most recently, Arenillas et al. (2000) and Dupuis et al. (2001), describing the K/P boundary in Tunisia (Akn Settara section), noted the scarcity or absence of _A. mayaroensis_ in high latitude sections, including also El Kef, which is the K/P type section (cf. Keller et al., 1995; MacLeod, 1996). According to them this is related to bathymetry, i.e. a shallow-water environment. Therefore, following other authors, they used _Plummerita hantkeninoides_ (Brönnimann) as a Late Maastrichtian marker. Following Ion (1993), Keller et al. (1995), Molina et al. (1996), Arenillas et al. (2000) and others, they established the _P. hantkeninoides_ Biozone as a zone above the _A. mayaroensis_ Zone in the latest Maastrichtian.

Caron (1985) and Robaszynski and Caron (1995) do not mention _P. hantkeninoides_ either as taxa or biozone. However, Dupuis et al. (2001) used the _P. hantkeninoides_ Zone as a Total Range Zone because of the scarcity of _A. mayaroensis_ in the Akn Settara section in Tunisia. Following the stratigraphic range of _P. hantkeninoides_ given by Robaszynski et al. (1984) it is evident that the stratigraphical range of this taxa is greater than that of _A. mayaroensis_ (FO — before FO of _A. mayaroensis_ and LO similar to _A. mayaroensis_).
Fig. 2. Summarised biostratigraphic chart of planktonic foraminifera

A — well 1; B — well 2
LATEST MAASTRICHTIAN FORAMINIFERAL ASSEMBLAGES

The following foraminiferids are typical taxa accompanying A. mayaroensis: keeled-taxa: Globotruncana aegyptiaca Nakkady, Globotruncana arca (Cushman), Globotruncana ventricosa White, Globotruncana rosetta (Carsey), Gansserina gansseri (Bolli), Globotruncana bulloides Vogler, Globotruncanita stuarti (de Lapparent), Globotruncanita stuartiformis (Dallbiez), Rosita contusa (Cushman), Rosita fornicata (Plummer), and non-keeled taxa: Hedbergella holmdelensis Olsson, Hedbergella monmouthensis (Olsson), Heterohelix globulosa (Ehrenberg), Heterohelix navarroensis Loeblich, Globigerinelloides praetribullensis Pessagno, Archaeoglobigerina cretacea (d’Orbigny), Archaeoglobigerina blowi Pessagno, Pseudotextularia elegans (Rzehak), Planoglobulina acervulinoides (Egger), Racemiguembelina fructicosa Egger (Fig. 2). All the latest Maastrichtian foraminiferal assemblages are dominated by planktonic foraminiferids.

Benthic assemblages are scarce and dominated by calcareous specimens. Agglutinated forms are very rare. Some of the infauna and semi-infauna forms in the foraminiferal assemblages are pyritised, indicating organic flux to the basin floor, which caused oxygen deficiency in the depositional environment. The occurrence of species such as A. mayaroensis and other keeled Globotruncana taxa along with some epipelagic (non-keeled, r-strategists) taxa such as: Heterohelix, Pseudotextularia, Hedbergella, Archaeoglobigerina, Rugoglobigerina, Globigerinelloides indicates that the environment of deposition is outer shelf–middle continental slope.

CONCLUSIONS

The latest Maastrichtian zonal marker Abathomphalus mayaroensis (Bolli) has been recognised in two wells of the Western Sirt Basin in samples collected from 744 m depth in well 1 and above 995 m in well 2.

Foraminiferal assemblages indicated outer shelf–upper slope of the latest Maastrichtian studied sediments influenced by organic flux to the basin floor, which caused oxygen deficiency in the depositional environment.

Acknowledgements. Our warm thanks go to Dr. M. Elazezi (Petroleum Research Centre, Libya), coordinator of Western Sirt Basin project, for allowing us to publish these
data. Sincere thanks are also extended to the management of Petroleum Research Centre in Tripoli for their valuable contribution. Special thanks are extended to Dr. Tom Jerzykiewicz for introducing us to geology of the Sirt Basin and his helpful and constructive remarks and to Mr. Al Jenik (both from Teknica Petroleum Services Ltd., Calgary, Canada) for his support. Prof. Francis Robaszynski (Mons Technical University), Prof. Malcolm B. Hart (University of Plymouth), Dr. Eustoquito Molina (Zaragoza University), Dr. Jozef Michalik (Slovak Academy of Sciences) and an anonymous reviewer are greatly acknowledged for valuable remarks, corrections and suggestions. Studies were undertaken within the Western Sirt Basin Project, WSB no. 2383.

REFERENCES


