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This paper presents the potential application of supervised machine learning algorithms to assess the environmental impact
of mine disposal sites. Algorithms available for Python from the scikit-learn and pandas libraries were applied to a group of
sites representing mine waste dumps used for the disposal of hard coal mining waste. Each disposal site was described with
11 attributes (site characteristics, waste characteristics, groundwater, surface water, air, soil, atmospheric factors, geology,
geohazards, nature, and human environment) and 73 features (categorical, numerical, and descriptive) detailing the sites’
environmental impact. As a result of applying the learning process to training data and verifying it on test data, prediction re-
sults of at least 80% were obtained for all algorithms tested. The results indicate that the best algorithm for determining the
environmental impact of the waste dumps would be the BernouliNB algorithm (86% prediction accuracy), followed by the
RidgeClassifier algorithm (87% prediction accuracy), with the currently available training dataset. Potential extension of the

dataset could improve the results of the MLPClassifier, Support Vector Machine, and Logistic Regression algorithms.
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INTRODUCTION

Hard coal mining has since the 15th century generated
waste, deposited in heaps in former mining areas, near the
then-existing mining plants (Jaros, 1975; Piagtek, 1995;
Rostanski, 2006; Chudy et al., 2014; Switata-Trybek and
Switata-Mastalarz, 2018) and mostly located in exploited
open-pit deposits of sand and gravel without protection layers
above the permeable bedrock (Szczepanska-Plewa et al,
2010). The location of these disposal sites directly in the envi-
ronment (without the protections required by current legislation)
has contributed to their negative impact on groundwater, sur-
face water, air, soil and vegetation (Kostrz-Sikora et al., 2013).
The extent and type of impacts result from the sum of
physicochemical processes occurring in the mass of accumu-
lated waste, the unfavourable hydrogeological and geological
conditions in the surrounding area, and the lack of technical so-

* Corresponding author: joanna.fajfer@pgi.gov.pl

Received: October 20, 2025; accepted: December 23, 2025; first
published online: December 31, 2025

lutions to limit the release of potential contaminants into the en-
vironment. The potential negative impact of mining waste
dumps on the environment is influenced by several factors, the
most important of which include: the chemical composition of
the accumulated waste, its compaction, selective or non-selec-
tive waste storage, rainwater infiltration through the structure,
ventilation conditions (Konior, 2006; Czajkowska et al., 2018),
hydrogeological and hydrological conditions in the area of the
site, climatic factors, the time of waste deposition, and the ex-
tent and nature of geohazards (landslides, floods, and min-
ing-induced deformation in the areas where the heap is located;
Sroga et al., 2017; Baza Hatdy, 2025). The chemical composi-
tion of the accumulated waste is determined by the type of min-
eral extracted and the technological processes used during its
processing, which in turn influence the diversity of impacts of
the dumps on the soil and water environment, as well as on air
pollution.

The impact of hard coal mining and processing waste dis-
posal sites on groundwater and surface water is mainly related
to the leaching of sulphates, chlorides and heavy metals from
the accumulated waste (Twardowska, 1981; Szczepanska,
1987; Chudy and Marszatek, 2010: Czajkowska et al., 2018;
taganowska, 2019). The following elements were found in
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these waters: Al, Mn, Fe, V, Zn, Li, Co, Cd, Be, Pb and Cu
(Twardowska, 1981; Szczepanska, 1987; Szczepanska and
Twardowska; 1999; Stefaniak and Twardowska, 2009;
Szczepanska-Plewa et al., 2010; Zajac and Zarzycki, 2013;
Chudy et al., 2014; Czajkowska et al., 2018; taganowska,
2019; Wolkersdorfer and Mugova, 2022).

The impact of hard coal waste heaps on soils may be re-
lated to their increased salinity and sulphur content as well as
the concentration of heavy metals (Rusin et al., 2018; Piekut et
al., 2018). Sulphur compounds and tar substances resulting
from the self-heating of mining waste accumulated on burned
heaps are washed out by rainwater from the dumps and perme-
ate into the soil (Styrol, 2020). Heavy metals, including Zn, Pb,
Cd, Cu, Ni, As, Cr and Hg, were found in the soils (Rusin et al.,
2018, Piekut et al., 2018). In the area around the waste dumps,
air pollution may occur through the release of fine dust from
their surfaces, that lack or are only sparsely covered with vege-
tation. Furthermore, in the case of self-heating and spontane-
ous combustion of hard coal waste heaps, CO,, CO, SO,, H,S,
CH,; are released into the atmosphere (Rozanski, 2019;
Fabianska et al., 2019; Styrol, 2020).

Current legal regulations specifically concern reduction of
the negative impact of waste disposal facilities on the environ-
ment (Polish Mining Waste Act, 2008; Polish Waste Act, 2023),
through the obligation to monitor environmental components
(Regulation, 2014). As part of the monitoring of waste heaps,
compounds and indicator parameters (specific to the type of
waste deposited) are examined in surface water, leachate, and
groundwater, and subsidence of the surface of the mining
waste disposal facility is monitored (Regulation, 2014). Mining
waste disposal sites have been adapted to applicable environ-
mental protection law (i.e., monitoring is conducted) or closed if
such technological possibilities are not justified (Polish Mining
Waste Act, 2008). However, disposal sites that were once used
by the mining industry, and for which it is impossible to identify
their owners or current managers, are not environmentally
monitored (Glubniak-Witwicka et al., 2012). The environmental
impact of historical mining waste dumps has been the subject of
many studies (Paszcza and Krogulski, 2006; Pikon and Bugla,
2007; Zdechlik et al., 2011; Foltyn et al., 2011; Wrobel et al.,
2012; Stefaniak et al., 2013; Chrzan and Mojza, 2018; Sottysiak
and Rozkowski, 2025). Research on the environmental impact
of waste dumps, dumping grounds and landfills where mining
waste was deposited has also been conducted at the Polish
Geological Institute - NRI (PGI-NRI) since 2012. As part of the
work, an inventory of mining waste dumps, including historical
ones, was conducted and their negative environmental impact
was assessed. This assessment was based on archival and
current research results, historical information from the litera-
ture on groundwater and surface water, air pollution (in some
cases), soil and the chemical composition of waste deposited in
the dumps. The inventory conducted constituted material for
the diagnosis of environmental conditions in the area of individ-
ual mining waste disposal sites, as well as for the assessment
and scope of their potential impact at a national scale (Fajfer et
al., 2013; Kostrz-Sikora et al., 2013; Sroga et al., 2017; Baza
Hatdy, 2025).

Assessing the environmental impact of historic waste dumps
is a complex process requiring a thorough understanding of the
chemical composition of the stored waste, as well as of the geo-
logical, hydrogeological and hydrological conditions in the area
surrounding the dump. This involves conducting a series of tests
of physicochemical parameters (including chemical leaching) in
waste samples collected from various depths within the dump,

monitoring groundwater (installing piezometers) and surface wa-
ter, as well as soils in the area surrounding the site. This is a
lengthy and capital-intensive process, as each dump is analysed
individually.

An alternative to this assessment process can be the use of
supervised machine learning algorithms. This type of learning
utilizes algorithms that map input data onto output data based
on sample datasets divided into test and training data, as well
as classification (for data separation) and regression (for data
matching) algorithms (Sarker, 2021). However, important con-
ditions for using machine learning methods include the appro-
priate definition of the research goal, having a large dataset and
proper preparation of the data for the learning process.

Machine learning (ML) algorithms are currently widely used
in the field of environmental sciences (Kuzniar, 2016; Sun et al.,
2020; Ma et al., 2021; Haupt et al., 2022; Xia et al., 2022: Uddin
et al., 2023; Piotrowska and Dgbrowska, 2024; Pasa et al.,
2025). One area of application of ML algorithms, although little
explored, is the assessment of the environmental impact of
mining waste dumps. Recurrent neural networks have been
used to predict the rate of rainwater infiltration through the dump
body and the chemical composition of leachate flowing from the
dump depending on weather conditions, with particular empha-
sis on rainfall amounts over the years (Ma et al., 2021). Deci-
sion tree algorithms and the long-short-term memory (LSTM)
algorithm were used to forecast the amount of leachate gener-
ated during spring in waste dumps (with particular emphasis on
spring floods resulting from snow and ice melt; Zhang et al.,
2023). Machine learning models: multiple linear regression
(MLR), support vector regression (SVR), random forest (RF),
decision tree (DT), and extreme gradient boosting (XGB), were
used to predict the stability of tailings pond slopes (Chand et al.,
2025). Automatic machine learning (AutoML) combined with
Bayesian modeling was used to predict the environmental im-
pact assessment of mining activities (Gerassis et al., 2021).
Support Vector Machine (SVM), Artificial Neural Network (ANN)
and Random Forest (RF) methods were used to predict heavy
metal concentrations (Zn, Pb, Mn, Cu and Cd) in soils near a
mining waste disposal facility due to acidic drainage seepage
into the soil (Trifi et al., 2022). The literature search indicated
the application of machine learning methods in various areas of
the dump’s environmental impact (including soils, slope stability
and leachate), but did not provide information regarding the use
of such methods to assess comprehensive environmental im-
pact. Modeling processes occurring within heaps, while taking
into account external factors, is a very demanding task, both in
terms of the proper selection of input data and knowledge of the
processes occurring within the facility.

This paper attempts to assess the environmental impact of
waste heaps using supervised machine learning algorithms.
The goal was to determine whether supervised machine learn-
ing algorithms are a suitable tool for this type of task. If the an-
swer is positive, the next step was to find the optimal machine
learning algorithm whose prediction results would most accu-
rately represent the environmental impact of mining disposal
sites. Supervised machine learning algorithms are primarily
used to forecast and predict outcomes based on previously de-
fined patterns. Regression, classification, and clustering algo-
rithms are most commonly used. Depending on the defined re-
search goal and the size of the dataset planned for the study,
the appropriate algorithm is selected, preceded by testing
stages on as many algorithms as possible using scaling algo-
rithms (reducing the ranges of features in the dataset) describ-
ing the object.
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CHARACTERISTICS OF THE STUDY AREA

Geographical and geological setting. The study area is
located in southern Poland in the Upper Silesian Coal Bassin
(USCB). Geographically the USCB s sited in the Silesian Up-
land, the Krakéw-Czestochowa Upland and the Oswiecim Ba-
sin.The USCB covers a total area of 7250 km?. Most of the
USCB (5 650 km?) belongs to the Silesian and western Lesser
Poland regions, an the smaller part to the Czech Republic
(1 600 km? in the Moravian-Silesian region). The Carboniferous
basement is composed of Precambrian (slates, gneisses),
Cambrian (sandstones and mudstones) and Devonian (dark
grey and black dolomites, as well as organic and detrital lime-
stones) deposits. The Carboniferous succession begins with a
carbonate association, which transitions into marine clastic de-
posits and then into the molasse-like coal-bearing strata of the
Mississippian and Pennsylvanian (Kotas, 1995; Jureczka and
Nowak, 2016). These deposits are divided into four lithostrati-
graphic units: the Paralic Series, the Upper Silesian Sandstone
Series, the Mudstone Series, and the Krakéw Sandstone Se-
ries. A characteristic feature of the Carboniferous coal-bearing
deposits is their distinct division into a Paralic Series and a
Limnic Series. Formations developed exclusively under terres-
trial conditions overlie Paralic formations with a stratigraphic
gap. The total thickness of coal-bearing deposits reaches
8,500 m (Jureczka and Nowak, 2016).

The Paralic Series is composed of mudstones, claystones,
and sandstones with interbeds conglomerates, coal and carbo-
naceous shales. The thickness of the strata in this series
ranges from ~200 m in the eastern part of the USCB to
~3,800 m in its western part. The numerous coal seams typi-
cally have a thickness of 1.0 to 1.5 m. The Limnic Series is rep-
resented by the Upper Silesian Sandstone Series, the
Mudstone Series, and the Krakéw Sandstone Series. The Up-
per Silesian Sandstone Series is composed of gravels and
sandstones, which dominate over the mudstones and clay-
stones. The coal seams in this series are usually thick, com-
monly with a thickness of 4-8 m, up to a maximum of 24 m
(Jureczka et al., 2005). The maximum stratal thickness in this
series (700 m) occurs in the western part of the USCB. It de-
creases towards the east, until it disappears at the north-east-
ern border. The Mudstone Series is represented by mudstones
and claystones with sandstone interbeds. The maximum thick-
ness of the series in the western part of the USCB reaches 2 km
to several tens of metres in the eastern part. Coal seams in this
series are numerous, reaching thicknesses of up to 1.5 m. The
Krakow Sandstone Series is dominated by coarse- and me-
dium-grained sandstones with interbeds of mudstones and
claystones, as well as coal seams. The thickness of the coal
seams is up to 6.0 m. The overburden consists of Triassic, Neo-
gene (Miocene) and Quaternary deposits, less frequently
Permian and Jurassic (Jureczka et al., 2005; Jureczka and
Nowak, 2016).

Hydrogeological setting. The USCB is divided into two
subregions: Subregion | (northeastern) and Subregion Il (south-
western). Subregion | contains Quaternary, Jurassic and Trias-
sic aquifers, hydraulically connected to Carboniferous strata. In
Subregion I, the hydraulic connection between Carboniferous
and Quaternary aquifers occurs only locally within hydrogeo-
logical windows (Rozkowski et al., 2013).

The most important aquifers within the USCB are found in
Quaternary, Triassic and Carboniferous formations. Quater-
nary formations have varied hydrogeological conditions. They
are fed by infiltrating water from precipitation and surface water.
Quaternary aquifers occur in sandy gravel deposits and their
thickness varies from a few to several dozen metres (Roz-

kowski et al., 2013). The Triassic hydrogeological profile has
three main aquifers: the Muschelkalk, the Roet and the middle
and lower Buntsandstein. The main Triassic aquifers occur in
carbonate units of the Muschelkalk and the Roet. These are fis-
sured-karst aquifers, highly permeable and strongly wa-
ter-bearing. The hydrogeological profile of the Carboniferous
System of this region includes sets of separate fissured-porous
aquifers composed of sandstones and conglomerates. These
aquifers, with thicknesses ranging from several to several tens
of metres, are isolated from each other by impermeable
claystone intercalations. The aquifer of the Upper Carbonifer-
ous reaches a thickness of up to 4,500 m (Rozkowski, 2008;
Roézkowski and Rézkowski, 2011).

Selection of sites for study. The basic condition for se-
lecting the study sites was the assumption of the availability of
as many heaps and facilities as possible and of data describing
each site. This condition is important when using supervised
machine learning methods.

Mining waste from hard coal mining constitutes the largest
group of waste accumulated in heaps and dumps in Poland.
Currently, over 436,154 million tonnes of mining and process-
ing waste has been accumulated in sites in the USCB area (En-
vironment, 2025). As part of the work carried out by PGI-NRI in
2012, 104 mining waste disposal sites were inventoried, where
waste from hard coal mining and processing had accumulated
(Kostrz-Sikora et al., 2013; Fajfer et al., 2025). The selection of
study sites was made on the basis of previous work carried out
at PGI-NRI (Kostrz-Sikora et al., 2013; Fajfer and Kostrz-
Sikora, 2022; Baza Haldy, 2025; Fajfer et al., 2025), available
published data, archival materials and expert knowledge. The
initial selection of sites was made at the data collection stage
(among other things, it was analysed whether a given facility
had been demolished and the area designated for other ser-
vices) and the next selection was made at the stage of con-
structing the input dataset (the availability of data describing the
facilities was analysed in available published data or archival
materials). As a result, 48 heaps and facilities from hard coal
mining located in the USCB area in the provinces of Silesia and
Matopolska (in its western part) were selected for the environ-
mental impact assessment study (Fig.1). These were active (3
sites), inactive (45) with some reclaimed and partially reclaimed
(22 sites) where mainly hard coal mining and processing waste
was accumulated in a non-selective manner, but also in some
cases industrial waste (e.g., slag from heat and power plants).

METHODS

Attributes and features. Each heap was described with 11
attributes (site characteristics, waste characteristics, groundwa-
ter, surface water, air, soils, atmospheric factors, geology,
geohazards, nature and human environment) and 73 features
(categorical, numerical and descriptive) detailing the site‘s im-
pact on the environment (Table 1), creating a dataset for further
research (Baza Hatdy, 2025; Baza OPPI TPP 2.0, 2025; CBDG,
2025; Bank Danych o Lasach, 2025; GDOS, 2025; InMoTeP,
2025; Meteoblue, 2025; Worldclim, 2025; Karty JCWPd, 2025;
Karty JCWP, 2025; DTM, 2025). The set of input data character-
izing attributes and features may tend to decrease, due to the re-
covery of waste accumulated on the heaps and no new ones be-
ing created, which will impact future analyses.

To predict parameters affecting the assessment of the envi-
ronmental impact of the waste dumps, the first stage of the
study (aimed at determining whether supervised machine
learning algorithms are a suitable tool for assessing the envi-
ronmental impact of waste dumps) involved use of supervised
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Fig. 1. Location of the sites analysed to test their environmental impact (simplified geological sketch map after Jureczka et al., 1995)

machine learning algorithms from the scikit-learn (Scikit-learn,
2025) package available in Python libraries. Because the prob-
lem at hand boils down to the classification of yes/no (0/1) sites,
this supervised learning only utilized classification algorithms
representing the following classes (Géron, 2018):

— Linear models: RidgeClassifier, SGDClassifier and
Perceptron

— Decision trees:
ExtraTreeClassifier;

— Naive Bayesian classifiers: GaussianNB, Complement-
NB and BernoulliNB

— Support vector machines: NuSVC and LinearSVC;

— Nearest neighbor algorithms: KneighborsClassifier;

— Neural network: MLPClassifier;

— Boosting algorithms (Ensemble): ExtraTreesClassifier,
AdaBoostClassifier; RandomForestClassifier and Gra-
dientBoostingClassifier.

Expert Assessment. Each heap was analysed in terms of
representative factors influencing its impact on individual ele-
ments of the environment, both natural and human. These fac-
tors included the site’s impact on groundwater and surface wa-
ter, air pollution, impact on soil and vegetation and on the hu-
man environment. The analyses were carried out taking into ac-
count the influence of the following elements: the amount and
type of waste deposited, the surface area, the geological struc-

DecisionTreeClassifier and

ture of the ground, as well as the distance from protected areas,
residential buildings and public buildings. Each of the factors
defined was assessed and measured by an expert for each of
the 48 dumps selected for the study. The expert assessed each
variable on an ordinal scale from 0 to 0.9, where 0 meant no im-
pact and 0.9 meant a significant impact. In general, the lack of
impact of a given variable on the environment ranged from 0 to
0.3, while the impact of a facility on the environment ranged
from above 0.3 to 0.9 for a given variable. The number of values
for each factor analysed was variable.

Data Preparation. To prepare the input data for the training
process, a pre-prepared dataset consisting of 11 attributes and
described by 73 features was used. The data preparation pro-
cess involved creating new features from related features (e.g.,
relative height from height measurements). Categorical data
was converted into binary features using One Hot Encoding.
Descriptive data was converted into features containing word
roots and word root pairs and their frequency. After the de-
scribed data transformations into numerical values, the number
of features was 183. Removing low-variability columns reduced
the number of features to 139 and removing intercorrelated fea-
tures lowered the number to 112. Reduction of the number of
features is intended to improve the model’s training quality, as
low-variability features contribute little information, while highly
intercorrelated features duplicate information.
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Environmental attributes and features including type of feature

Table 1

No. Attribute Feature Type of feature
area, height numerical
1 Site status of the heap (operational, closed, reclaimed, unreclaimed, complete, exploited — .
. - categorical
characteristic waste recovery from the heap)
heap id, heap name, municipality name descriptive
type of waste (mining, processing, mining and processing, other — mining waste not .
2. Wastg ) s}gl)ectively depc(Jsited ?Nitﬁ energy v?/aste) ’ i i ’ categorical
characteristic - -
amount of accumulated waste, storage time numerical
occurrence and susceptibility to anthropopressure on the major groundwater reservoir,
3 Underground ocurrence and characteristics of the groundwater bodies (including risk of exposure to categorical
' water pollution), protection zones of groundwater intakes (designated by the authorities)
status of the groundwater bodies descriptive
characteristics of the surface bodies (risk of exposure to pollution, location of the disposal
4. Surface water | site in areas: waterlogged, marshy, dry, in river valleys, in close proximity to water categorical
bodies), risk of flooding
5. Air thermal condition of the heap (active or inactive), presence of vegetation on the site, categorical
waste recovery from the heap
6. Atr?;;g?:”c precipitation amount in the area of the dump, average annual rainfall from 1970-2020 numerical
7. Soils occurrence of soils of quality class I-lll and on organic soils in the area of the site categorical
8. Geology the presence of permeable and impermeable deposits in the base of the facility categorical
9 Geohazards occurrence of IgnQSIides qnd surfapg flows as a result of the Ia.rge slope of heaps, categorical
) operation of a mining plant in the vicinity, presence of deposits of mineral resources
occurrence of protected area forms of nature (Natura 2000 areas, Protected Landscape
10. Nature Areas, National Parks, Landscape Parks, nature reserves, ecological areas, protected categorical
forest areas)
1 Human occurrence of spa area, residential and public buildings, prevailing wind direction, )
. . : ) i categorical
environment presence of groundwater protection zones (designated by the authorities)

Source: Fajfer et al. (2025, modified); Baza Hatdy (2025)

RESULTS AND DISCUSSION

Finding the Optimal Algorithm and Its Hyperpara-
meters. Choosing the optimal machine learning method in-
volves not only selecting the algorithm but also selecting opti-
mal parameter values (different for each algorithm), which influ-
ence its behaviour and, ultimately, its results. Parameters de-
fine algorithm behaviours such as the initial partitioning of input
data, the size of the algorithm’s internal structures (e.g., number
of neurons, tree size), learning sensitivity and data transforma-
tion functions. Parameters should be tailored to the input data.
Because the number of algorithm and parameter combinations
during training and testing reached ~30,000, the Randomi-
zedSearchCV method was used to analyse them to make an
acceptable quantity of repetitions in comparison to Grid-
SearchCV, which does runs for all combinations of algorithms
and parameters and which would take much more time. This
method conducts a series of training and testing sessions using
these machine learning algorithms on a training dataset and
various randomly selected combinations of their parameter val-
ues from a given range. It then creates a ranking list (i.e., identi-
fies the algorithms with the highest prediction confidence). This
process required several iterations (including changing the list
of algorithms analysed by removing both the lowest-performing
algorithms from the analysis list and the best performing ones to
better check algorithms that achieved average results) until ac-
ceptable results were achieved. RepeatedStratifiedKFold was
used as the cross-validation algorithm, an algorithm for re-
peated splitting of the dataset into training and test sets, while
maintaining the balanced representations of classes present in
input data. The data number of splits was 4 and 5 and the count
of repetitions was 3 to 5, using 5 splits with 3 repetitions for final

calculations. This was also used to prevent overfitting, together
with enabling overfitting preventing hyperparameters in specific
algorithms, for instance alpha parameter or early stopping.
After searching for the optimal algorithm and its hyperpara-
meters using the method described above on a set of 112 fea-
tures, only two algorithms achieved 80% accuracy. It was as-
sumed that the reason for this might be a large number of fea-
tures exceeding the number of objects in the set (the so-called
curse of dimensionality (Géron, 2018: a large number of fea-
tures causes significant variation in both the training samples to
which the algorithm adapts and the validation samples, which
can lead to erroneous predictions). Therefore, an initial feature
reduction was performed using a combination of the Select-
FromModel function with the RandomForestClassifier, Logistic-
Regression, LinearSVC algorithms, which give information
about feature importance and also the SelectKBest algorithm
with the f_classif function. The reduction aimed to select sets
(10, 15, 20, 25 and 30) of the most significant features using se-
lected algorithms, which were then combined into a single set.
As a result, sets of 37, 46, 55, 68, and 86 features were se-
lected (because some features were selected by more than one
algorithm). Repeated tests on sets with reduced feature counts
showed an increase in accuracy to ~88% on sets with 37, 46
and 55 features. Training results on sets with a larger number of
retained features were less accurate (<85%). Further tests
were conducted on this 55-feature set due to similar results to
sets with fewer features and the desire to preserve as many of
the original features as possible. The results of the search for
optimal algorithms and their hyperparameters for assessing the
environmental impact of spoil heaps using Randomized-
SearchCV and cross-validation are shown in Table 2. The table
shows the algorithms that achieved an average cross-valida-
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Table 2

Ranking of algorithms resulting from the procedure of selecting algorithms and their hyperparameters using RandomizedSearchCV

ML algorithm Mean of cross-validation results | Standard deviation of cross-validation results | Scaling algorithm | Number of features
MLPClassifier 89% 0.09 MaxAbsScaler 46
MLPClassifier 88% 0.11 Normalizer 37
MLPClassifier 87% 0.10 MaxAbsScaler 55
RidgeClassifier 87% 0.08 MaxAbsScaler 55
MLPClassifier 87% 0.09 MaxAbsScaler 46
BernoulliNB 86% 0.09 StandardScaler 46
BernoulliNB 86% 0.09 StandardScaler 55
BernoulliNB 86% 0.10 MinMaxScaler 37
RidgeClassifier 86% 0.08 MaxAbsScaler 46
MLPClassifier 86% 0.12 MaxAbsScaler 37
SvC 86% 0.07 RobustScaler 37
SVC 86% 0.09 MaxAbsScaler 55
LogisticRegression 86% 0.10 MaxAbsScaler 68
MLPClassifier 86% 0.11 Normalizer 37
MLPClassifier 86% 0.11 Normalizer 46
SvVC 86% 0.08 MaxAbsScaler 46
LogisticRegression 86% 0.09 MaxAbsScaler 55
MLPClassifier 86% 0.09 MaxAbsScaler 55
MLPClassifier 86% 0.09 MaxAbsScaler 46
LogisticRegression 86% 0.09 MaxAbsScaler 46
LogisticRegression 86% 0.10 Normalizer 37
MLPClassifier 86% 0.10 Normalizer 37
MLPClassifier 86% 0.10 MaxAbsScaler 55

Source: this study

tion accuracy of >85%. Additionally, the standard deviation of
the cross-validation results is shown. The algorithms in this ta-
ble, i.e., MLPClassifier, RidgeClassifier, BernoulliNB, SVC and
LogisticRegression, were selected for further testing. Learning
quality was verified by generating learning curves for the algo-
rithms noted above (Fig. 2).

The LogisticRegression, MLPClassifier and SVC algorithms,
where the training accuracy is 1 from the initial training (from the
smallest sample sizes), fit the training data strongly, but the vali-
dation results are lower, indicating poorer generalization of the
trained model to new data. In contrast, the RidgeClassifier and
BernoulliNB algorithms do not fit the test data closely, and the
validation accuracy increases, indicating greater resistance to
model overfitting. For the algorithms selected, the prediction re-
sults for the training set were tested using cross-validation (Ta-
ble 3) to verify the model's performance (prediction stability) on
specific data. Therefore, those algorithms are recommended for
operating on a described set of data.

Each of the five algorithms tested correctly classified 17
heaps as having no impact on the environment (TN) and incor-
rectly classified 6 heaps as having an impact on the environ-
ment (FN) (out of 23 marked as having no impact in the training
set). Similarly, 22 or 23 heaps were correctly identified as hav-
ing an impact (TP), while 3 or 2 were incorrectly identified as
having no impact (FP; out of 25). Therefore, the accuracy for
the entire set is 81.25-83.3%, 88-92% for objects marked as
having an impact, and 73.9% for objects marked as having no
impact (values differs from those stated in Table 1, as these are
an effect of cross-validation without repeats, while the latter are
effects of cross-validation with repeats).

As a result of the test prediction with cross-validation, 9 ob-
jects were classified inversely to the expert assessment by all or
most of the algorithms tested. This may indicate the absence of
significant features in the set, incorrect values assigned to
these features, or an erroneous expert assessment.

Feature Analysis. Features that significantly influence
classification results were also identified. Shapley values were
used for this purpose. They represent the contribution of individ-
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Learning Curve for BernoulliNB
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ual features to the final value predicted by the model by analys-
ing possible feature combinations. The advantage of this
method is that the model analysed is treated as a “black box”,
meaning that the analysis can be performed for various ma-
chine learning models regardless of whether and what informa-
tion about feature importance is returned by the model. The dis-
advantage for larger datasets is the high computational com-
plexity. Shapley values can be visualised in many ways helping
analysis of feature importance, for instance in form of so-called
beeswarm plots shown in Figure 3. More detailed plots are pro-
vided in Figure 4 (bar plots) and Figure 5 (waterfall plots).

Learning Curve for RidgeClassifier
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Fig. 2. Learning curves for selected algorithms

The Shapley values on Figure 4 are means of absolute val-
ues of the influence of features. The exact influence of each
feature on classification result of specific heap is varying, as
shown on Figure 5. Analysing the features that affect the classi-
fication of heaps into groups that impact the environment and
those that do not impact the environment can contribute to the
identification of individual features that have the strongest influ-
ence on the classification result and those whose influence is
negligible. In the case of sites classified as True Positives
(Fig. 4, left plot) one feature has the strongest influence on the
classification: C06 — status of heap reclamation, with an abso-
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Table 3

Prediction results for the selected algorithms on the training dataset using cross-validation

NN NEEEEE N = H N

b |

c . .

d | ||

e . .

f N N
a expert assessment TP FP FN TN
b MaxAbsScaler MLPClassifier 23 6 217
¢ MaxAbsScaler  RidgeClassifier 22 6 317
d MaxAbsScaler  LogisticRegression 22 6 3 17
e StandardScaler BernoulliNB 23 6 217
f MaxAbsScaler SVC 22 6 317

Source: this study

lute value of +0.21. The weaker interaction in the absolute value
range has 5 characteristics. These are: C18 — Location of the
facility on soils of quality classes I-Ill (+0.1), C55 — Agricultural
and forestry use (+0.06), C20 — Geohazards — Mining areas
(+0.06), C15 — Thermal condition of the facility (+0.55) and C22
— Geohazards — Areas at risk of landslides. The remaining fea-
tures indicate a very weak (14 features with an absolute value
ranging from 0.04 to 0.02) to insignificant impact of the facility
on the environment (13 features with an absolute value up to
0.01).The 21 remaining features with a total impact of 0.05 have
a negligible impact on the assessment of the facilities.

In the case of classifying an heap into a group of disposal
sites that do not have an impact on the environment, one fea-
ture has the strongest impact on the classification: C06 — status
of heap reclamation, with an absolute value of +0.17. Weaker
interaction in the absolute value range has 5 features, similarly
as in the case of True Positives. These are: C18 — Location of
the facility on soils of quality classes I-Ill (+0.11), C55 — Agricul-
tural and forestry use (+0.06), C20 — Geohazards — Mining ar-
eas (+0.06), C15 — Thermal condition of the facility (+0.06). The
remaining features indicate a very weak (15 features with abso-
lute values ranging from 0.04 to 0.02) to insignificant impact of
the disposal site on the environment (14 features with absolute
values up to 0.01), and they differ in the hierarchy of occurrence
in relation to the group of features classified as True Positives.
Twenty-one features have a negligible impact on the assess-
ment of objects (totalling 0.05).

Analysing the absolute values of attributes in the environ-
mental impact of facilities, it was observed that the attribute re-
lated to the facility’s status as unreclaimed (in the group of dis-
posal sites classified as True Positives) and reclaimed (in the
group of disposal sites classified as True Negatives) is the lead-
ing attribute. In practice, when considering the environmental
impact of dumps, this feature is also important because it di-
rectly affects the quality of surface and groundwater in the area
of the waste dump. The site‘s location near agricultural and for-
est lands also has a direct impact on the environment. A waste
dump fire also negatively impacts air quality, soil quality, water
quality and vegetation. The presence of active mining areas
can affect ground stability, cause mass movements of waste,
and increase the impact on surface and groundwater.

Analysing the occurrence of feature values in the process of
the disposal site‘s impact on the environment, it was observed
that the feature relating to the dump's status as unreclaimed (in
the group of disposal sites classified as True Positives) is the

expert assessment: .1 TP TN

0 FP | FN

TN — true negatives
FN — false negatives

TP — true positives
FP — false positives

leading feature. Other significant features include geohazards
(surface flows and landslides) and the site's location in river val-
leys, as well as the presence of catchment terraces in the dis-
posal site‘s subsoil and on its surface. All of the features indi-
cated influence the heap's impact on the soil and water environ-
ment. In the case of the analysis of the disposal sites classified
as True Negatives, the leading features also include the dis-
posal sites’ status as reclaimed, meaning it has no environmen-
tal impact (through, among other things, the elimination of the
impact of atmospheric precipitation, minimizing dust on the sur-
rounding environment and the absence of fires), as well as the
presence of impermeable layers in the subsoil. The presence of
these factors contributes to the dump’s lack of environmental
impact.

Feature importance analysis (Fig. 6) was also performed
using the Permutation Importances method. This function
changes the values of individual features in the input data and
examines the impact of these changes on the resulting predic-
tion results relative to those obtained using unmodified data
(Scikit-learn, 2025).

Permutation importances analysis shows the sensitivity of
algorithms under consideration for changes in values of specific
features. The features with negative values represents noise or
overfitting. Combining results from Shapley values analysis and
permutation importances allows further removal of unimportant
features from the dataset.

CONCLUSIONS

Over the centuries, mining activities have contributed to the
generation of waste, which was stored in waste dumps located
near mining plants. The location of these facilities directly in the
environment (without the safeguards required by current legis-
lation) contributed to their negative impact on groundwater, sur-
face water, air, soil and vegetation. Assessing the environmen-
tal impact of historical waste dumps is a complex, lengthy and
capital-intensive process, as each facility is analysed individu-
ally according to a developed research plan. The use of ma-
chine learning algorithms can be a tool to streamline the pro-
cess of assessing waste dumps.

The possibilities described in this article for applying ma-
chine learning algorithms to assess the environmental impact of
coal mining waste dumps, using features characterizing both
the object and its broader surroundings, demonstrated that this
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Description of features:

Feature

symbol Feature name

Co1 Area [ha]

C02 Waste quantity [thousand Mg]

C03 Beginning of operation

Co4 End of operation

Co05 Deposition period

C06 Reclaimed facility

Cco7 Facility height - highest point

Co08 Facility height - lowest point at the foot

C09 Height

Cc10 Occurrence of a major groundwater reservoir

c1 Risk of a threat to a groundwater body

C12 Location of the facility in river valleys

C13 Occurrence of inland water bodies in the vicinity of the facility

C14 Reliable areas in the vicinity of the facility

C15 Reclaimed facility

C16 Vegetation coverage of the facility

Cc17 Facility in operation

C18 Location of the facility on soils of quality classes I-lI

Cc19 Geological structure of the subsoil on which the facility was
located

C20 Geohazards - Mining areas

c21 Geohazards - Terrain deformation according to InMoTep

C22 Geohazards - Areas at risk of landslides

C23 Geohazards - Facility location in areas at risk of vertical
movements

C24 Wind rose Dominant wind direction SW

C25 Wind rose - dominant wind direction W

C26 Wind rose - dominant wind direction WNW

c27 Wind rose - dominant wind direction NW

C28 Wind rose - dominant wind direction N

C29 Wind rose - dominant wind direction ESE

C30 Wind rose - dominant wind direction SE

C31 Wind rose - dominant wind direction SSW

C32
C33
C34

C35
C36
C37
C38

C39
C40

C41

c42
c43
c44

C45
C46
C4a7
C48

C49

C50
C51

C52
C53
C54
C55

Occurrence of meadows in the area of the site

Geological structure of the bedrock - valley floors

Geological structure of the bedrock - valley floors and boulder
clays

Geological structure of the bedrock - boulder clays
Geological structure of the bedrock - loess, sands;

Geological structure of the bedrock - lacustrine-glacial and clays

Geological structure of the bedrock - in places with sands and
gravels

Geological structure of the bedrock - Valley floor muds
Geological structure of the bedrock - Sands and sands with
gravels; Sandstones, conglomeratic sandstones

Geological structure of the bedrock - Muds, sands, and river
gravels of floodplain terraces

Geological structure of the bedrock - rivers

Geological structure of the bedrock - rivers and valley floors
Geological structure of the bedrock - floodplain/supra-floodplain
terraces

Geological structure of the bedrock - floodplain terraces
Geological structure of the bedrock - hard coal

Geological structure of the bedrock - fluvial

Geological structure of the bedrock - Sands and gravels [fluvial
glacial; muds], sands, and gravels

Geological structure of the bedrock - Sands and gravels [fluvial
glacial; muds] of valley floors

Geological structure of the bedrock - floodplain

Geological structure of the bedrock - Sands and river gravels of
floodplain terraces 0.5-2.5 m above sea level Rivers and
boulder clays

Geological structure of the bedrock - Gravels

Geological structure of the bedrock - River sands and gravels
Geological structure of the bedrock - Fluvioglacial gravels
Agricultural and forestry use

Fig. 3. Shapley value graph for a subset of the data

The lack of the RidgeClassifier algorithm is due to incompatibility with the shap library. Red indicates high feature values, blue indicates
low feature values, and the distance of a point from the centreline indicates the feature’s influence on the classification of a single object
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Fig. 4. Bar plots of Shapley values for classification of True Positives (left plot) and True Negatives (right plot) using
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Fig. 5. Waterfall plots of Shapley values for classification of one sample of True Positive classification (left plot) and one sample
of True Negative classification (right plot) using LogisticRegression
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Permutation importances for Ridge Classifier
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Fig. 6. Graphical representation of feature importance analysis for individual algorithms by means of Permutation importance
algorithms

The description of features is shown in Figure 3

tool meets its intended objectives. Training conducted on the
training set indicated that it is possible to achieve prediction ac-
curacy of around 80%. The existence of objects simultaneously
classified by multiple algorithms inconsistently with the training
label may indicate the absence of a significant feature in the set
orincorrect expert assessment. It should be noted that the train-
ing set is relatively small, and machine learning algorithms may
show overfitting, i.e., excessive adaptation to the input data, re-
sulting in worst prediction results for new data not seen during
training. It is advisable to acquire data for new objects, if possi-
ble, characterizing new features other than those previously
available, like changing the properties of the deposited material
due to weathering, such as the impact of heavy rainfall, and

have the results obtained verified by independent experts. The
research indicates that the best algorithm for determining the
environmental impact of spoil heaps would be the BernoulliNB
algorithm, followed by the RidgeClassifier (both achieving up to
87% prediction accuracy), with the currently available training
dataset. Its potential extension could improve the results of the
MLPClassifier, SVM, and LogisticRegression algorithms.
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