

1 **Journal Pre-proof**
2

3 The following article:
4

5 *Petrography and provenance of sandstone from Piast Castle and its adjacent chapel in*
6 *Legnica (SW Poland): implications for medieval and early modern building stone supply*
7

8 *Katarzyna SZADKOWSKA, Wojciech BARTZ and Tomasz STOLARCZYK*
9

10 is accepted, peer reviewed article assigned to issue 4 of volume 69 that is not yet
11 appropriately edited, but is citable using DOI:
12

13 <https://doi.org/10.7306/gq.1840>
14

15 This version will undergo additional copyediting, typesetting and review before it is published
16 in its final form.
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53
54 **Petrography and provenance of sandstone from Piast Castle and its adjacent**
55 **chapel in Legnica (SW Poland): implications for medieval**
56 **and early modern building stone supply**
57

58 Katarzyna SZADKOWSKA^{1*}, Wojciech BARTZ² and Tomasz STOLARCZYK³
59

60 ¹Polish Geological Institute – National Research Institute, Lower Silesian Branch, al. Jaworowa 19, 50–122 Wrocław, Poland;
61 ORCID: 0000-0002-1510-8191

62 ²University of Wrocław, Institute of Geological Sciences, pl. Maxa Borna 9, 50-209 Wrocław, Poland; ORCID: 0000-0002-7267-
63 2776

64 ³Regional Museum in Jawor, ul. Klasztorna 6, 59-400 Jawor, Poland; ORCID: 0000-0003-1490-0483

65 *corresponding author: katarzyna.szadkowska@pgi.gov.pl

66 Received: November 1, 2025; accepted: December 30, 2025

67 **Abstract**

68 Piast Castle in Legnica (SW Poland) is one of the largest preserved Late Romanesque secular residences in Europe. Constructed
69 and remodelled between the late 12th and 17th centuries, the Castle and its chapel incorporate numerous sandstone architectural
70 details, the provenance and petrographic characteristics of which have been insufficiently documented. We identify the lithological
71 types and probable sources of these sandstones, and investigate their variability in relation to distinct construction phases. A total
72 of 26 samples of historic building stone from Piast Castle and its adjacent chapel, representing the late Romanesque, Gothic, and
73 Renaissance phases, were compared with 24 reference samples of the Cretaceous Quader Sandstones from the North Sudetic
74 Synclinorium. The petrographic analyses encompassed optical microscopy with subsequent grain size distribution and modal
75 analysis, complemented by scanning electron microscopy analyses on reference material. The results of the study indicate that
76 two sandstone types from the North Sudetic Synclinorium were used in the construction of this heritage site: the Coniacian Upper
77 Quader Sandstone and the Turonian Middle Quader Sandstone. This petrographic variability correlates with construction phases:
78 late Romanesque details were carved from both lithological types, whereas Gothic and Renaissance elements predominantly
79 used Upper Quader Sandstone. The findings provide new insights into medieval and early modern material procurement strategies
80 in the Lower Silesia historical area and deliver a petrographic framework for conservation and restoration strategies.

81 Key words: North Sudetic Synclinorium, cultural heritage, sandstones, petrography, Piast Castle.

82 **Introduction**

83 Stone as a raw material has been used by humans for millennia. Products and buildings made of stone,
84 particularly those related to secular and sacred cultural heritage, attract attention and are the subject of diverse and
85 interdisciplinary analyses (e.g. Gierych, 1955; Labus, 1996, 2008; Skoczylas and Walendowski, 1998; Majerowicz
86 et al., 1999; Wilczyńska-Michalik, 2004; Skoczylas, 2005, 2011, 2013; Götze and Siedel, 2007; Szczepaniak et al.,
87 2008; Marszałek et al., 2014; Skoczylas and Gunia, 2016; Coli et al., 2022; Deniz and Kadioglu, 2022; Franzen and
88 Fischer, 2022; Rescic et al., 2024). Archaeometric investigations are inherently complex and interdisciplinary,
89 combining geology with historical context. They are a valuable source of information for art historians and monument
90 conservators, playing an important utilitarian role. Determining the provenance of the stone material analysed is
91 crucial for selecting the most appropriate material for repairs of historical buildings. Furthermore, analyses of the
92 use of stone in cultural heritage monuments can also reveal broader patterns of technological capability, resource
93 availability and trade networks.

94 Piast Castle in Legnica (Lower Silesian Voivodeship, SW Poland; Fig. 1) is regarded as one of the most
95 substantial Late Romanesque residential complexes in Europe (Rozpędowski, 2009; Chorowska and Caban, 2016;
96 Chorowska, 2020). The Castle and its chapel are notable examples of stonework art, and the craftsmanship of
97 medieval stonemasons is evident in the decorative architectural details. These elements, composed of light
98 sandstone in hues of yellow, beige and grey, have been the focus of architectural and archaeological research
99 (Rozpędowski, 1971, 2009; Chorowska and Caban, 2016). However, despite its historical significance and over 60
100 years of archaeological research (Rozpędowski, 1971; Mruczek, 2018), Piast Castle and its chapel in Legnica have
101 not been thoroughly analysed in terms of petrography with respect to the relationship between construction phases
102 and sandstone provenance. The present paper aims to address this gap, aiming to: i) identify the lithological types
103 of sandstones utilised in the architectural details; ii) determine the probable sources of these stones (i.e. the
104 provenance of the sandstones) through comparison of petrographic properties with reference materials; iii) explore
105 correlations between petrographic variability and historically documented building phases.

112

113 **Piast castle in Legnica and its chapel**

114 **Historical notes**

115 Piast Castle in Legnica is situated on a hill, with the Piastowska, Nowa, and Marii Skłodowskiej-Curie
116 streets surrounding it. It was most likely constructed at the end of the 12th century on the site of a wooden Piast
117 stronghold (Bednarek, 2021). In the 15th century, the Castle underwent reconstruction in the Flamboyant Gothic
118 style. The subsequent phase of reconstruction, characterised by the Renaissance style, occurred during the first
119 half of the 16th century, with further modernisations undertaken in the 17th century, among other developments
120 (Rozpędowski, 1971, 2009; Bednarek, 2021). The Castle, which withstood the Mongol invasion in 1241, was
121 partially damaged during the Second World War. Following the war, archaeological excavations in the 1960s
122 revealed the remains of the Chapel of St Benedict and St Lawrence in the inner courtyard. These remains are
123 believed to date back to the first half of the 13th century (1220-1240; Rozpędowski, 1971). The construction of the
124 chapel was overseen by Master Jakub, who had been working for Prince Henry the Bearded (Mruczek, 2018). The
125 chapel was demolished in 1621 (Rozpędowski, 1971). The edifice was originally constructed as a twelve-sided,
126 two-storey structure with numerous architectural details that served to emphasise the elevated status of the Piast
127 princes (Chorowska and Caban, 2016; Mruczek, 2018).

128 The multi-phase construction of the Castle is reflected in the variety of sandstone details: capitals, window
129 tracery, sculptural ornaments, which offer an opportunity to trace shifts in material supply over more than three
130 centuries. Identifying the provenance of the natural raw material can shed light on patterns of medieval and early
131 modern stone supply, workshop organisation, and material preferences.

132

133 **Historical analytical material**

134 As part of the work carried out, 26 samples of sandstone were collected from various architectural details
135 from Piast Castle and its adjacent chapel, and subjected to mineralogical and petrographic analysis (Tab. 1; Fig.
136 2). The architectural details, from which the samples were taken, are damaged fragments of the Castle, originating
137 from various parts and different stages of construction. These fragments are currently stored in the cellars of the
138 Castle chapel. The details included fragments of vault ribs, keystones, rosettes, masonry, columns and capitals. All
139 the samples collected were small (1–4 cm) due to the historic nature of the stone elements sampled and the
140 necessity to minimise intervention in the historic substance of the object. Consequently, the archaeologist (TS)
141 proceeded to collect all the samples of stone material obtained from this cultural heritage site (Tab. 1). The time of
142 construction was determined by TS based on knowledge of previous work carried out by archaeologists and
143 architects. The most numerous fragments are those of the original, Late Romanesque details, which can be dated
144 to the first half of the 13th century (1220-1240), coinciding with the construction of the chapel (Tab. 1). The second
145 construction phase can be traced to the 15th-century rebuilding of the Castle in the Flamboyant Gothic style. During
146 this period, the late Gothic keystones were created, of which samples were obtained. Among the collected
147 fragments of architectural details, three samples were also identified as Renaissance. They are associated with the
148 subsequent reconstruction phase, which was carried out in the first half of the 16th century. This constitutes the third
149 construction phase of the Castle.

150

151 **Sandstone raw material**

152 **Geological background**

153 In south-western Poland, sandstones occur, and are mined in two areas: the first in the Lwówek Śląski
154 and Bolesławiec region (geologically related to the North Sudetic Synclinorium; Żelaźniewicz et al., 2011), and the
155 second in the south and south-west of Kłodzko, with a much less significant area in the vicinity of Krzeszów (all of
156 which are geologically related to the Intra-Sudetic Synclinorium and the Upper Nysa Kłodzka Trench).

157 Due to the location of Piast Castle in Legnica, from which samples of the analysed historical elements
158 were obtained, and their macroscopic appearance (light, grey, beige and yellow sandstones), Upper Cretaceous
159 sandstones found in the North Sudetic Synclinorium were considered the most likely source of the building material.
160 This assumption was based on the proximity of the sandstone deposits to the monument, historical data on the
161 extraction and use of sandstones in the study area, and published information, where the widespread use of these
162 rocks in architectural details is highlighted (e.g. Michniewicz, 1996; Szczepaniak 2014, 2021; Szczepaniak and Rój,
163 2019; Zboińska and Bartz, 2019). The historical context is also significant: during the construction of the chapel,
164 the sandstone deposits of the North Sudetic Synclinorium were under the control of the Piast princes. Meanwhile,
165 the Intra-Sudetic Synclinorium – the region of Kłodzko – was historically a separate entity, governed by various
166 dynasties, often constituting a disputed territory between Czech and Polish authorities, despite now lying within the
167 borders of Lower Silesia (Winiarska, 2010).

168 The North Sudetic Synclinorium (Fig. 1) was formed by the Late Cretaceous-Paleogene inversion of a
169 sedimentary basin (Żelaźniewicz, 2011). Its sedimentary infill ranges in age from the Upper Carboniferous
170 (Stephanian) to the Upper Cretaceous (Upper Cenomanian-Santonian) (Śliwiński et al., 2003). Milewicz (1985)
171 distinguished three formations within the Cretaceous deposits in this area: the Rakowice Wielkie, Czerna, and
172 Węgliniec formations. Within these, he identified six members: the Wilków, Przewóz, Chmielno, Dobra, Żerkowice,
173 and Nowogrodziec members (Fig. 3).

174

175

176 The Rakowice Wielkie Formation comprises marls, clayey marls, and marly claystones. These rocks are
 177 predominantly dark grey and laminated. Within this formation, particularly in the western part of the Synclinorium,
 178 there is a Lower Turonian Przewóz Member. This unit is composed of marly and marly-sandy limestones, as well
 179 as sandstone beds, which in German literature are referred to as *Quadersandstein* (Beyrich, 1849). These are
 180 visible in the terrain as a series of hills or dome-shaped elevations (Milewicz, 1997).

181 The lowest part of the Rakowice Wielkie Formation and simultaneously the oldest (Cenomanian)
 182 Cretaceous deposits in the North Sudetic Synclinorium are the Wilków Member sandstones, referred to as the
 183 Lower Quader Sandstone (Lwówek-type sandstone; German *Unterquader, Löwenberger Sandstein*; Ehling, 1999).
 184 At the base, they are developed as a basal conglomerate up to 40 cm thick, lying unconformably on the bedrock
 185 (Milewicz, 1997). In the higher part of the profile, the brown, yellow or light grey Quader Sandstones are coarse- to
 186 medium-grained, locally conglomeratic, quartzitic with an admixture (up to several percent) of lithic grains: lydites
 187 (cherts) and siliceous schists. The cement in these sandstones is siliceous-argillaceous. These sandstones are
 188 classified as quartz arenites. The average grain diameter (mean grain size) in the Lower Quader Sandstone,
 189 according to various authors, ranges from 0.42 mm (Ehling, 1999) to 0.53 mm (Milewicz, 1997; Tab. 2).

190 The sandstones of the Chmielno Member date to the Lower Turonian (Milewicz, 1997). They are also
 191 known as Middle Quader Sandstone (Płakowice-type sandstone; Ger. *Mittelquader, Plagwitzer Sandstein*; Ehling,
 192 1999). These are quartz sandstones (arenites), locally containing an admixture of kaolinized feldspars, with the
 193 occasional presence of glauconite (Ehling, 1999). The sandstones are predominantly coarse-grained; medium-
 194 grained varieties are also common, while fine-grained and conglomeratic sandstones are less frequent (Milewicz,
 195 1962). The grains are generally quite well-rounded. Ehling (1999) states that the mean grain size is 0.38 mm,
 whereas Milewicz (1997) states that it is 0.42 mm (Tab. 2).

197 The sandstones of the Dobra Member are several tens of meters thick and not extensively distributed.
 198 They are poorly sorted quartz sandstones with variable grain sizes and angular grains (Milewicz, 1997). They are
 199 of Upper Turonian age.

200 The Żerkowice Member is the youngest sandstone member within the Rakowice Formation and is
 201 estimated to be of Lower Coniacian in age (Milewicz, 1997). These sandstones, known as the Upper Quader
 202 Sandstone (Rakowice-type sandstone; Ger. *Oberquader, Rackwitzer Sandstein*; Ehling, 1999), are classified as
 203 quartz arenites. They are generally fine- to medium-grained and equigranular. Poorly sorted varieties also occur.
 204 The mean grain size according to various authors is: 0.20 mm (Milewicz, 1997), 0.13-0.54 mm (Milewicz, 1998),
 205 and 0.11 to 0.31 mm (Ehling, 1999; Tab. 2). In addition to quartz grains, lithic fragments (quartzite and quartzite
 206 schist) are present in the sandstones of the Żerkowice Member. Their content ranges from a few to several percent.
 207 The content of feldspar grains in these sandstones is negligible (Ehling, 1999). The cement in the sandstones of
 208 the Żerkowice Member is argillaceous, kaolinitic (Milewicz, 1997; Ehling, 1999) or ferruginous and quartz-
 209 argillaceous (Świętnicka-Goldstein, 1975) with a clayey filling mass. Most grains (almost 90%) are angular
 210 (Milewicz, 1998).

211 According to Milewicz (e.g. 1997, 2006), the Czerna Formation and the Węgliniec Formation are
 212 stratigraphically coeval and represent the Lower Santonian. According to this interpretation, the boundary between
 213 the Rakowice Wielkie Formation and the Czerna and Węgliniec formations marks the boundary between the Upper
 214 Coniacian and Lower Santonian. However, Voigt et al. (2008) place the boundary between the Coniacian and the
 215 Santonian within these formations, based on a reinterpretation of the stratigraphic ranges of bivalves belonging to
 216 the genus *Inoceramus*.

217 The Czerna Formation comprises sandstones and mudstones with coal interbeds. It is found in the eastern
 218 part of the North Sudetic Synclinorium. At its base, local deposits belonging to the Nowogrodziec Member occur,
 219 representing shallow-water sediments and composed of claystones, mudstones, sandstones and thin coal seams
 220 (Leszczyński, 2010). The Węgliniec Formation, which occurs in the western part of the Synclinorium, is represented
 221 by mudstones (Milewicz, 1997).

222

223 Reference sandstone material

224 Determining the possible provenance of stone material used in the architectural details requires
 225 comparison with relevant source material. In addition to historical stone material, reference sandstones that could
 226 potentially be used for architectural purposes have also been studied. Various mineralogical and petrographic
 227 analyses of sandstones from the North Sudetic Synclinorium have been published (e.g. Ehling, 1999; Labus, 2009;
 228 Szczepaniak, 2015; Prell, 2017), which can be used for comparison with the results obtained from the historical
 229 samples studied. However, numerical and descriptive data cannot substitute direct microscopic analysis of rock
 230 samples and comparison of their microscopic images. This is because any rock characterisation may vary
 231 depending on the author's respective observations and interpretations. For this reason, a collection of Cretaceous
 232 sandstones samples from the North Sudetic Synclinorium was gathered to determine the origin of the stone material
 233 used in the historical sites studied. The samples were collected from former, now abandoned raw material extraction
 234 sites and active quarries, as well as natural rock exposures. The rock sampling sites were selected based on
 235 published data regarding the historical quarrying of building stone (Ehling, 1999; Walendowski, 2010a-e), as well
 236 as on Cretaceous sandstone outcrops portrayed on the Detailed Geological Map of Poland (Badura, 2005;
 237 Cymerman et al., 2005a, b; Kozdrój et al., 2005; Przybylski and Ihnatowicz, 2005; Sztromwasser, 1995). The
 238 sandstone samples collected served as comparative material, enabling the petrographic and mineralogical
 239 characteristics of the reference sandstones to be compared with those of the rocks used in the architectural details
 240 of the chapel analysed. To obtain a complete view of the samples, reference sandstones were taken from the

241 Lower, Middle, and Upper Quader Sandstones. As previously mentioned, not all Upper Cretaceous sandstones
242 from the area were commonly used in construction. From a construction perspective, some of them were probably
243 only of local importance. However, it was decided not to exclude these locations, resulting in a comprehensive
244 review of the Upper Cretaceous sandstones, highlighting the similarities and differences between the various types.
245 Naturally, the set of samples selected does not fully reflect the possible lithological variability, which may vary
246 considerably even within a single deposit. However, the use of microscopic observations of the rock raw material
247 samples enables direct comparison between the most important sandstone types. The sample set collected
248 complements the data widely described in the literature.

249 The reference sandstones were collected from sixteen locations in the North Sudetic Synclinorium area.
250 A total of 24 reference sandstone samples were obtained (Tab. 3, Fig. 4). Ten samples of the Lower Quader
251 Sandstones came mostly from the Lwówek Śląski region, specifically from the abandoned sandstone quarry within
252 Lwóweckie Skały (Szwajcaria Lwówecka), Wzgórze Kombatantów (formerly *Buchholtz*), and a former quarry on
253 Jaglarz hill north of Płakowice (now part of Lwówek Śląski). Other samples were taken from an abandoned quarry
254 on Twardziel Hill near Radłówka, as well as from a sandstone exposure located south of Warta Bolesławiecka. Six
255 samples were taken from Middle Quader Sandstones at the following locations: an abandoned quarry on Skałka
256 Hill (Płakowice); small quarries near Pielgrzymka; Krucze Skały in Jerzmanice-Zdrój; and exposures in the Warta
257 Bolesławiecka area. Eight samples of the Upper Quader Sandstones were taken from active or recently abandoned
258 quarries in Czaple, Wartowice, Żerkowice, Rakowice Małe, Żeliszów and Zbylutów.

259 For the purpose of general comparison of the individual rock types, reference sandstone samples were
260 selected that were considered representative of the Lower, Middle and Upper Quader Sandstones of the North
261 Sudetic Synclinorium (Lwówek Śląski, Płakowice, and Żerkowice respectively). These were selected on the basis
262 of historical data on the extraction of sandstone raw material from the quarries, or sample characteristics reflecting
263 the characteristics of the rock formations represented.

264 **Methods of investigation**

265 **Optical microscopy and computer image analysis**

266 For the petrographic characterisation, thin sections approximately 40 µm thick were made from all the
267 historical material samples and the reference sandstones at the Institute of Geological Sciences at the University
268 of Wrocław (UWr). The thin sections were then analysed using a Nikon ECLIPS LV100 POL polarising transmitted-
269 light microscope in the Department of Physical Geology at the UWr. Basic microscopic observations enabled the
270 mineral composition of the framework grains to be determined, as well as the morphological characteristics of the
271 grains and the type of cement. Microscopic photographs were also taken of all the thin sections. Computer image
272 analysis was then carried out on the microphotographs, using JMicr0Vision 1.2.7 software (Roduit, 2007) to
273 measure the diameter (Feret diameter) of the grains crossed by parallel lines drawn on the photographs. The
274 percentage of each component in the rock was also determined using the point-counting method. The number of
275 grains measured in the samples (n) ranged from 300 to 776, enabling the generation of reliable statistical results
276 (Ingersoll et al., 1984). Computer image analysis of the data allowed the geometric and statistical parameters of
277 grain size: median (M_d), mean (M_z) and percentile values – first quartile (Q_1), third quartile (Q_3) – to be determined.
278 These were then ranked according to the respective grain classes, and grain size histograms were developed for
279 all samples according to the phi-Udden-Wentworth scale (Krumbein and Sloss, 1963). Based on the cumulative
280 graphs, graphic sorting was determined (Inclusive Graphic Standard Deviation, σ_i ; Folk, 1980).

281 **Scanning electron microscopy**

282

283 The choice of research methods used to analyse the samples was closely related to the quantity of
284 research material available, while taking into account the possibility of obtaining the most extensive and detailed
285 results. For this reason, three carefully chosen samples from Piast Castle were examined in detail using a scanning
286 electron microscope. These samples, which correspond to the building's different structural phases (Romanesque,
287 Gothic, and Renaissance), were large enough to allow additional analysis. The research was carried out at the UWr
288 Department of Experimental Petrology, using a JEOL JSM IT-100 scanning electron microscope, equipped with an
289 Oxford EDS (SEM-EDS) attachment, in low vacuum (20-30 Pa) at an accelerating voltage of 16 kV. Analyses were
290 performed on vacuum carbon-coated sample fragments up to 1 cm in size. These analyses enabled the observation
291 and identification of mineral phases present in the cement. To determine their mineralogy, the EDS spectra and
292 ZAF-corrected elemental concentrations obtained were compared with the standard spectra provided by Reed
293 (2005). SEM-EDS studies were also applied to samples of the three representative reference sandstones (from
294 Lwówek Śląski, Płakowice and Żerkowice).

295

296 **Results**

297 **Petrography of sandstones from the chapel**

298 All samples analysed from Piast Castle are sandstones with a argillaceous-siliceous cement, which,
299 depending on the sample, is also accompanied by iron-bearing minerals. The pore-filling cement consists of clay
300 minerals (kaolinite), associated with a subordinate ferruginous cement (goethite). Syntaxial quartz overgrowths form

301

304 a pore-lining cement around the quartz grains. Most of the samples from the chapel can be classified as quartz
305 arenites (Pettijohn et al., 1972; Fig. 5). One sample is a subarkosic arenite (LEG018) and two are sublithic arenites
306 (LEG024 and LEG030).

307 Among the components of the framework grains, quartz is dominant in all samples, constituting between
308 87-99% vol. (including polycrystalline quartz; Tab. 4). Lithic fragments such as quartzites and other siliceous rocks
309 are also present, comprising of 1-7%. Alkali feldspars observed in the sandstones analysed are commonly highly
310 weathered and contribute insignificantly to the framework grains, typically not exceeding 1% by volume. Three of
311 the samples analysed from the Castle (LEG018, LEG019 and LEG025) are exceptions, with feldspar contents
312 ranging from 3% (LEG025) to 12% (LEG018). In addition, opaque minerals and sporadic amphiboles (less than 1%
313 vol.) occur in these sandstones. The samples represent fine- to medium-grained sandstones. The mean grain size
314 ranges from 0.18 mm (LEG018 and LEG019) to 0.33 mm (LEG002). The median grain size varies from 0.19 to 0.33
315 mm. The first quartile ranges from 0.13 to 0.23 mm, and the third quartile from 0.27 to 0.48 mm. The samples are
316 moderately well sorted to poorly sorted ($\sigma_1 = 0.67-1.04$), with most being moderately sorted. The content of the very
317 fine sand fraction reaches up to 17%. Grains exceeding 1 mm are rare and occur sporadically.

318 For selected samples, representing the Romanesque (LEG025; Figs. 6-7, 8A), Gothic (LEG028; Figs. 6-
319 7, 8B) and Renaissance (LEG033; Figs. 6-7, 8C) construction phases, additional SEM-EDS observations were
320 carried out, corroborating their overall similarity and the nature of the sandstone cement. A significant proportion of
321 argillaceous pore-filling cement was observed in all of them. The argillaceous cement is dominated by kaolinite,
322 which often occurs in the form of well-developed, booklet-like aggregate packets (Fig. 8). Within the kaolinitic
323 cement, dispersed admixtures of iron-bearing minerals are visible. Additionally, a siliceous cement (poorly
324 crystalline SiO_2 , chalcedony) is present. Quartz grains exhibit syntaxial overgrowths, forming pore-lining rims.

326 Petrography of reference samples

327 Cenomanian Lower Quader Sandstone of the North Sudetic Synclinorium

328 Among the Lower Quader Sandstone samples, some show noticeable variations in grain size parameters,
329 though generally they are poorly sorted. They were identified as very fine, medium- and coarse-grained quartz
330 arenites and very fine-grained sublithic arenites (Fig. 9). The framework grains of the sandstones described consist
331 predominantly of quartz (85-99 vol%), relatively small amounts of feldspar, with noticeable differences in the
332 occurrence of lithic fragments (quartzites; up to 15 vol%) and <1 vol% accessory minerals (opaque minerals,
333 amphibole, muscovite and zircon) (Tab. 5). The cement is argillaceous-siliceous (pore-filling, secondary pore-
334 lining), with the presence of ferruginous cement (goethite), associated with clay minerals.

335 A sandstone sample from Lwówek Śląski (WB1112; Fig. 10-11) was selected as representative of the
336 Lower Quader Sandstones in the North Sudetic Synclinorium. As with the other representative samples identified,
337 detailed petrographic analysis was carried out to characterise the cement more precisely. The nature of the cement
338 in the sample analysed was confirmed through SEM-EDS studies (Fig. 12A). These studies revealed the presence
339 of a siliceous cement in the form of pore-filling, poorly-crystalline SiO_2 and syntaxial quartz overgrowths.
340 Argillaceous (kaolinitic) pore-filling cement is also present. Both siliceous and argillaceous cements are associated
341 with ferruginous cement. Iron-bearing phases also occur as patchy ferruginous coatings on framework grains.

343
344 Turonian Middle Quader Sandstone of the North Sudetic Synclinorium

345 The framework grains of the sandstones described consist predominantly of quartz (91-99 vol vol.),
346 alongside smaller proportions of alkali feldspar (up to 4 vol%), lithic fragments (up to 9 vol%), and opaque minerals
347 (less than 1 vol%; Tab. 5). The quartz grains contain inclusions of other minerals, such as tourmaline, rutile and
348 muscovite. The sample from Płakowice (WB1111) is composed almost entirely of quartz, with a few weathered
349 feldspars. The cement in the Middle Quader Sandstone is argillaceous-siliceous and pore-filling, with ferruginous
350 cement present in some areas.
351 In the samples collected from occurrences near Płakowice, Pielgrzymka and Jerzmanice Zdrój (WB1111, WB1807,
352 WB1808A, WB1808B and WB1809), the predominant fraction is fine sand. Sample WB1809 (sublithic arenite) also
353 shows a significant content of medium and coarse sand. The grain size parameters are generally similar (Tab. 5).
354 They differ only for the WB1802 sample from Warta Bolesławiecka (sublithic arenite), which has a dominant coarse
355 sand fraction (Tab. 5).

356 The sandstone from Płakowice (sample WB1111; Figs. 10-11) was selected as a representative of the
357 Middle Quader Sandstones of the North Sudetic Synclinorium. The SEM-EDS image (Fig. 12B) revealed
358 argillaceous (kaolinitic) and siliceous pore-filling cement, as well as partially ferruginous cement.

359
360 Coniacian Upper Quader Sandstone of the North Sudetic Synclinorium

361 The framework grains of the Upper Quader Sandstones of the North Sudetic Synclinorium consist
362 predominantly of quartz (88-97 vol%), with generally subordinate contributions from lithic fragments, primarily
363 quartzites (3-12 vol%) and sparse accessory minerals (opaque minerals, zircon, tourmaline; Tab. 5). Rutile inclusions
364 are present within the quartz grains. The cement of these sandstones is argillaceous-siliceous (pore-lining, and to
365 a lesser extent pore-filling), with ferruginous cement occurring locally. The samples represent fine- to medium-

366 grained quartz arenites and sublithic arenites; only the sample from the Zbylutów quarry (WB1805) is dominated
367 by a very fine-grained fraction. They are poorly to moderately sorted (Tab. 5).

368 The sandstone from Źerkowice (WB1403; Figs. 10-11) was selected as a representative sample of the
369 Upper Quader Sandstones of the North Sudetic Synclinorium. SEM-EDS studies (Fig. 12C) also confirmed the
370 presence of siliceous cement in the form of visible syntaxial quartz overgrowths. Pore-filling argillaceous cement is
371 dominated by kaolinite, commonly present in booklet-like aggregates.

373 **Provenance of material used in architectural details: summary of petrographic analysis and 374 discussion**

375 The possible origin of the stone used for the architectural details of the historic Piast Castle in Legnica and
376 its adjacent chapel is informed by the existing literature and by analysis of reference sandstone samples. Given the
377 macroscopic characteristics of the historical samples obtained (light-coloured sandstones) and the location of the
378 monument from which they originated, the Upper Cretaceous Quader Sandstones of the North Sudetic Synclinorium
379 area were considered the most likely source of stone material. This inference is supported by published data on the
380 historical extraction of rock material (e.g. Ehling, 1999; Walendowski, 2010a-e) and known examples of Cretaceous
381 sandstone use in monuments in south-western Poland (e.g. Michniewicz, 1996; Klementowski and Marcinów, 2006;
382 Rembiś and Smoleńska, 2009; Kryza, 2011; Prell and Zagoźdżon, 2011; Prell and Kryza, 2014; Szczepaniak, 2014,
383 2015; Zboińska and Bartz, 2019; Szczepaniak and Rój, 2019). It is, and always has been, a widely used building
384 material. Thanks to numerous quarries, it is readily accessible and does not require long-distance transport with its
385 associated costs. It also has key technical advantages for the construction industry, such as strength, frost
386 resistance and blockiness of the raw material (Labus, 2009; Rembiś and Smoleńska, 2010). At the same time, it is
387 relatively easy to work and aesthetically pleasing. These features are particularly significant in the Castle and
388 chapel's various architectural details, which were intended as decorative elements to enhance the buildings' value
389 and demonstrate the founders' wealth and social status over the following centuries. In the light of the petrographic
390 analyses of the reference sandstones, particularly the investigation carried out on samples assumed to be
391 representative of the Lower, Middle and Upper Quader Sandstones of the North Sudetic Synclinorium, distinct
392 differences can be seen between the individual sandstone types with regard to grain-size parameters, framework
393 grain composition (including the presence of feldspars and lithic fragments) and cement composition.

394 The Lower Quader Sandstones show the greatest variation in grain size parameters of all the samples
395 taken. A high proportion of grains larger than 0.5 mm is common, unlike in other sandstones from this area. Of all
396 the sandstones analysed, the Lower Quader Sandstones are also the least well sorted (Tab. 5). The content of non-
397 quartz components in the framework grains is also variable. Some samples consist almost entirely of quartz, while
398 in others, the content of lithic fragments was a few to several percent. The proportion of feldspar in the samples
399 analysed did not exceed 1 vol%. The cement is argillaceous (kaolinitic) and siliceous, with a minor proportion of
400 ferruginous cement.

401 The statistical parameters of grain size in samples of Middle Quader Sandstones are generally lower than
402 those in samples of the Lower Quader Sandstones (Tab. 5). Sorting is also generally better, with most of the
403 samples analysed representing poorly to moderately sorted sediments. In addition to quartz and, in some samples,
404 lithic fragments, the mineral composition of the framework grains also includes alkali feldspar (up to 4 vol%).
405 Published data also suggest the occasional presence of glauconite (Ehling, 1999), but this has not been confirmed
406 in the reference samples analysed. The cement is argillaceous (kaolinitic) and siliceous, with a minor proportion of
407 ferruginous cement.

408 Of all the Cretaceous sandstones in the North Sudetic Synclinorium, the Upper Quader Sandstones are
409 the best sorted and generally the finest grained (Tab. 5), although the differences from the Middle Quader
410 Sandstones are only slight. However, none of the samples analysed showed a third quartile grain size exceeding
411 0.5 mm. In contrast, lithic fragments occurred in all of the samples, with a negligible proportion of feldspar (<1 vol%).
412 The cement of these sandstones is argillaceous (kaolinitic) and siliceous, locally ferruginous.

413 Almost all of the historical samples from Piast Castle and its adjacent chapel are medium-grained quartz
414 arenites; one sample is a sublithic arenite. The mean grain size ranges from 0.22 to 0.33 mm, the median ranges
415 from 0.22 to 0.33 mm, the first quartile ranges from 0.14 to 0.23 mm, and the third quartile ranges from 0.29 to 0.48
416 mm (Tab. 4). The samples are moderately well to poorly sorted. Their framework grains are composed of quartz
417 (93–99 vol%), with lithic fragments also present (1–9 vol%, depending on the sample). Feldspars and accessory
418 minerals occur singly (Tab. 4). Single grains larger than 1 mm are occasionally present in the framework grains.
419 The cement is argillaceous (kaolinitic) and siliceous, locally ferruginous.

420 Samples LEG018 (subarkosic arenite), LEG019, and LEG025 (quartz arenite) differ from the dominant
421 sandstone varieties described above in terms of the statistical parameters of grain size and occurrence of alkali
422 feldspars in their framework grains (3–12 vol%) (Tab. 4). All of these fragments have been identified as Romanesque
423 elements and are therefore original architectural details dating from the first half of the 13th century, when the chapel
424 was built (Rozpędowski, 1971).

425 When considering the possible origin of the stone material used for the architectural details of Piast Castle
426 and its adjacent chapel, two aspects should be taken into account: the petrographic characteristics and the historical
427 context. In terms of their mineralogical and petrographic characteristics, these rocks have been shown to be similar
428 to the Upper Cretaceous Quader Sandstones found in the North Sudetic Synclinorium. This is supported by the
429 composition of the framework grains and type of cement. However, statistical parameters of grain size exclude the
430 involvement of the Lower Quader Sandstones in the monument. This is because they are usually characterised by
431 larger grains and a higher proportion of grains above 0.5 mm. This explains why the Lower Quader Sandstones
432 were not used for the architectural details, some of which feature very rich and subtle ornamentation: coarser-

433 grained material is not suitable for graceful sculpting.

434 The composition of the framework grains can provide more detailed suggestions regarding the provenance
435 of the material. In most samples from the Castle, the proportion of feldspar is negligible, typically below 1% by
436 volume. However, three samples from Late Romanesque details from the chapel stand out, with feldspar content
437 ranging from 3 to 12 vol%. While quartz dominates the framework grains in both Middle and Upper Quader
438 Sandstones, this higher feldspar content is notable. It suggests that two types of rock were used in the original (Late
439 Romanesque) stonework of the monument: Upper and Middle Quader Sandstones of the North Sudetic
440 Synclinorium. The younger Gothic and Renaissance details from the Castle could have only been made using the
441 Upper Quader Sandstones.

442 In terms not only of petrography, but also of history, the material most likely used for most of the samples
443 discussed from Piast Castle could be the Coniacian sandstones quarried in the Wartowice or Czaple area.
444 Walendowski (2010a, d) dates the main. period of Upper Quader Sandstone quarrying in Wartowice to the 14th
445 century and in Czaple to the Middle Ages; however, he does not provide supporting evidence for this claim.
446 Conversely, the three samples from the chapel with a higher proportion of feldspars are petrographically similar to
447 the Turonian sandstones. Analysis of the reference samples corroborated the occurrence of up to 4 vol% feldspars
448 in the Middle Quader Sandstone samples from the North Sudetic Synclinorium. This is consistent with Ehling's
449 observations, which indicate a feldspar proportion of between 1 and 10 vol% in the framework grains of the
450 Turonian sandstones. Labus (2011), on the other hand, highlights the issue of the different grain size of these rocks.
451 Taking into account the survey results and published data, the probable source rock for the Late Romanesque
452 samples identified could be quartz arenites quarried in the Płakowice area (currently a part of Lwówek Śląski).
453 However, the reference sample analysed of this sandstone shows a very low proportion of feldspar; however, rocks
454 within one deposit may vary significantly locally.

455 The exact origins of the exploitation of the raw material in Płakowice are unknown. However, Walendowski
456 (2010e) describes Płakowice as "one of the oldest sandstone mining sites in the stoneworking district around
457 Bolesławiec and Lwówek Śląski". Gold mining in Płakowice is known to have been practised since at least 1180
458 (Staffa, 2002), so it was already a mining centre by that time. Further historical-petrographic reports corroborate the
459 mining of Upper Cretaceous sandstones in the vicinity of Lwówek Śląski in the Middle Ages: near Płakowice, in the
460 village of Sobota, a church was built from sandstone blocks as early as the mid-13th century (Adamska, 2020, citing
461 Łużyniecka, 1984; Kozaczewski, 1994), and Walendowski (2010e) and Kryza (2011) highlighted the use of raw
462 material from local quarries in the defensive walls and monuments of Lwówek Śląski. The late Romanesque-Gothic
463 Church of the Assumption of the Blessed Virgin Mary in Lwówek Śląski, one of the oldest churches in Silesia, built
464 on the site of an earlier wooden church, was constructed between 1238 and 1300 from blocks of Cretaceous
465 sandstone. Crucially, during the construction of the Castle chapel, the entire region (and thus the areas of Legnica
466 and Lwówek Śląski) was under the control of Duke Henry the Bearded, who was responsible for numerous
467 economic initiatives, such as the incorporation of Lwówek Śląski into the *Magdeburg Law* in 1217 (Adamska, 2020),
468 as well as the construction of palaces at the castles in Legnica (including the chapel) and Wrocław in the first half
469 of the 13th century (Chorowska, 2020).

470 In the context of the building stone used for the Legnica chapel, the quarries at Wartowice, Czaple, and
471 Płakowice are all located within approximately 40 km of Legnica, making them close sources of raw material. Using
472 local material for the buildings being constructed therefore seems natural and economically justifiable.

473 Another observation made during the study was the variation in the degree of sorting of the sediment
474 forming the framework grains between the reference sandstones and the samples from Piast Castle and its chapel.
475 While sorting was predominantly identified as moderate to poor in the reference sandstones, it was found to be
476 moderately good to moderate in the samples from the historical structure. One possible explanation for this is the
477 deliberate selection of better-sorted, more evenly grained raw material for further stoneworking.

478

479 **Conclusions**

480 1) Despite originating from different construction phases of the building (from the 13th to the 16th century),
481 the sandstones used in the architectural details of Piast Castle in Legnica and its chapel mostly represent quartz
482 arenites with an argillaceous-siliceous cement, while sublithic arenites and subarkosic arenites occur only
483 occasionally.

484 2) Due to slight variations in the composition of the framework grains, observed in some historical samples,
485 particularly in their feldspar and lithic fragment content, it can be inferred that the sandstones probably originated
486 from two sources. Petrographic variability of the rock material is also evident across the different construction
487 phases of the chapel. The Gothic and Renaissance details analysed are similar to the Upper Quader Sandstones
488 from the North Sudetic Synclinorium, which are currently extracted from deposits near Wartowice, Czaple and
489 Żeliszów. The original (Late Romanesque) architectural details from the chapel were made not only of Coniacian
490 Upper Quader Sandstones, but also of Turonian Middle Quader Sandstones from the North Sudetic Synclinorium,
491 which are mined near Płakowice (now part of Lwówek Śląski).

492 3) Given the lack of rocks representing the Lower Quader Sandstones, and the observed differences in
493 the degree of sorting between reference sandstones and historical samples, it can be concluded that the former
494 stonemasons deliberately selected better-quality raw material (equigranular and better sorted) for stoneworking and
495 architectural use.

496

497 **Acknowledgements.** This paper presents part of the doctoral dissertation of KSz, which was carried out

498 in the Department of Physical Geology at the Institute of Geological Sciences of the University of Wrocław, under
499 the supervision of Dr hab. Jacek Szczepański, Prof. UWr and the assistant supervisor (WB). The work was partially
500 financed by grants awarded to KSz by the Institute of Geological Sciences of the University of Wrocław for doctoral
501 students. The authors would like to thank the reviewers for their constructive comments and suggestions, which
502 helped to improve this manuscript.
503

504

REFERENCES

505 **Act of 17 May 1989** on Geodetic and Cartographic Law (Journal of Laws of 2010, No. 193, item 12).

506 **Adamska, D., 2020.** Rozwój średniowiecznego osadnictwa w dawnych dystryktach lwóweckim, gryfowskim i jeleniogórskim w
507 świetle przekazów pisanych (in Polish). In: Historyczny krajobraz kulturowy zachodnich Sudetów. Wstęp do badań (ed. J.
508 Piekałski): 169-196. Instytut Archeologii Uniwersytetu Wrocławskiego.

509 **Badura, J., 2005.** Szczegółowa Mapa Geologiczna Polski, 1:50 000 - arkusz 721 Bolesławiec (in Polish). Państw. Inst. Geol.,
510 Warszawa.

511 **Bednarek, J., 2021.** Legnica – zamek Piastów legnickich. Zamki Polskie (in Polish). <https://www.zamkipolskie.com/legn/legn.html>.

512 **Beyrich, E., 1849.** Das Quadersandsteinengebirge in Schlesien. Zeitschrift der Deutschen Geologischen Gesellschaft, **1**: 390-393.

513 **Chorowska, M., 2020.** Zamek Piastowski na Ostrowie Tumskim we Wrocławiu (in Polish). In: Przyroda. Działalność człowieka.
514 Dolny Śląsk (eds. E. Dobierzewska-Morzymas and A. Jezierski). Studium Generale, **22**: 539-557. Atut.

515 **Chorowska, M., Cabañ, M., 2016.** A stone architectural detail of the late Romanesque chapel of St. Benedict and Lawrence at
516 the castle in Legnica (in Polish with English summary). In: Architektura sakralna w początkach państwa polskiego (X–XIII wiek)
517 (eds. T. Janiak and D. Stryniak): 313–337. Muzeum Początków Państwa Polskiego w Gnieźnie.

518 **Coli, M., Ciuffreda, A.L., Donigaglia, T., Tanganeli, M., 2022.** The Building Stones of Prato's Cathedral and Bell Tower, Italy.
519 Applied Sciences, **12**, 10132, <https://doi.org/10.3390/app121910132>.

520 **Cymerman, Z., Ihnatowicz, A., Kozdrój, W., Przybylski, B., 2005a.** Szczegółowa Mapa Geologiczna Polski, 1:50 000 - arkusz
521 757 Lubań (in Polish). Państw. Inst. Geol., Warszawa.

522 **Cymerman, Z., Ihnatowicz, A., Kozdrój, W., Przybylski, B., 2005b.** Szczegółowa Mapa Geologiczna Polski, 1:50 000 - arkusz
523 758 Lwówek Śląski (in Polish). Państw. Inst. Geol., Warszawa.

524 **Deniz, K., Kadioglu, Y., 2022.** Origin of Ankara Castle Rampart Building Stones. Journal of Ankara Studies, **10**: 255-271,
525 <https://doi.org/10.5505/jas.2022.65807>.

526 **Ehling, A., 1999.** Die oberkretazischen Bausandsteine Schlesiens (Petrographie, Geochemie, Gesteinstechnische Eigenschaften,
527 Verwitterung und Verwendung sowie Charakterisierung ihres Kathodolumineszenz - Verhaltens). Diss. Univ., Hannover.

528 **Folk, R., 1980.** Petrology of Sedimentary Rocks. Hemphill Publishing Company.

529 **Franzen, C., Fischer, T., 2022.** Removal of iron crusts from sandstone sculptures in a fountain. Environmental Earth Sciences,
530 81, 216, <https://doi.org/10.1007/s12665-022-10302-2>.

531 **Gierych, B., 1955.** Od kamieniołomów do architektury (in Polish). Biuro Studiów i Projektów Wzorcowych Budownictwa
532 Miejskiego.

533 **Götzte, J., Siedel, H., 2007.** A complex investigation of building sandstones from Saxony (Germany). Materials Characterization,
534 58: 1082-1094, <https://doi.org/10.1016/j.matchar.2007.04.028>.

535 **Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D., Sares, S.W., 1984.** The effect of grain size on detrital modes:
536 a test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Petrology, **54**: 103-116.

537 **Klementowski, J., Marcinów, K., 2006.** Tempo wietrzenia piaskowcowych zabytków architektury Dolnego Śląska (in Polish).
Przegląd Geologiczny, **54**: 1044-1046.

538 **Kozaczewski, T., 1994.** Wiejskie kościoły parafialne XIII wieku na Śląsku (in Polish). Prace Naukowe Instytutu Historii
539 Architektury, Sztuki i Techniki Politechniki Wrocławskiej, **30**, Monografie, **18**. Oficyna Wydawnicza Politechniki Wrocławskiej.

540 **Kozdrój, W., Ihnatowicz, A., Przybylski, B., 2005.** Szczegółowa Mapa Geologiczna Polski, 1:50 000 - arkusz 759 Złotoryja (in
541 Polish). Państw. Inst. Geol., Warszawa.

542 **Krumbein, W., Sloss, L., 1963.** Stratigraphy and Sedimentation. W.H. Freeman and Co.

543 **Kryza, R., 2011.** Stone in architecture and art.: from Asuan to Żagań (in Polish with English summary). In: Mezozoik i Kenozoik
544 Dolnego Śląska (eds. A. Żelaźniewicz, J. Wojewoda and W. Cieżkowski): 195-209. WIND.

545 **Labus, M., 1996.** Związek między porowatością a stanem zachowania materiału kamiennego wybranych budowli zabytkowych
546 na Górnym Śląsku (in Polish). Przegląd Geologiczny, **44**: 55-58.

547 **Labus, M., 2008.** Metody geologiczne w ocenie stanu zachowania kamiennych elementów budowlanych (in Polish). Wydaw.
548 Politechniki Śląskiej.

549 **Labus, M., 2009.** Porosimetric parameters of Upper Cretaceous sandstones and their weathering resistivity (in Polish with English
550 summary). Geologia, **35** (2): 263-275.

551 **Labus, M., 2011.** Parametry przestrzeni porowej jako determinaty podatności na wietrzenie surowców skalnych dolnośląskich
552 piaskowców ciosowych (in Polish). Wydaw. Politechniki Śląskiej, Gliwice.

553 **Leszczyński, S., 2010.** Coniacian?-Santonian paralic sedimentation in the Rakowice Małe area of the North Sudetic Basin, SW
554 Poland: sedimentary facies, ichnological record and palaeogeographical reconstruction of an evolving marine embayment.
555 Annales Societatis Geologorum Poloniae, **80**: 1-24.

556 **Leszczyński, S., Chrząstek, A., Halamski, A.T., Nemec, W., Wojewoda, J., 2022.** Cretaceous of the North Sudetic Synclinorium
557 (southwestern Poland): stratigraphy, origin and economic importance. 11th International Cretaceous Symposium, Warsaw.

558 **Łużyniecka, E., 1984.** Kościół św. św. Piotra i Pawła w Sobocie (in Polish). Rocznik Jeleniogórski, **22**: 93-112.

559 **Majerowicz, A., Skoczyłas, J., Wójcik, A., 1999.** Petroarchaeological research in Lower Silesia (in Polish with English summary).
Przegląd Geologiczny, **47**: 638-643.

560 **Marszałek, M., Alexandrowicz, Z., Rzepa, G., 2014.** Composition of weathering crusts on sandstones from natural outcrops and
561 architectonic elements in an urban environment. Environmental Science and Pollution Research, **21**: 14023-14036,
562 <https://doi.org/10.1007/s11356-014-3312-y>.

563 **Michniewicz, J., 1996.** Deterioration of the Sudetic Upper Cretaceous sandstones due to atmospheric pollution in the Wrocław
564 monuments (in Polish with English summary). Przegląd Geologiczny, **44**: 271-274.

565 **Milewicz, J., 1962.** On age and range of Middle Turonian sandstone in North Sudetic Cretaceous (in Polish with English
566 summary). Kwartalnik Geologiczny, **6**: 102-108.

567 **Milewicz, J., 1985.** A proposal for a formal stratigraphic division of the formations filling the North Sudetes Depression (in Polish
568 with English summary). Przegląd Geologiczny, **33**: 385-389.

569

570

571 Milewicz, J., 1997. Upper Cretaceous of the North Sudetic depression (litho-and biostratigraphy, paleogeography, tectonics and
572 remarks on raw materials) (in Polish with English summary). *Acta Universitatis Wratislaviensis*, **1971**, Prace Geologiczno-
573 Mineralogiczne, **61**.

574 Milewicz, J., 1998. Distribution on Coniacian sandstones in the North Sudetic Basin (in Polish with English summary). *Acta
575 Universitatis Wratislaviensis*, **2004**, Prace Geologiczno-Mineralogiczne, **64**: 101-109.

576 Milewicz, J., 2006. O osadach santońskich na obszarze basenu północnosudeckiego (in Polish). *Przegląd Geologiczny*, **54**: 693-
577 694.

578 Milewicz, J., Szałamacha, J., Szałamacha, M., 1979. Mapa Geologiczna Polski, 1:200 000. B - Mapa bez utworów
579 czwartorzędowych - arkusz Jelenia Góra (in Polish). Państw. Inst. Geol., Warszawa.

580 Mruczek, R., 2018. Bergfried, Donjon, Eigenkirche. The place of Silesian castles in European architecture (in Polish with English
581 summary). *Archaeologia Historica Polona*, **26**: 101-134, <https://doi.org/10.12775/AHP.2018.006>.

582 Pettijohn, F.J., Potter, P.E., Siever, R., 1972. Sand and Sandstone. Springer.

583 Prell, M., 2017. Deterioration of stone elements in selected monuments in Wrocław (in Polish with English summary). Dissertation,
584 Uniwersytet Wrocławski.

585 Prell, M., Kryza, R., 2014. Weathering crust on building sandstone in urban environment – examples from the city of Wrocław.
586 Mineralogia - Special Papers, **42**: 96-97.

587 Prell, M., Zagoźdżon, K.D., 2011. Kamień naturalny w wybranych obiektach komercyjnych Wrocławia (in Polish). *Prace Naukowe
588 Instytutu Górnictwa Politechniki Wrocławskiej*, **133** (40): 109-121.

589 Przybylski, B., Ihnatowicz, A., 2005. Szczegółowa Mapa Geologiczna Polski, 1:50 000 - arkusz 720 Nowogrodziec (in Polish).
590 Państw. Inst. Geol., Warszawa.

591 Reed, S.J. B., 2005. Electron microprobe analysis and scanning Electron microscopy in geology. Cambridge University Press.
592 <https://doi.org/10.1017/CBO9780511610561>.

593 Rembiś, M., Smoleńska, A., 2009. Decorative stones of the Aula Leopoldina in Collegium Maximum of the University of Wrocław
594 (in Polish with English summary). *Geologia*, **35** (2/1): 331-337.

595 Rembiś, M., Smoleńska, A., 2010. Preservation of the selected building sandstones of southern Poland exposed to salt and the
596 Sulphur dioxide in the presence of moisture (in Polish with English summary). *Geologia*, **36** (4): 539-553.

597 Rescic, S., Fratini, P., Sacchi, B., Mattone, M., 2024. The Manciano Sandstone in Contemporary Architecture: Conservation
598 Aspects in Florence. *Geoheritage*, **16**, 114, <https://doi.org/10.1007/s12371-024-01020-1>.

599 Roduit, N., 2007. JMicronVision: un logiciel d'analyse d'images pétrographiques polyvalent. <http://www.jmicronvision.com>.

600 Rzopędowski, J., 1971. Zamek romański w Legnicy (in Polish). *Szkice Legnickie*, **6**: 5-45.

601 Rzopędowski, J., 2009. Zamek w Legnicy (in Polish). In: *Atlas historyczny miast polskich*. T. **4**: Śląsk, z. 9: Legnica (eds. R.
602 Eysymontt, M. Goliński). Wydaw. UWr.

603 Skoczyłas, J., 2005. Environmental protection and petroarcheology in geotourism (in Polish with English summary). *Zeszyty
604 Naukowe Politechniki Śląskiej – Górnictwo, Gliwice*, **269**: 267-273.

605 Skoczyłas, J., 2011. Petrography in the face of challenges from modern tourism and stonemasonry (in Polish with English
606 summary). *Górnictwo i Geologia*, **6** (4): 71-82.

607 Skoczyłas, J., 2013. Petro-archaeological investigations over the provenience of raw rock materials of ancient Chersoneses on
608 Crimea (in Polish with English summary). *Górnictwo i Geologia*, **8** (1): 89-99.

609 Skoczyłas, J., Gunia, P., 2016. The application of geological knowledge in archeology (in Polish with English summary). *Przegląd
610 Geologiczny*, **64**: 734-738.

611 Skoczyłas, J., Walendowski, H., 1998. The Use of Stone Raw Material in the Architecture of Ostrów Tumski in Poznań (in Polish
612 with English summary). *Ochrona Zabytków*, **51**: 418-426.

613 Staffa, M., 2002. Słownik geografii turystycznej Sudetów. Tom 7. Pogórze Kaczawskie (in Polish): 403-412. Wydawnictwo I-BiS.

614 Stępień, U., Grabowski, J. (eds.), 2002. Mapa geologiczna Polski w skali 1:500 000. C - Mapa podłoża kenozoiku (in Polish).
615 Państw. Inst. Geol., Warszawa.

616 Szczepaniak, M., 2014. The sandstones of sacral buildings of Greater Poland – provenance of the raw material. In: *Geosciences
617 in Archaeometry. Methods and case studies* (eds. D. Michalska, M. Szczepaniak). Bogucki Wydaw. Naukowe: 37-60.

618 Szczepaniak, M., 2015. Procesy diagenetyczne w wybranych piaskowcach Dolnego Śląska i ich znaczenie dla romańskiej
619 architektury południowej Wielkopolski (in Polish). Bogucki Wydaw. Naukowe, Poznań.

620 Szczepaniak, M., 2021. Diversity of the deterioration processes of the 19th century sandstone facade of the National Archive in
621 Poznań (in Polish with English summary). *Przegląd Geologiczny*, **69**: 127-134, <http://dx.doi.org/10.7306/2021.8>.

621 Szczepaniak, M., Nawrocka, D., Mrozek-Wysocka, M., 2008. Applied geology in analytical characterization of stone materials
623 from historical buildings. *Applied Physics A: Materials Science & Processing*, **90**: 89-95.

624 Szczepaniak, M., Rój, P., 2019. Deterioration process of sandstone panels in a historic building of the Royal-Imperial Route in
625 Poznań, Poland – a case study (in Polish with English summary). *Przegląd Geologiczny*, **67**: 717-727,
626 <http://dx.doi.org/10.7306/2019.42>.

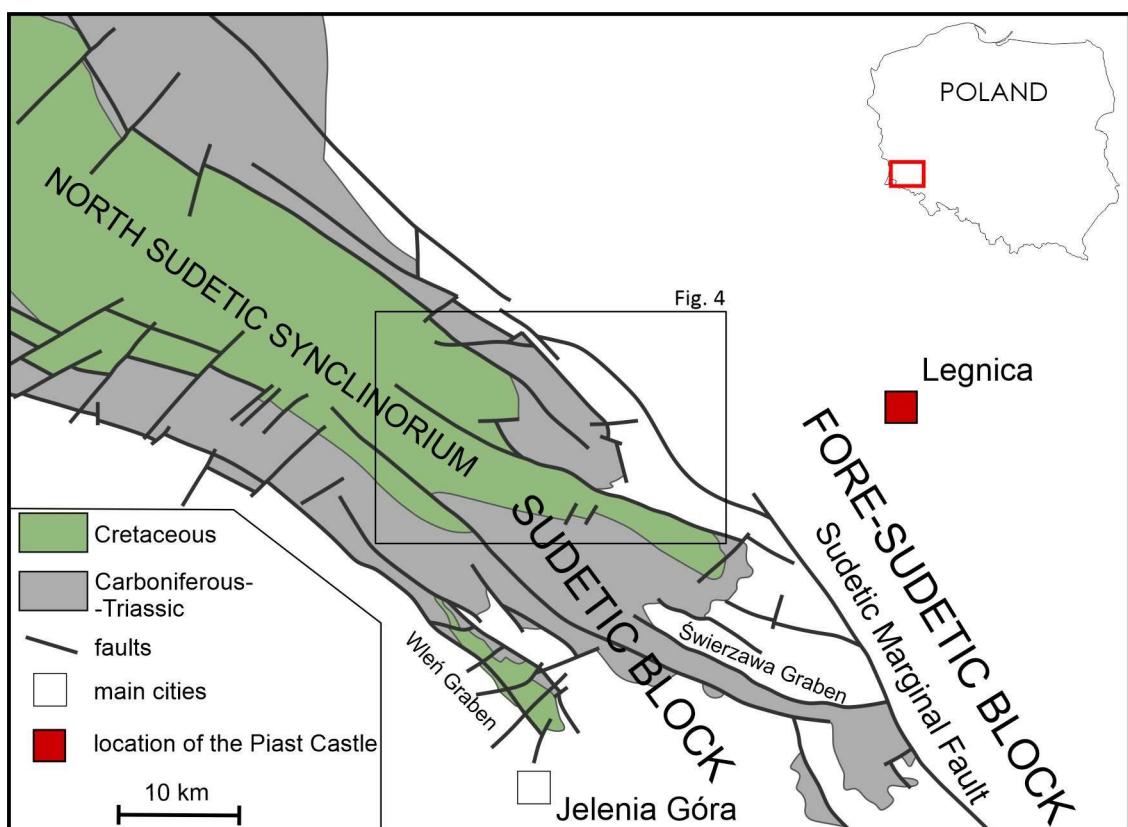
627 Sztrömwasser, E., 1995. Szczegółowa Mapa Geologiczna Polski, 1:50 000 - arkusz 722 Chojnów (in Polish). Państw. Inst. Geol.,
628 Warszawa.

629 Śliwiński, W., Raczyński, P., Wojewoda, J., 2003. Sedimentation of the epi-Variscan cover in the North-Sudetic Basin (in Polish
630 with English summary). In: *Sudety Zachodnie: od wendu do czwartorzędu* (eds. W. Ciężkowski, J. Wojewoda and A.
631 Żelaźniewicz): 119-126. WIND.

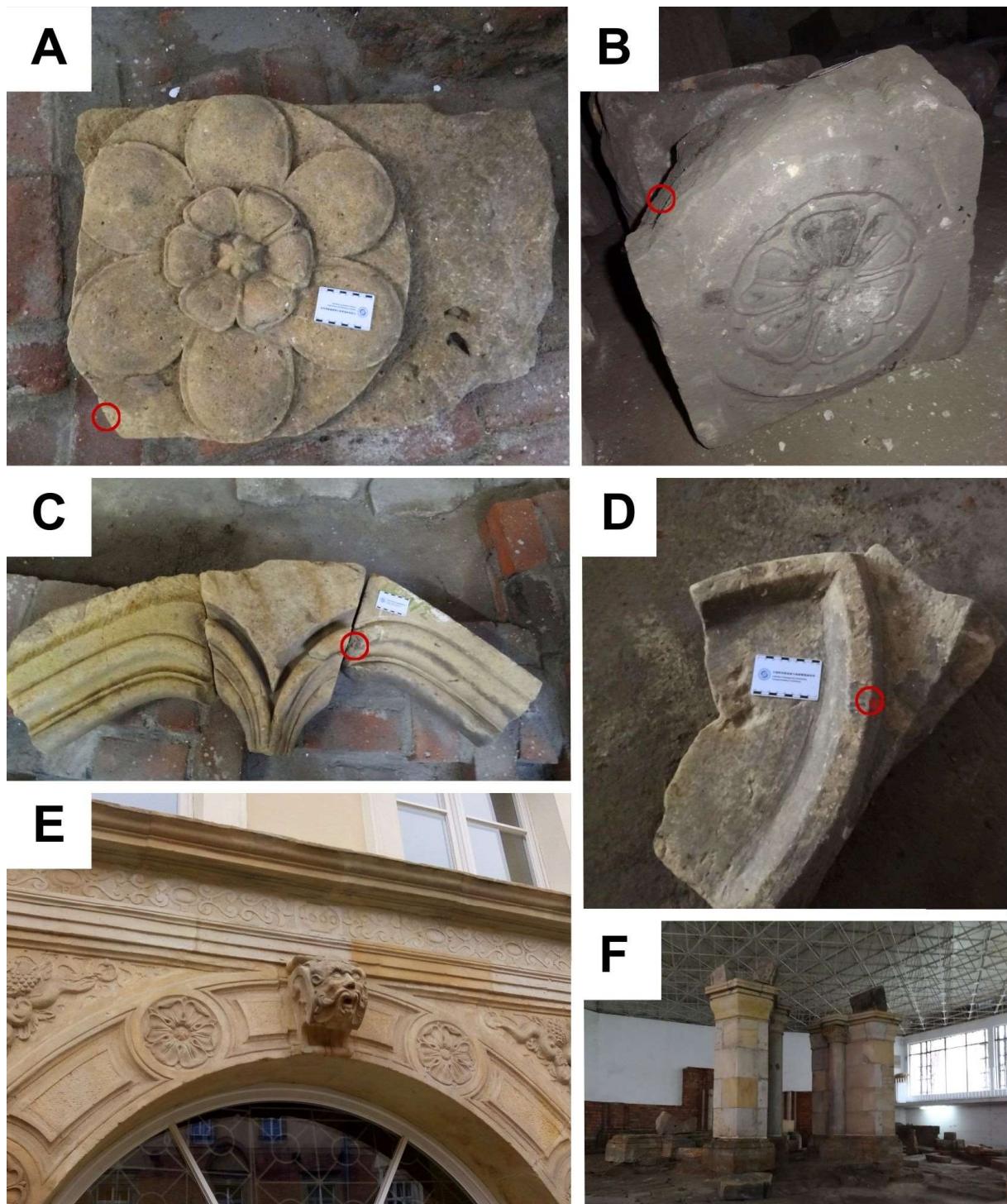
632 Świętnicka-Goldstein, E., 1975. Charakterystyka petrograficzna piaskowców kredowych (koniak) z depresji północnosudeckiej
633 (in Polish). Arch. Inst. Geol.

634 Voigt, S., Wagreich, M., Surlyk, F., Walaszczyk, I., Uličný, D., Čech, S., Voigt, T., Wiese, F., Wilmsen, M., Niebuhr, B., Reich,
635 M., Funk, H., Michalik, J., Jagt, J. W. M., Felder, P. J., Schulp, A. S., 2008. Cretaceous. In: T. McCann (ed.), *The Geology of
636 Central Europe, 2 (Mesozoic and Cenozoic)*: 923-997. The Geological Society of London.

637 Walendowski, H., 2010a. Piaskowiec z Wartowic. Minimonografie polskich kamieni budowlanych (in Polish). Nowy Kamieniarz,
638 46 (3): 84.


639 Walendowski, H., 2010b. Piaskowiec z Żerkowic. Minimonografie polskich kamieni budowlanych (in Polish). Nowy Kamieniarz,
640 47 (4): 75.

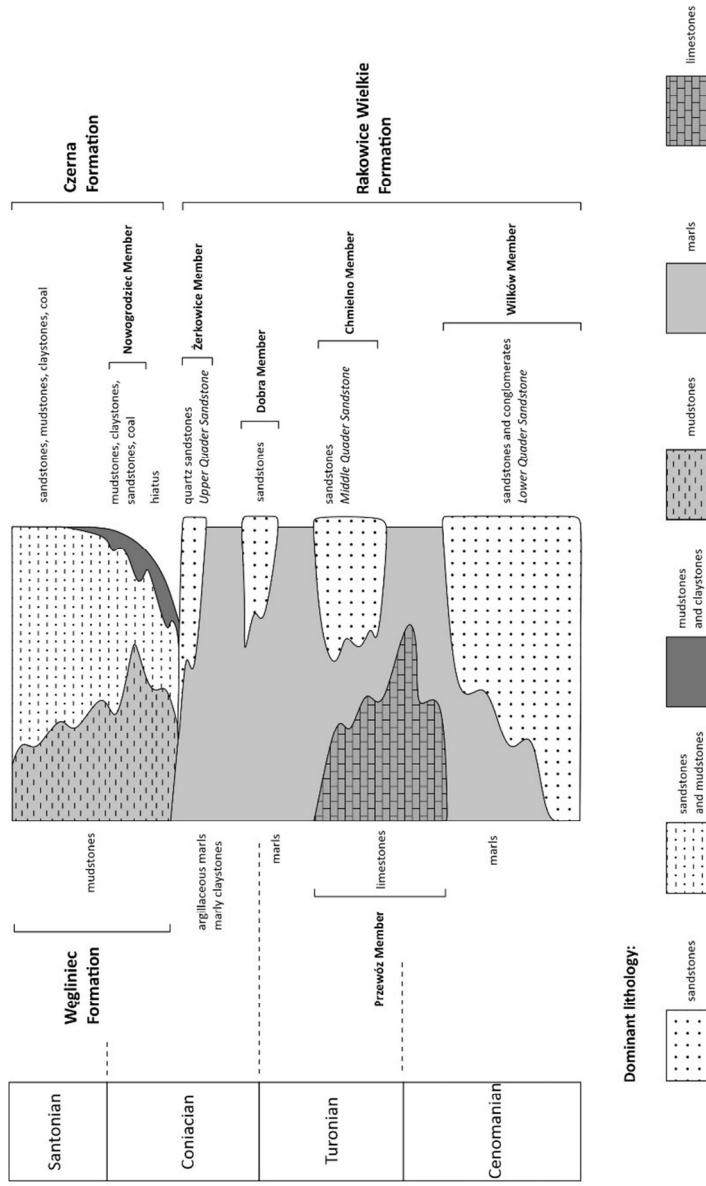
641 Walendowski, H., 2010c. Piaskowiec z Rakowic Małych. Minimonografie polskich kamieni budowlanych (in Polish). Nowy Kamieniarz,
642 48 (5): 84.


643 Walendowski, H., 2010d. Piaskowce z Czapli. Minimonografie polskich kamieni budowlanych (in Polish). Nowy Kamieniarz, **49**
644 (6): 78.

645 Walendowski, H., 2010e. Piaskowiec z Płakowic. Minimonografie polskich kamieni budowlanych (in Polish). Nowy Kamieniarz,
646 50 (7): 110.

647 **Wilczyńska-Michalik, W., 2004.** Influence of atmospheric pollution on the weathering of stones in Cracow monuments and rock
 648 outcrops in Cracow, Cracow-Częstochowa Upland and the Carpathians. Wydaw. Naukowe Akademii Pedagogicznej.
 649 **Winiarska, I., 2010.** Śląsk jako kraina historyczna. Polityczne granice Śląska. Powstanie podregionów. Dialekt śląski wczoraj i
 650 dziś (in Polish). In: Dialekty i gwary polskie - kompendium internetowe (ed H. Karaś).
 651 <http://www.dialektologia.uw.edu.pl/index.php?l1=opis-dialektow&l2=dialekt-slaski&l3=dialekt-slaski-wczoraj-i-dzis&l4=slask-kraina-historyczna> (access 11.2025).
 652 **Zboińska, K., Bartz, W., 2019.** Characterization and provenance of sandstones from the Gothic portal of St. Elizabeth of Hungary
 653 basilica in Wrocław (in Polish with English summary). Przegląd Geologiczny, **67**: 749-757, <http://dx.doi.org/10.7306/2019.44>.
 654 **Żelaźniewicz, A., Aleksandrowski, P., Buła, Z., Karnkowski, P., Konon, A., Oszczypko, N., Ślączka, A., Żaba, J., Żytko, K.,**
 655 **2011.** Regionalizacja tektoniczna Polski (in Polish). Komitet Nauk Geologicznych PAN, Wrocław.
 656
 657
 658
 659
 660
 661

662
 663 **Fig. 1. Simplified geological map of the North Sudetic Synclinorium (based on: Stępień and Grabowski, 2002; modified**
 664 **by the authors) with the location of Piast Castle in Legnica marked.**
 665
 666
 667


668

669 **Fig. 2. Examples of architectural details from Piast Castle in Legnica and its adjacent chapel, from which samples of**
 670 **historical stone material were obtained. Red circles indicate sampling locations.**

671 A – element with rosette from triforium; B – detail with rosette from window reveal; C – fragments of vault ribs with keystone; D –
 672 fragment of blind tracery; E – example of architectural details from Piast Castle in Legnica: stone window reveal with rosettes (see
 673 Fig. 2B); F – the remains of the Castle chapel are currently covered with a pavilion and are open to visitors during the summer
 674 season (all photos by KSz).

675

676

677

678 **Fig. 3. Lithostratigraphy of Cretaceous deposits in the North Sudetic Synclinorium (based on: Milewicz, 1985; Voigt et**
 679 **al., 2008; Leszczyński et al., 2022).**

680

681

682

683

684

685

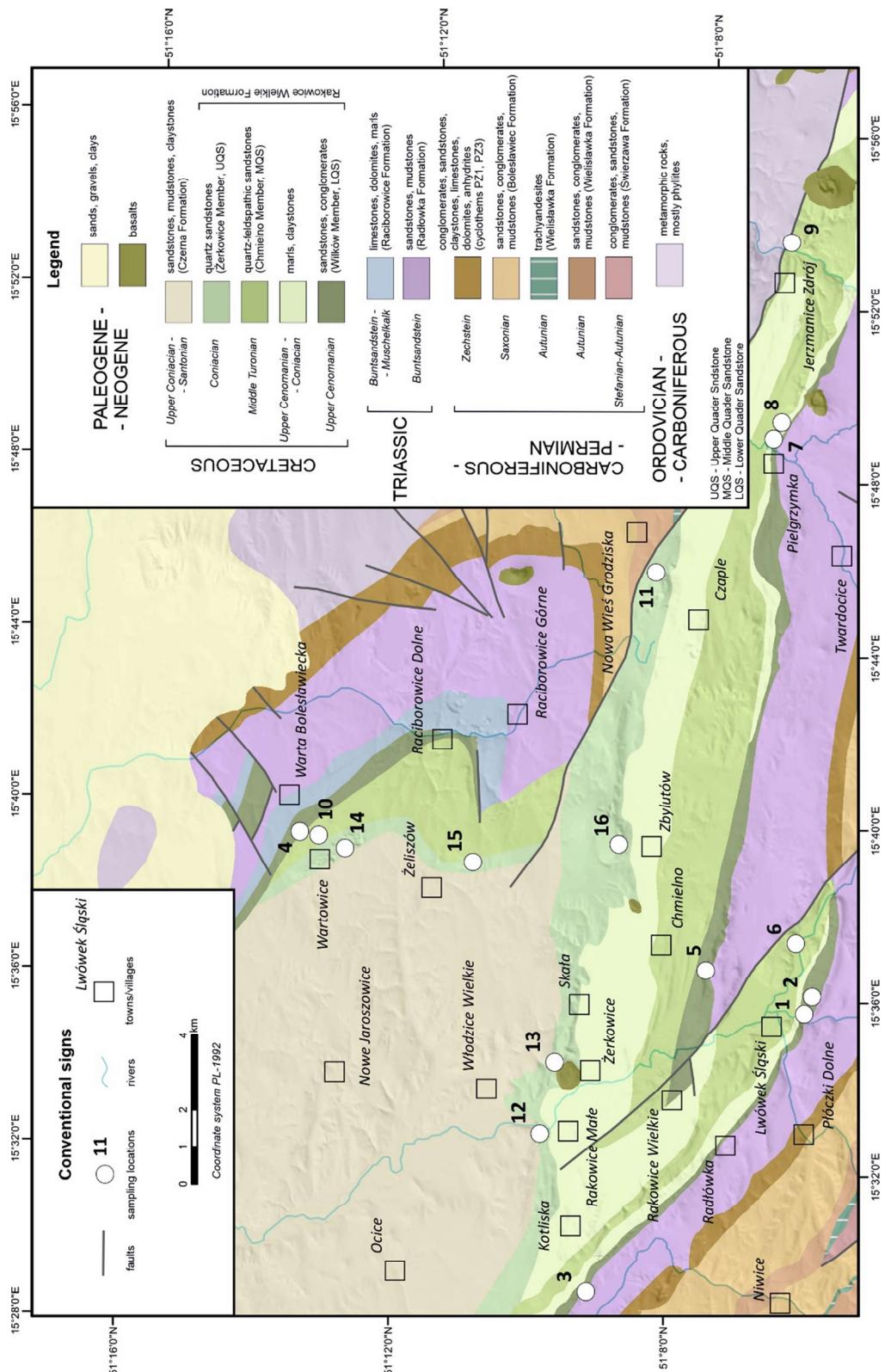
686

687

688

689

690


691

692

693

694

695

Fig. 4. Simplified solid geological map of the North Sudetic Synclinorium with reference sample locations.

The location numbers on the map, indicating individual sandstone sampling sites, are explained in Tab. 3. The geological image was drawn on the basis of geological maps (Milewicz et al., 1979; Sztromwasser, 1995; Badura, 2005; Cymerman et al., 2005a, b; Kozdrój et al., 2005; Przybylski and Ihnatowicz, 2005; modified by authors). The digital terrain model is part of the state geodetic and cartographic resource maintained by the Surveyor General of Poland pursuant to the provisions of the Act of 17 May 1989 on Geodetic and Cartographic Law (Journal of Laws of 2010, No. 193, item 12).

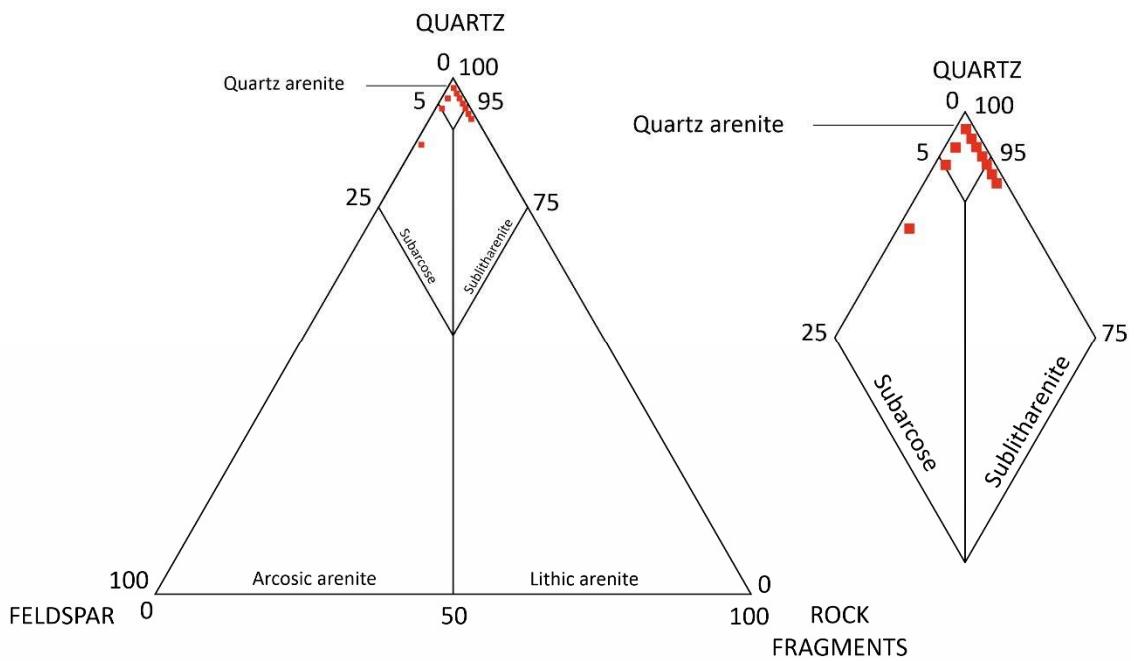
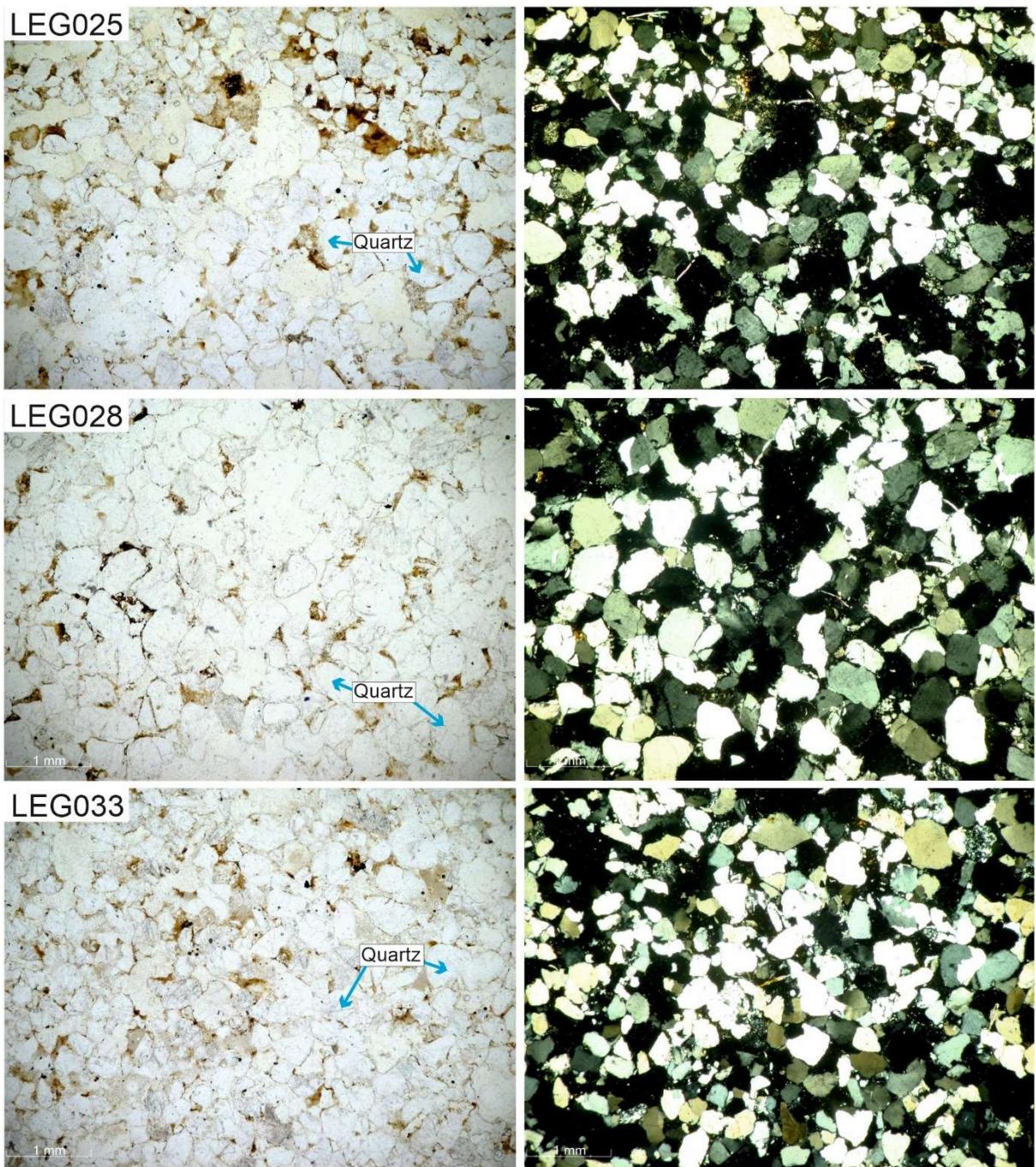
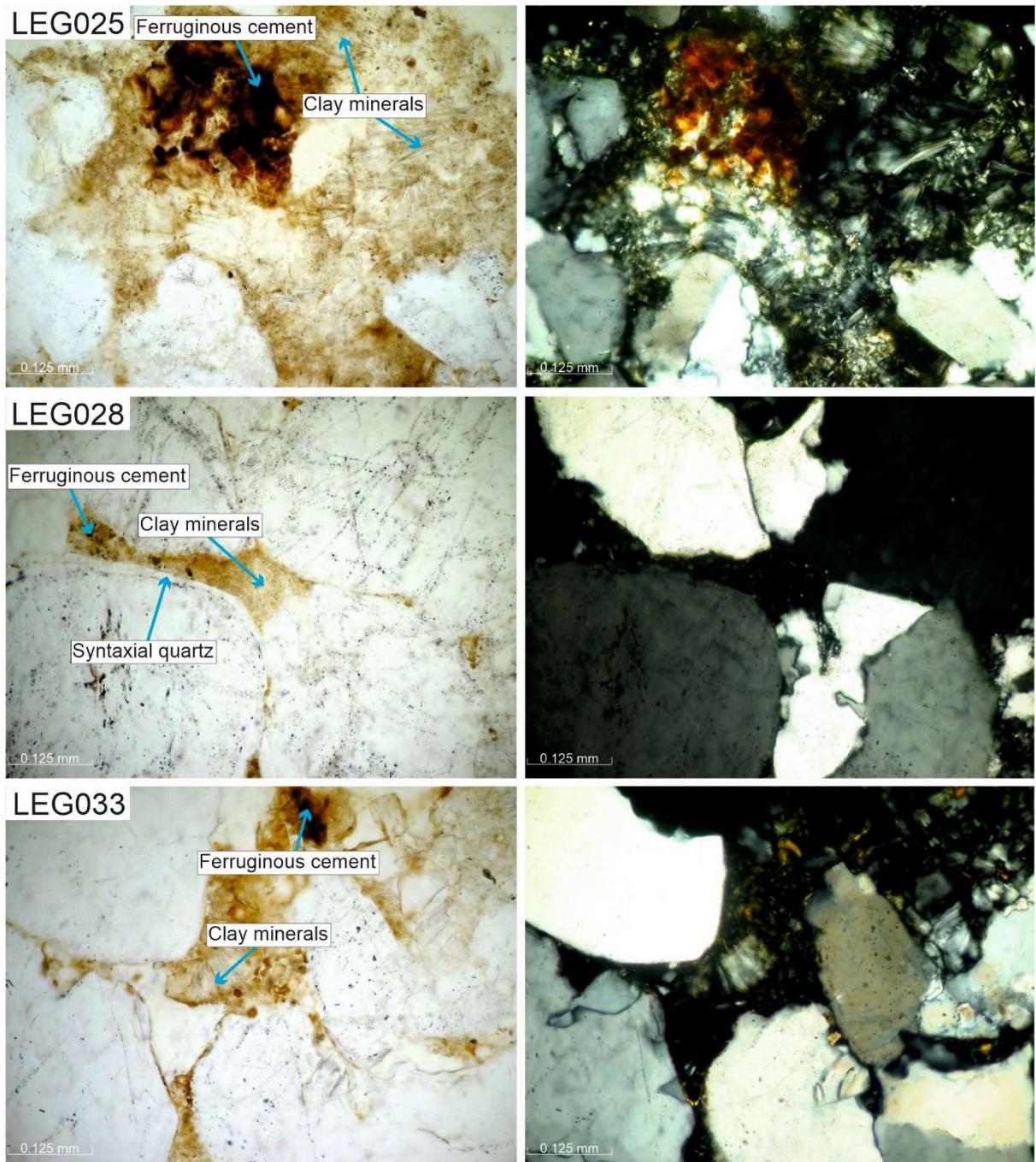
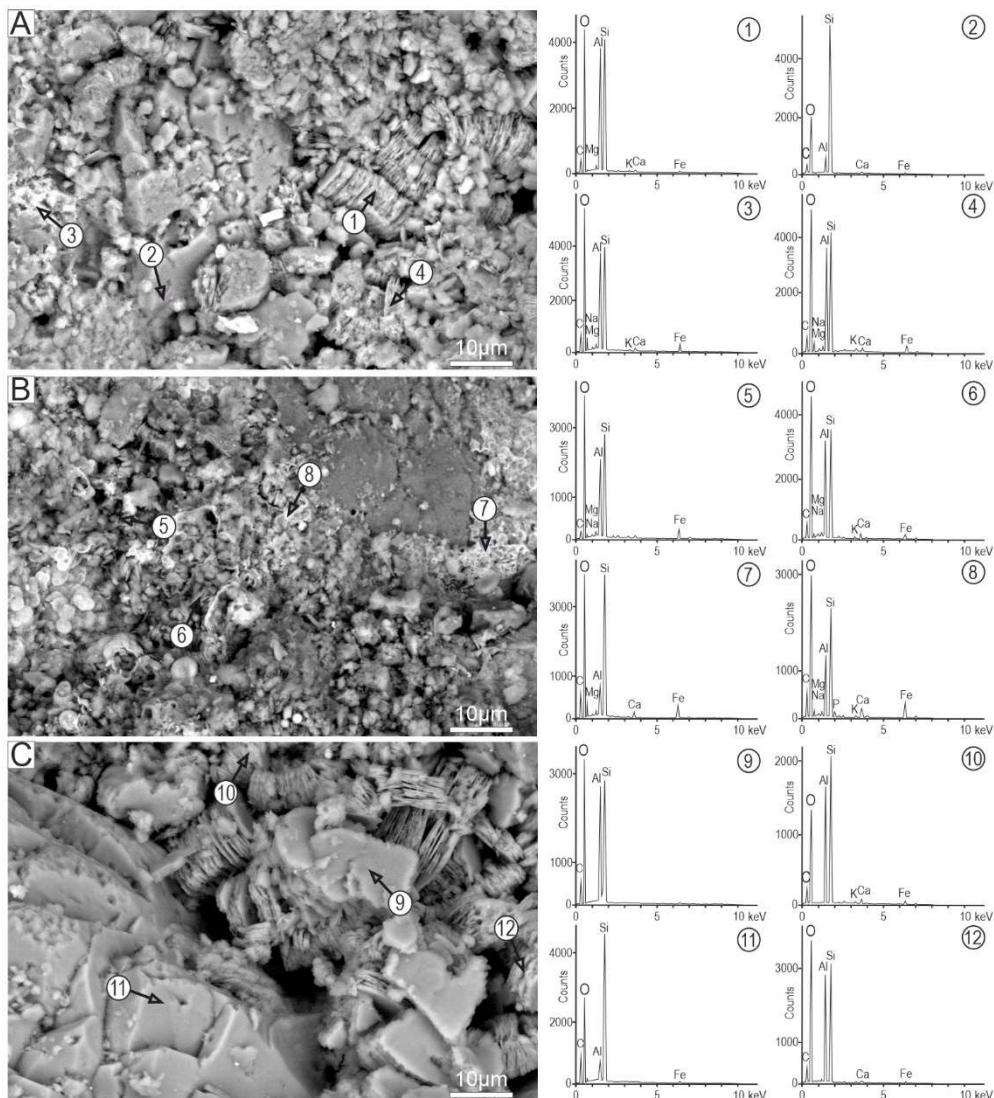
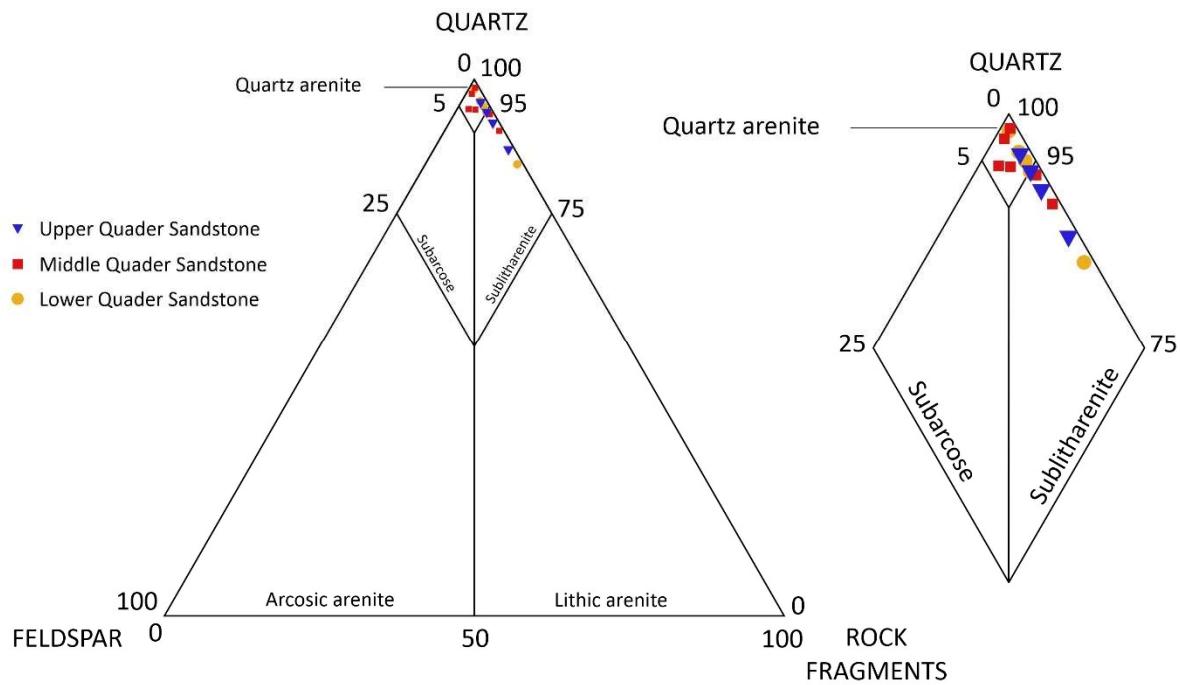
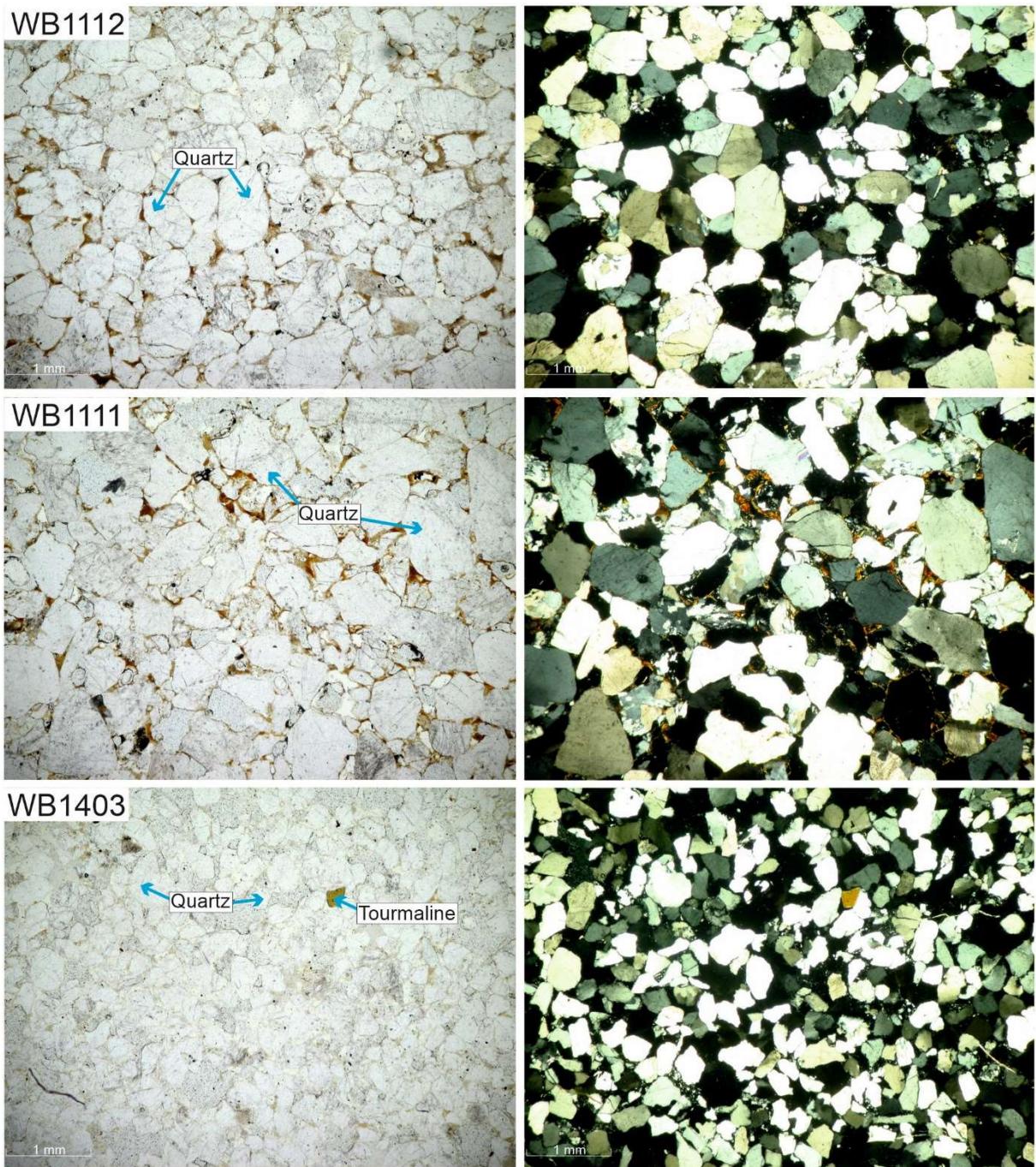


Fig. 5. Classification of historical samples analysed from Piast Castle in Legnica and its chapel (based on Pettijohn et al., 1972).

705
706
707
708
709

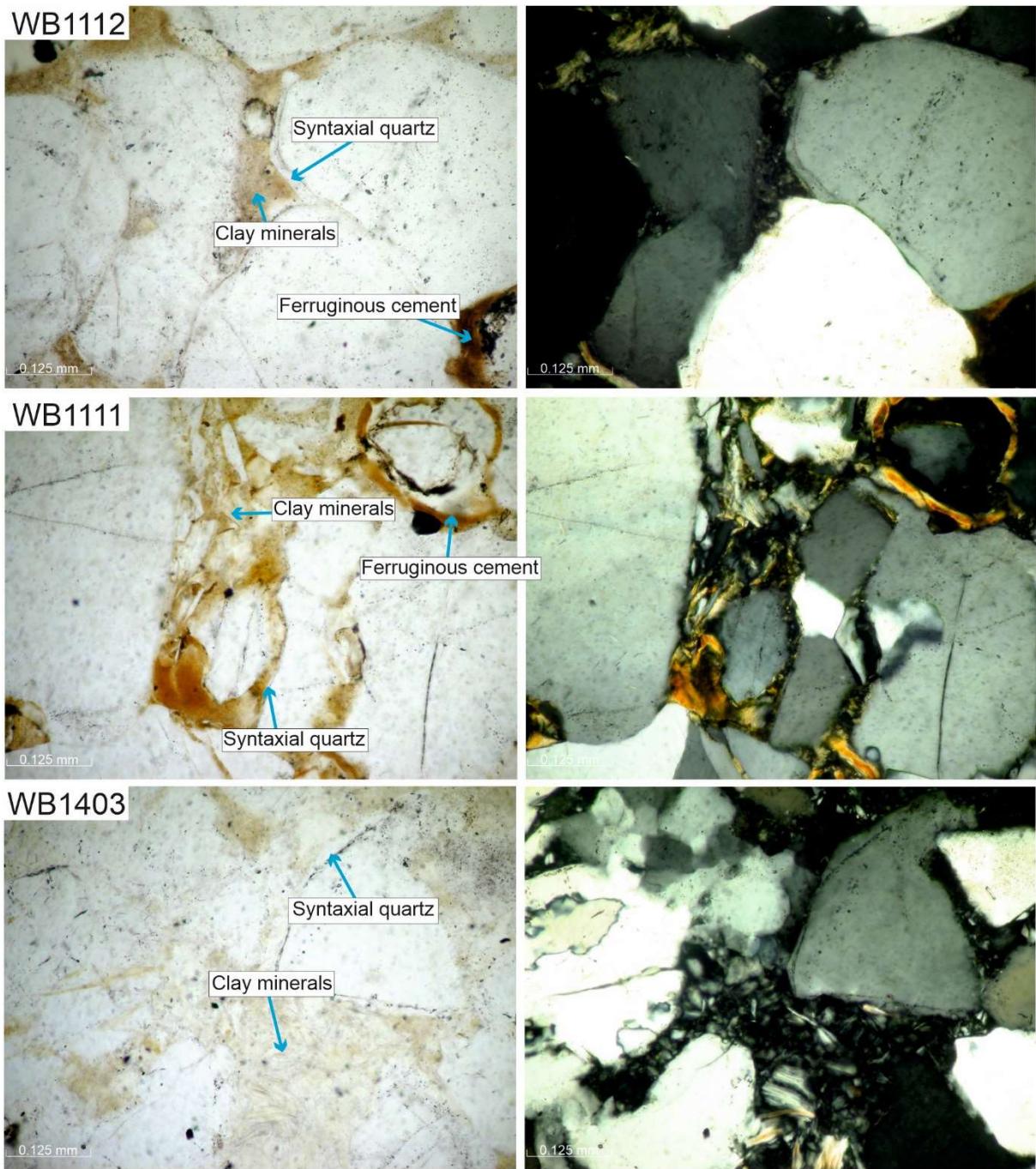





Fig. 6. Microscope images of samples LEG025, LEG028 and LEG033 in plane-polarized (left) and crossed-polarized light (right).

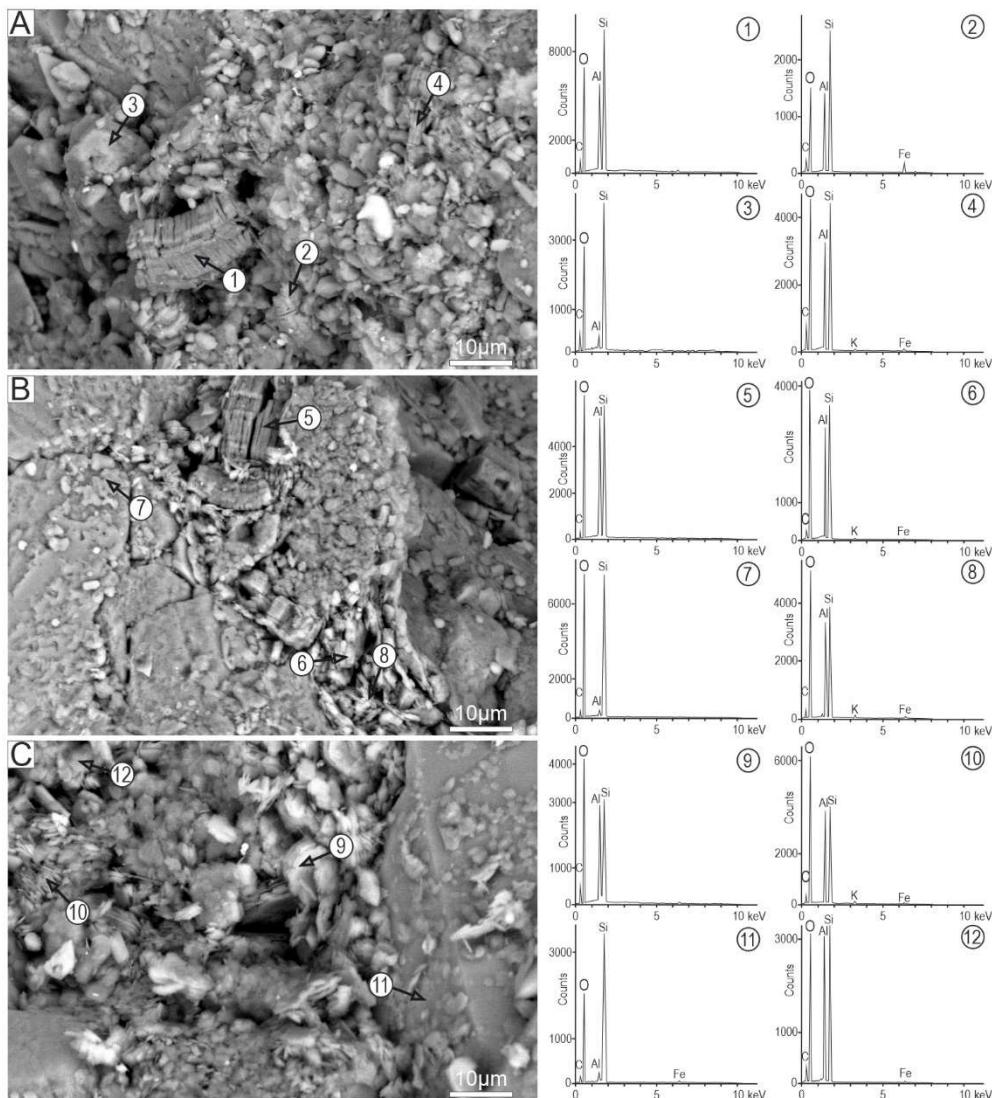

729

730 Fig. 8. Backscattered electron (BSE) images of samples: (A) – LEG025; (B) – LEG028; (C) – LEG033 and EDS spectra.
 731 Spectra 2 and 11 – syntaxial quartz; spectra 7 and 8 – siliceous cement (poorly crystalline SiO_2) containing Al and Fe;
 732 spectrum 9 – kaolinite (single flake).
 733 The remaining spectra correspond to kaolinitic cement (booklet-like aggregates) with variable amounts of Fe-bearing minerals
 734 dispersed between the flakes of the aggregates.
 735

736
737
738
739


Fig. 9. Classification of reference sandstones analysed from the North Sudetic Synclinorium (based on Pettijohn et al., 1972).

740
741
742
743
744
745


Fig. 10. Microscope images of samples WB1112, WB1111 and WB1403 in plane-polarized (left) and crossed-polarized (right)

Additional microscope images for other samples (WB1116, WB1809, WB1110) are provided in the supplementary material (Appendix 1).

746
 747 **Fig. 11. Microscope images of samples WB1112, WB1111 and WB1403 in plane-polarized (left) and crossed-polarized**
 748 **light (right), illustrating detailed views of cements.**

749 Additional microscope images for other samples (WB1116, WB1809, WB1110) are provided in the supplementary material
 750 (Appendix 2).

752
 753 **Fig. 12. Backscattered electron (BSE) images of samples: (A) – WB1112 (Lwówek Śląski); (B) – WB1111 (Płakowice); (C)**
 754 **– WB1403 (Żerkowice) and EDS spectra.**

755 Spectra 3, 7 and 11 – syntaxial quartz. The remaining spectra correspond to kaolinitic cement (booklet-like aggregates) with
 756 variable amounts of Fe-bearing minerals dispersed between the flakes of the aggregates.

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778 **Table 1**779 Architectural details from Piast Castle in Legnica and its adjacent chapel, from which the samples were obtained for analysis.
780 Italics indicate an unconfirmed (presumed) time of creation of each architectural element.

781

Sample	Architectural detail	Time of creation
LEG002	unspecified	1st half 13 th c.
LEG003	element with rosette from triforium	
LEG004	vault rib element with keystone	
LEG005	rib element with tracery	15 th c.
LEG006	tracery	
LEG007	unspecified	
LEG009	arch	1st half 13 th c.
LEG010	unspecified	
LEG011	fragment of a buttress	
LEG013	tracery	15 th c.
LEG014	frieze element	1st half 13 th c.
LEG015	fragment of a column	
LEG017	exterior wall of the chapel	
LEG018	chapel element from the shaft (internal)	1st half 13 th c.; Romanesque
LEG019	fragment of a column	
LEG020	rib	
LEG021	rib	
LEG022	rib/keystone	
LEG024	rib	15 th c.; Gothic
LEG025	column finial	
LEG028	fragment of a gothic keystone	
LEG029	fragment of a gothic keystone	1st half 16 th c.; Renaissance
LEG030	fragment of a gothic keystone	
LEG031	window reveal	
LEG032	rosettes at window reveal	1st half 16 th c.; Renaissance
LEG033	rosettes at window reveal	

804

805

806

807

808

809

Table 2. Basic grain size parameters of the Upper Cretaceous Quader Sandstones of the North Sudetic Synclinorium: examples according to Milewicz (1997, 1998) and Ehling (1999).

	Milewicz, 1997		Milewicz, 1998		Ehling, 1999	
	mean/ median ¹ [mm]	sorting coefficient	mean [mm]	inclusive graphic standard deviation	mean [mm]	sorting coefficient
Lower Quader Sandstone	0.53	1.8	-	-	0.42	1.75
Middle Quader Sandstone	0.42	1.8	-	-	0.38	1.68
Upper Quader Sandstone	0.20	1.2 (to 1.13)	0.13- 0.54 ²	0.3-1.4	0.11- 0.31	1.28-1.55

810

811

812 ¹Milewicz (1997) uses the terms mean and median interchangeably to refer to the same parameters.

813

814

815

816

817 ²Samples from the western part of the Synclinorium, where Milewicz (1998) claims the coarsest sandstones are found, were also
818 considered. Milewicz (1997) and Ehling (1999) focused on the eastern part of the Synclinorium, where fine- and medium-grained
819 sandstones are found. In the original work (Milewicz, 1998), the values are given on a phi scale and have been converted to
820 millimetres here.

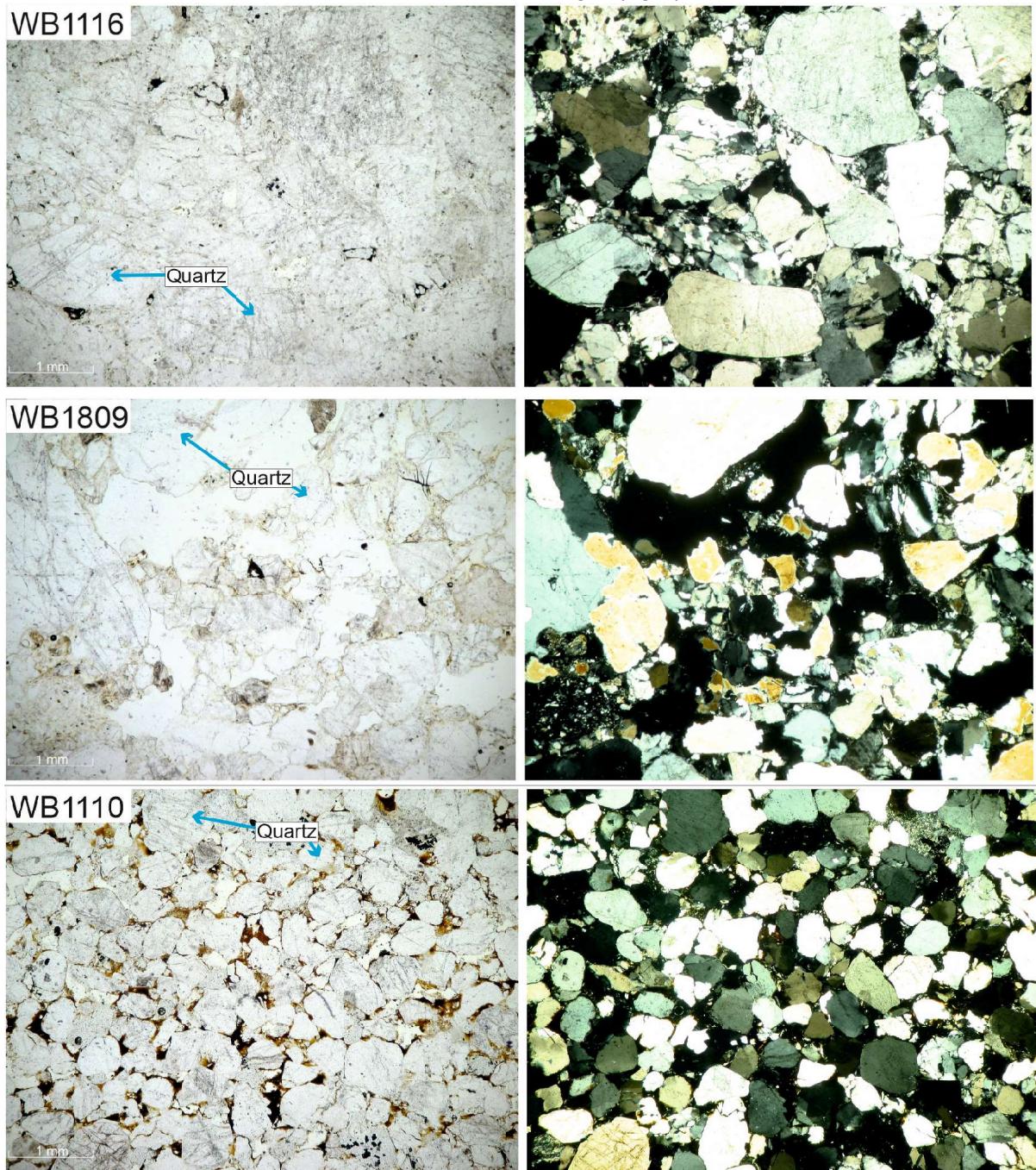
Table 3. Locations of sandstone sampling sites in the North Sudetic Synclinorium. Sampling site numbers correspond to the map (Fig. 4).

No	Location	Sample	
1	Lwówek Śląski, Szwajcaria Lwówecka	WB1112 WB1113 WB1114 WB1115	Upper Cenomanian, Lower Quader Sandstone
2	Lwówek Śląski, Wzgórze Kombatantów	WB1806	
3	Radłówka, Twardziel hill	WB1116 WB1117	
4	Warta Bolesławiecka 1	WB1801	
5	Jaglarz hill, quarry	WB1118 WB1119	
6	Płakowice, Skałka hill	WB1111	Middle Turonian, Middle Quader Sandstone
7	Pielgrzymka 1, quarry	WB1807	
8	Pielgrzymka 2, quarry	WB1808A WB1808B	
9	Jerzmanice Zdrój, Krucze Skály	WB1809	
10	Warta Bolesławiecka 2	WB1802	
11	Czaple, Gruszecki quarry	WB1108 WB1109 WB1110	Coniacian, Upper Quader Sandstone
12	Rakowice Małe, quarry	WB1402	
13	Żerkowice, quarry	WB1403	
14	Wartowice, quarry	WB1803	
15	Żeliszów, quarry	WB1804	
16	Zbylutów, quarry	WB1805	

Table 4. Statistical parameters and modal composition of samples from Piast Castle in Legnica and its chapel.

Sample	[mm]				σ_i	Otz	[%]		
	M_d	M_z	Q_1	Q_3			Fs	L	A
LEG002	0.32	0.33	0.23	0.48	0.82	98	<1	2	<1
LEG003	0.31	0.30	0.21	0.42	0.76	99	<1	1	<1
LEG004	0.27	0.24	0.17	0.37	0.94	99	<1	1	<1
LEG005	0.28	0.27	0.19	0.38	0.80	97	<1	3	<1
LEG006	0.27	0.26	0.18	0.37	0.73	97	<1	3	<1
LEG007	0.23	0.22	0.14	0.38	1.02	99	<1	<1	<1
LEG009	0.32	0.28	0.18	0.45	0.92	97	<1	3	<1
LEG010	0.24	0.23	0.16	0.35	1.04	96	<1	4	<1
LEG011	0.28	0.27	0.18	0.40	0.85	97	<1	3	<1
LEG013	0.26	0.25	0.19	0.36	0.77	97	<1	3	<1
LEG014	0.25	0.25	0.17	0.36	0.78	99	<1	<1	<1
LEG015	0.27	0.27	0.19	0.39	0.89	96	<1	4	<1
LEG017	0.28	0.26	0.17	0.41	0.92	97	<1	3	<1
LEG018	0.19	0.18	0.13	0.27	0.87	87	12	<1	<1
LEG019	0.21	0.18	0.13	0.30	0.95	95	5	<1	<1
LEG020	0.32	0.29	0.21	0.42	0.84	96	<1	4	<1
LEG021	0.27	0.25	0.16	0.39	0.96	95	<1	5	<1
LEG022	0.28	0.26	0.17	0.42	0.93	97	<1	3	<1
LEG024	0.25	0.25	0.17	0.38	0.91	93	<1	7	<1
LEG025	0.25	0.22	0.16	0.34	0.96	97	3	<1	<1
LEG028	0.32	0.29	0.21	0.44	0.86	99	<1	1	<1
LEG029	0.26	0.23	0.17	0.33	0.75	97	<1	3	<1
LEG030	0.33	0.30	0.23	0.44	0.88	93	<1	6	<1
LEG031	0.29	0.29	0.22	0.38	0.67	99	<1	<1	<1
LEG032	0.26	0.24	0.19	0.33	0.68	99	<1	<1	<1
LEG033	0.22	0.20	0.15	0.29	0.81	97	<1	3	<1

Parameters M_d , M_z , Q_1 , Q_3 are given in mm, σ_i in phi units, content of individual rock components is expressed in volume percent (% vol.). M_d - median, M_z - mean, Q_1 - first quartile, Q_3 - third quartile, σ_i - graphic sorting, Qtz - quartz, Fs - feldspars, L - lithic fragments, A - accessory minerals.

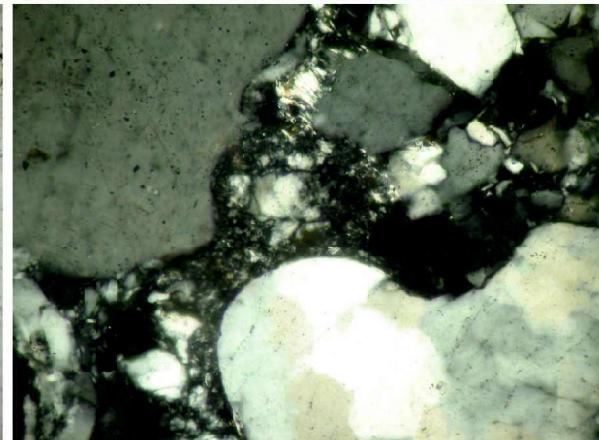

Table 5. Statistical parameters and modal composition of sandstone samples from the North Sudetic Synclinorium.

Sample	[mm]				σ_1	[%]			
	M_d	M_z	Q_1	Q_3		Otz	Fs	L	A
WB1112	0.34	0.27	0.15	0.61	1.53	95	<1	5	<1
WB1113	0.21	0.18	0.10	0.32	1.24	99	<1	<1	<1
WB1114	0.31	0.26	0.17	0.47	1.17	99	<1	1	<1
WB1115	0.34	0.29	0.16	0.58	1.34	97	<1	3	<1
WB1806	0.30	0.30	0.17	0.55	1.16	99	<1	<1	<1
WB1116	0.15	0.16	0.06	0.36	1.59	85	<1	15	<1
WB1117	0.15	0.14	0.06	0.32	1.53	96	1	3	<1
WB1801	0.15	0.17	0.07	0.36	1.48	99	<1	<1	<1
WB1118	0.27	0.25	0.12	0.60	1.54	99	<1	1	<1
WB1119	0.26	0.23	0.14	0.53	1.53	96	<1	4	<1
WB1111	0.17	0.19	0.10	0.36	1.18	99	<1	<1	<1
WB1807	0.17	0.16	0.11	0.27	1.09	97	1	<1	1
WB1808A	0.16	0.15	0.10	0.22	0.92	95	3	2	<1
WB1808B	0.15	0.13	0.08	0.20	1.02	95	3	2	<1
WB1809	0.25	0.27	0.15	0.53	1.34	93	1	6	<1
WB1802	0.36	0.31	0.15	0.70	1.64	91	<1	9	<1
WB1108	0.28	0.25	0.13	0.48	1.25	88	<1	12	<1
WB1109	0.26	0.24	0.14	0.41	1.09	95	<1	5	<1
WB1110	0.20	0.17	0.10	0.33	1.15	95	<1	5	<1
WB1402	0.25	0.19	0.14	0.31	1.34	93	<1	7	<1
WB1403	0.25	0.19	0.11	0.36	1.25	97	<1	3	<1
WB1803	0.16	0.13	0.10	0.20	0.86	97	<1	3	<1
WB1804	0.17	0.15	0.11	0.21	0.79	95	<1	5	<1
WB1805	0.15	0.16	0.08	0.32	1.25	96	<1	3	1

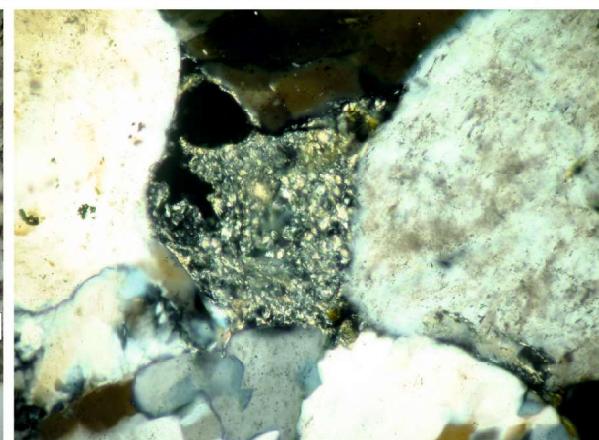
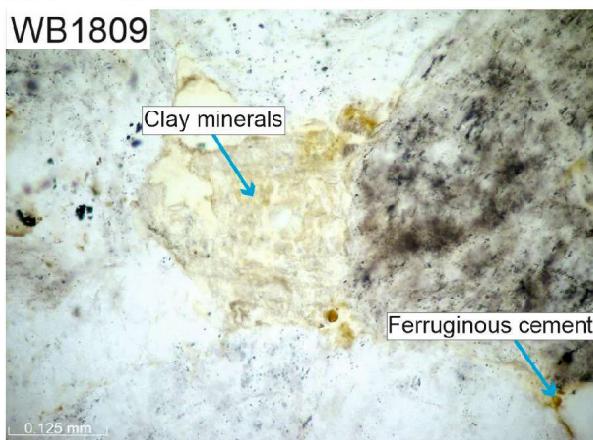
842
843
844
845
846
847
848
849

APPENDIX 1

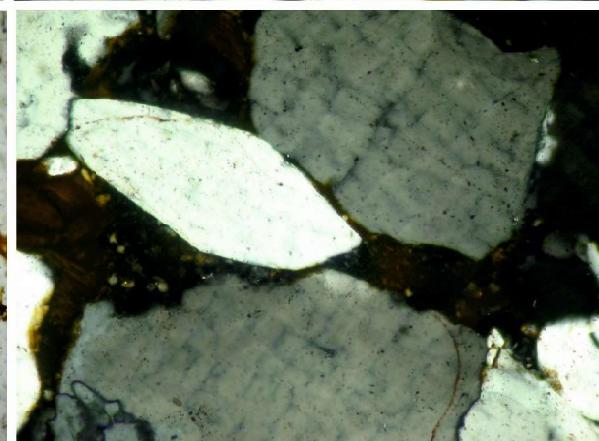
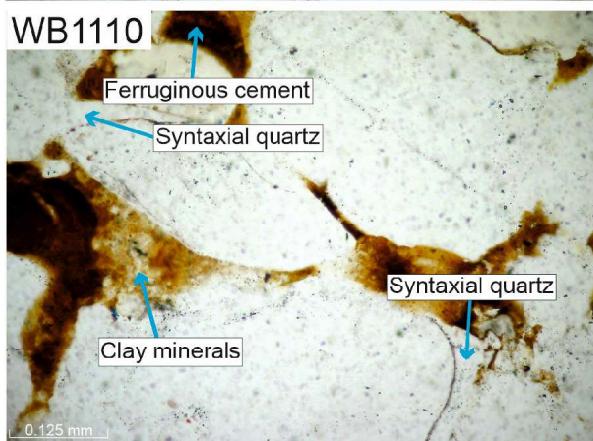
Microscope images of samples WB1116, WB1809 and WB1110 in plane-polarized (left) and crossed-polarized light (right).


850
851
852
853
854
855
856

857
858
859



Appendix 2

Microscope images of samples WB1116, WB1809 and WB1110 in plane-polarized (left) and crossed-polarized light (right), illustrating detailed views of cements.



WB1116

WB1809

WB1110

860
861