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Abstract

This paper presents the potential application of supervised machine learning algorithms to assess the
environmental impact of mine disposal sites. Algorithms available for Python from the scikit-learn and
pandas libraries were applied to a group of sites representing mine waste dumps used for the disposal
of hard coal mining waste. Each disposal site was described with 11 attributes (site characteristics,
waste characteristics, groundwater, surface water, air, soil, atmospheric factors, geology, geohazards,
nature, and human environment) and 73 features (categorical, numerical, and descriptive) detailing the
sites’ environmental impact. As a result of applying the learning process to training data and verifying it
on test data, prediction results of at least 80% were obtained for all algorithms tested. The results
indicate that the best algorithm for determining the environmental impact of the waste dumps would be
the BernouliNB algorithm (86% prediction accuracy), followed by the RidgeClassifier algorithm (87%
prediction accuracy), with the currently available training dataset. Potential extension of the dataset
could improve the results of the MLPClassifier, Support Vector Machine, and LogisticRegression
algorithms.

Introduction

Hard coal mining has since the 15th century generated waste, deposited in heaps in former mining
areas, near the then-existing mining plants (Jaros, 1975; Piagtek, 1995; Rostanski, 2006; Chudy et al.,
2014; Switata-Trybek and Switata-Mastalarz, 2018) and mostly located in exploited open-pit deposits of
sand and gravel without protection layers above the permeable bedrock (Szczepanhska-Plewa et al.,
2010). The location of these disposal sites directly in the environment (without the protections required
by current legislation) has contributed to their negative impact on groundwater, surface water, air, soil
and vegetation (Kostrz-Sikora et al., 2013). The extent and type of impacts result from the sum of
physicochemical processes occurring in the mass of accumulated waste, the unfavorable
hydrogeological and geological conditions in the surrounding area, and the lack of technical solutions to
limit the release of potential contaminants into the environment. The potential negative impact of mining
waste dumps on the environment is influenced by several factors, the most important of which include:
the chemical composition of the accumulated waste, its compaction, selective or non-selective waste
storage, rainwater infiltration through the structure, ventilation conditions (Konior, 2006; Czajkowska et
al., 2018), hydrogeological and hydrological conditions in the area of the site, climatic factors, the time
of waste deposition, and the extent and nature of geohazards (landslides, floods, and mining-induced
deformation in the areas where the heap is located; Sroga et al., 2017; Baza Hatdy). The chemical
composition of the accumulated waste is determined by the type of mineral extracted and the
technological processes used during its processing, which in turn influence the diversity of impacts of
the dumps on the soil and water environment, as well as on air pollution.

The impact of hard coal mining and processing waste disposal sites on groundwater and surface water
is mainly related to the leaching of sulphates, chlorides and heavy metals from the accumulated waste
(Twardowska, 1981; Szczepanska, 1987; Chudy and Marszatek, 2010: Czajkowska et al., 2018;
taganowska, 2019). The following elements were found in these waters: Al, Mn, Fe, V, Zn, Li, Co, Cd,
Be, Pb and Cu (Twardowska, 1981; Szczepanska, 1987; Szczepanska and Twardowska; 1999;



Stefaniak and Twardowska, 2009; Szczeparska-Plewa et al., 2010; Zajgc and Zarzycki, 2013; Chudy
et al., 2014; Czajkowska et al., 2018; Laganowska, 2019; Wolkersdorfer and Mugova, 2022),

The impact of hard coal waste heaps on soils may be related to their increased salinity and sulphur
content as well as the concentration of heavy metals (Rusin et al., 2018; Piekut et al., 2018). Sulphur
compounds and tar substances resulting from the self-heating of mining waste accumulated on burned
heaps are washed out by rainwater from the dumps and permeate into the soil (Styrol, 2020). Heavy
metals, including Zn, Pb, Cd, Cu, Ni, As, Cr and Hg, were found in the soils (Rusin et al., 2018, Piekut
et al., 2018). In the area around the waste dumps, air pollution may occur through the release of fine
dust from their surfaces, that lack or are only sparsely covered with vegetation. Furthermore, in the case
of self-heating and spontaneous combustion of hard coal waste heaps, CO2, CO, SOz, H2S, CH4 are
released into the atmosphere (Rézanski, 2019; Fabianska et al., 2019; Styrol, 2020).

Current legal regulations specifically concern reduction of the negative impact of waste disposal facilities
on the environment (Polish Mining Waste Act, 2008; Polish Waste Act, 2023), through the obligation to
monitor environmental components (Regulation, 2014). As part of the monitoring of waste heaps,
compounds and indicator parameters (specific to the type of waste deposited) are examined in surface
water, leachate, and groundwater, and subsidence of the surface of the mining waste disposal facility is
monitored (Regulation, 2014). Mining waste disposal sites have been adapted to applicable
environmental protection law (i.e., monitoring is conducted) or closed if such technological possibilities
are not justified (Polish Mining Waste Act, 2008). However, disposal sites that were once used by the
mining industry, and for which it is impossible to identify their owners or current managers, are not
environmentally monitored (Glubniak-Witwicka et al., 2012). The environmental impact of historical
mining waste dumps has been the subject of many studies (Paszcza and Krogulski, 2006; Pikon and
Bugla, 2007; Zdechlik et al., 2011; Foltyn et al., 2011; Wrbbel et al., 2012; Stefaniak et al., 2013; Chrzan
and Mojza, 2018; Sottysiak and Rézkowski, 2025). Research on the environmental impact of waste
dumps, dumping grounds and landfills where mining waste was deposited has also been conducted at
the Polish Geological Institute - NRI (PGI-NRI) since 2012. As part of the work, an inventory of mining
waste dumps, including historical ones, was conducted and their negative environmental impact was
assessed. This assessment was based on archival and current research results, historical information
from the literature on groundwater and surface water, air pollution (in some cases), soil and the chemical
composition of waste deposited in the dumps. The inventory conducted constituted material for the
diagnosis of environmental conditions in the area of individual mining waste disposal sites, as well as
for the assessment and scope of their potential impact at a national scale (Fajfer et al., 2013; Kostrz-
Sikora et al., 2013; Sroga et al., 2017; Baza Hatdy).

Assessing the environmental impact of historic waste dumps is a complex process requiring a thorough
understanding of the chemical composition of the stored waste, as well as of the geological,
hydrogeological and hydrological conditions in the area surrounding the dump. This involves conducting
a series of tests of physicochemical parameters (including chemical leaching) in waste samples
collected from various depths within the dump, monitoring groundwater (installing piezometers) and
surface water, as well as soils in the area surrounding the site. This is a lengthy and capital-intensive
process, as each dump is analysed individually.

An alternative to this assessment process can be the use of supervised machine learning algorithms.
This type of learning utilizes algorithms that map input data onto output data based on sample datasets
divided into test and training data, as well as classification (for data separation) and regression (for data
matching) algorithms (Sarker, 2021). However, important conditions for using machine learning methods
include the appropriate definition of the research goal, having a large dataset and proper preparation of
the data for the learning process.

Machine learning (ML) algorithms are currently widely used in the field of environmental sciences
(Kuzniar, 2016; Sun et al., 2020; Ma et al., 2021; Haupt et al., 2022; Xia et al., 2022: Uddin et al., 2023;
Piotrowska and Dgbrowska, 2024; Pasa et al., 2025). One area of application of ML algorithms, although
little explored, is the assessment of the environmental impact of mining waste dumps. Recurrent neural
networks have been used to predict the rate of rainwater infiltration through the dump body and the
chemical composition of leachate flowing from the dump depending on weather conditions, with
particular emphasis on rainfall amounts over the years (Ma et al., 2021). Decision tree algorithms and
the long-short-term memory (LSTM) algorithm were used to forecast the amount of leachate generated
during spring in waste dumps (with particular emphasis on spring floods resulting from snow and ice
melt) (Zhang et al., 2023). Machine learning models: multiple linear regression (MLR), support vector
regression (SVR), random forest (RF), decision tree (DT), and extreme gradient boosting (XGB), were



used to predict the stability of tailings pond slopes (Chand et al., 2025). Automatic machine learning
(AutoML) combined with Bayesian modeling was used to predict the environmental impact assessment
of mining activities (Gerassis et al., 2021). Support Vector Machine (SVM), Artificial Neural Network
(ANN) and Random Forest (RF) methods were used to predict heavy metal concentrations (Zn, Pb, Mn,
Cu and Cd) in soils near a mining waste disposal facility due to acidic drainage seepage into the soil
(Trifi et al., 2022). The literature search indicated the application of machine learning methods in various
areas of the dump’s environmental impact (including soils, slope stability and leachate), but did not
provide information regarding the use of such methods to assess comprehensive environmental impact.
Modeling processes occurring within heaps, while taking into account external factors, is a very
demanding task, both in terms of the proper selection of input data and knowledge of the processes
occurring within the facility.

This paper attempts to assess the environmental impact of waste heaps using supervised machine
learning algorithms. The goal was to determine whether supervised machine learning algorithms are a
suitable tool for this type of task. If the answer is positive, the next step was to find the optimal machine
learning algorithm whose prediction results would most accurately represent the environmental impact
of mining disposal sites. Supervised machine learning algorithms are primarily used to forecast and
predict outcomes based on previously defined patterns. Regression, classification, and clustering
algorithms are most commonly used. Depending on the defined research goal and the size of the dataset
planned for the study, the appropriate algorithm is selected, preceded by testing stages on as many
algorithms as possible using scaling algorithms (reducing the ranges of features in the dataset)
describing the object.

Characteristics of the Study Area

Geographical and geological setting. The study area is located in southern Poland in the Upper
Silesian Coal Bassin (USCB). Geographically the USCB is sited in the Silesian Upland, the Krakow-
Czestochowa Upland and the Os$wiecim Basin.The USCB covers a total area of 7250 km?2. Most of the
USCB (5 650 km?) belongs to the Silesian and western Lesser Poland regions, an the smaller part to
the Czech Republic (1 600 km? in the Moravian-Silesian region). The Carboniferous basement is
composed of Precambrian (slates, gneisses), Cambrian (sandstones and mudstones) and Devonian
(dark grey and black dolomites, as well as organic and detrital limestones) deposits. The Carboniferous
succession begins with a carbonate association, which transitions into marine clastic deposits and then
into the molasse-like coal-bearing strata of the Mississippian and Pennsylvanian (Kotas, 1995; Jureczka
and Nowak, 2016). These deposits are divided into four lithostratigraphic units: the Paralic Series, the
Upper Silesian Sandstone Series, the Mudstone Series, and the Krakéw Sandstone Series. A
characteristic feature of the Carboniferous coal-bearing deposits is their distinct division into a Paralic
Series and a Limnic Series. Formations developed exclusively under terrestrial conditions overlie Paralic
formations with a stratigraphic gap. The total thickness of coal-bearing deposits reaches 8,500 m
(Jureczka and Nowak, 2016).

The Paralic Series is composed of mudstones, claystones, and sandstones with interbeds
conglomerates, coal and carbonaceous shales. The thickness of the strata in this series ranges from
~200 m in the eastern part of the USCB to ~3,800 m in its western part. The numerous coal seams
typically have a thickness of 1.0 to 1.5 m. The Limnic Series is represented by the Upper Silesian
Sandstone Series, the Mudstone Series, and the Krakéw Sandstone Series. The Upper Silesian
Sandstone Series is composed of gravels and sandstones, which dominate over the mudstones and
claystones. The coal seams in this series are usually thick, commonly with a thickness of 4-8 m, up to
a maximum of 24 m (Jureczka et al., 2005). The maximum stratal thickness in this series (700 m) occurs
in the western part of the USCB. It decreases towards the east, until it disappears at the north-eastern
border. The Mudstone Series is represented by mudstones and claystones with sandstone interbeds.
The maximum thickness of the series in the western part of the USCB reaches 2 km to several tens of
metres in the eastern part. Coal seams in this series are humerous, reaching thicknesses of up to 1.5
m. The Krakow Sandstone Series is dominated by coarse- and medium-grained sandstones with
interbeds of mudstones and claystones, as well as coal seams. The thickness of the coal seams is up
to 6.0 m. The overburden consists of Triassic, Neogene (Miocene) and Quaternary deposits, less
frequently Permian and Jurassic (Jureczka et al., 2005; Jureczka and Nowak, 2016).

Hydrogeological setting. The USCB is divided into two subregions: Subregion | (northeastern) and
Subregion 1l (southwestern). Subregion | contains Quaternary, Jurassic and Triassic aquifers,
hydraulically connected to Carboniferous strata. In Subregion Il, the hydraulic connection between
Carboniferous and Quaternary aquifers occurs only locally within hydrogeological windows (R6zkowski
et al., 2013).



The most important aquifers within the USCB are found in Quaternary, Triassic and Carboniferous
formations. Quaternary formations have varied hydrogeological conditions. They are fed by infiltrating
water from precipitation and surface water. Quaternary aquifers occur in sandy gravel deposits and their
thickness varies from a few to several dozen metres (Rozkowski et al., 2013). The Triassic
hydrogeological profile has three main aquifers : the Muschelkalk, the Roet and the middle and lower
Buntsandstein. The main Triassic aquifers occur in carbonate units of the Muschelkalk and the Roet.
These are fissured-karst aquifers, highly permeable and strongly water-bearing. The hydrogeological
profile of the Carboniferous System of this region includes sets of separate fissured-porous aquifers
composed of sandstones and conglomerates. These aquifers, with thicknesses ranging from several to
several tens of metres, are isolated from each other by impermeable claystone intercalations. The
aquifer of the Upper Carboniferous reaches a thickness of up to 4,500 m (Rézkowski, 2008; Rézkowski
and Rozkowski, 2011).

Selection of sites for study. The basic condition for selecting the study sites was the assumption of
the availability of as many heaps and facilities as possible and of data describing each site. This
condition is important when using supervised machine learning methods.

Mining waste from hard coal mining constitutes the largest group of waste accumulated in heaps and
dumps in Poland. Currently, over 436,154 million tonnes of mining and processing waste has been
accumulated in sites in the USCB area (Environment, 2025). As part of the work carried out by PGI-NRI
in 2012, 104 mining waste disposal sites were inventoried, where waste from hard coal mining and
processing had accumulated (Kostrz-Sikora et al., 2013; Fajfer et al., 2025). The selection of study sites
was made on the basis of previous work carried out at PGI-NRI (Kostrz-Sikora et al., 2013; Fajfer and
Kostrz-Sikora, 2022; Baza Hatdy; Fajfer et al., 2025), available published data, archival materials and
expert knowledge. The initial selection of sites was made at the data collection stage (among other
things, it was analysed whether a given facility had been demolished and the area designated for other
services) and the next selection was made at the stage of constructing the input dataset (the availability
of data describing the facilities was analysed in available published data or archival materials). As a
result, 48 heaps and facilities from hard coal mining located in the USCB area in the provinces of Silesia
and Matopolska (in its western part) were selected for the environmental impact assessment study
(Fig.1). These were active (3 sites), inactive (45) with some reclaimed and partially reclaimed (22 sites)
where mainly hard coal mining and processing waste was accumulated in a non-selective manner, but
also in some cases industrial waste (e.g. slag from heat and power plants).
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Fig. 1 Location of the sites analysed to test their environmental impact (simplified geological sketch map
after Jureczka et al., 1995)

Methods
Attributes and features. Each heap was described with 11 attributes (site characteristics, waste
characteristics, groundwater, surface water, air, soils, atmospheric factors, geology, geohazards, nature
and human environment) and 73 features (categorical, numerical and descriptive) detailing the site's
impact on the environment (Table 1), creating a dataset for further research (Baza Hatdy; Baza OPPI
TPP 2.0; CBDG, 2025; Bank Danych o Lasach, 2025; GDOS, 2025; INMoTep, 2025; Meteoblue, 2025;
Worldclim, 2025; Karty JCWPd, 2025; Karty JCWP, 2025; DTM, 2025). The set of input data
characterizing attributes and features may tend to decrease, due to the recovery of waste accumulated
on the heaps and no new ones being created, which will impact future analyses.

Table 1 Environmental attributes and features including type of feature

No.

Attribute

Feature

Type of feature

1.

Site characteristic

area, height

numerical

status of the heap (operational, closed,
reclaimed, unreclaimed, complete, exploited
— waste recovery from the heap)

categorical

heap id, heap name, municipality name

descriptive

Waste characteristic

type of waste (mining, processing, mining and
processing, other - mining waste not
selectively deposited with energy waste)

categorical

amount of accumulated waste, storage time

numerical

Underground water

occurrence and susceptibility to
anthropopressure on the major groundwater
reservoir, ocurrence and characteristics of the
groundwater bodies (including risk of
exposure to pollution), protection zones of
groundwater intakes (designated by the
authorities)

categorical

status of the groundwater bodies

descriptive

Surface water

characteristics of the Surface bodies (risk of
exposure to pollution, location of the disposal
site in areas: waterlogged, marshy, dry, in
river valleys, in close proximity to water
bodies), risk of flooding

categorical

Air

thermal condition of the heap (active or
inactive), presence of vegetation on the site,
waste recovery from the heap

categorical

Atmospheric factors

precipitation amount in the area of the dump,
average annual rainfall from 1970-2020

numerical

Soils

occurrence of soils of quality class I-1ll and on
organic soils in the area of the site

categorical

Geology

the presence of permeable and impermeable
deposits in the base of the facility

categorical

Geohazards

occurrence of landslides and surface flows as
a result of the large slope of heaps, operation
of a mining plant in the vicinity, presence of
deposits of mineral resources

categorical

10.

Nature

occurrence of protected area forms of nature
(Natura 2000 areas, Protected Landscape
Areas, National Parks, Landscape Parks,
nature reserves, ecological areas, protected
forest areas)

categorical

11.

Human environment

occurrence of spa area, residential and public
buildings, prevailing wind direction, presence
of groundwater protection zones (designated
by the authorities)

categorical




Source: Fajfer et al., 2025 modified

To predict parameters affecting the assessment of the environmental impact of the waste dumps, the

first stage of the study (aimed at determining whether supervised machine learning algorithms are a

suitable tool for assessing the environmental impact of waste dumps) involved use of supervised

machine learning algorithms from the scikit-learn (Scikit-learn, 2025) package available in Python

libraries. Because the problem at hand boils down to the classification of yes/no (0/1) sites, this

supervised learning only utilized classification algorithms representing the following classes (Géron,

2018):
— Linear models: RidgeClassifier, SGDClassifier and Perceptron Decision trees:

DecisionTreeClassifier and ExtraTreeClassifier;

— Naive Bayesian classifiers: GaussianNB, ComplementNB and BernoulliNB Support vector
machines: NuSVC and LinearSVC;

— Nearest neighbor algorithms: KneighborsClassifier;

— Neural network: MLPClassifier;

— Boosting algorithms (Ensemble): ExtraTreesClassifier, AdaBoostClassifier;
RandomForestClassifier and GradientBoostingClassifier.

Expert Assessment. Each heap was analysed in terms of representative factors influencing its impact
on individual elements of the environment, both natural and human. These factors included the site's
impact on groundwater and surface water, air pollution, impact on soil and vegetation and on the human
environment. The analyses were carried out taking into account the influence of the following elements:
the amount and type of waste deposited, the surface area, the geological structure of the ground, as
well as the distance from protected areas, residential buildings and public buildings. Each of the factors
defined was assessed and measured by an expert for each of the 48 dumps selected for the study. The
expert assessed each variable on an ordinal scale from 0 to 0.9, where 0 meant no impact and 0.9
meant a significant impact. In general, the lack of impact of a given variable on the environment ranged
from 0 to 0.3, while the impact of a facility on the environment ranged from above 0.3 to 0.9 for a given
variable. The number of values for each factor analysed was variable.

Data Preparation. To prepare the input data for the training process, a pre-prepared dataset consisting
of 11 attributes and described by 73 features was used. The data preparation process involved creating
new features from related features (e.g., relative height from height measurements). Categorical data
was converted into binary features using One Hot Encoding. Descriptive data was converted into
features containing word roots and word root pairs and their frequency. After the described data
transformations into numerical values, the number of features was 183. Removing low-variability
columns reduced the number of features to 139 and removing intercorrelated features lowered the
number to 112. Reduction of the number of features is intended to improve the model's training quality,
as low-variability features contribute little information, while highly intercorrelated features duplicate
information.

Results and discussion

Finding the Optimal Algorithm and Its Hyperparameters. Choosing the optimal machine learning
method involves not only selecting the algorithm but also selecting optimal parameter values (different
for each algorithm), which influence its behavior and, ultimately, its results. Parameters define algorithm
behaviors such as the initial partitioning of input data, the size of the algorithm's internal structures (e.qg.,
number of neurons, tree size), learning sensitivity and data transformation functions. Parameters should
be tailored to the input data. Because the number of algorithm and parameter combinations during
training and testing reached ~30,000, the RandomizedSearchCV method was used to analyse them to
make an acceptable quantity of repetitions in comparison to GridSearchCV, which does runs for all
combinations of algorithms and parameters and which would take much more time. This method
conducts a series of training and testing sessions using these machine learning algorithms on a training
dataset and various randomly selected combinations of their parameter values from a given range. It
then creates a ranking list (i.e., identifies the algorithms with the highest prediction confidence). This
process required several iterations (including changing the list of algorithms analysed by removing both
the lowest-performing algorithms from the analysis list and the best performing ones to better check
algorithms that achieved average results) until acceptable results were achieved.
RepeatedStratifiedKFold was used as the cross-validation algorithm, an algorithm for repeated splitting
of the dataset into training and test sets, while maintaining the balanced representations of classes
present in input data. The data number of splits was 4 and 5 and the count of repetitions was 3 to 5,



using 5 splits with 3 repetitions for final calculations. This was also used to prevent overfitting, together
with enabling overfitting preventing hyperparameters in specific algorithms, for instance alpha parameter
or early stopping.

After searching for the optimal algorithm and its hyperparameters using the method described above on
a set of 112 features, only two algorithms achieved 80% accuracy. It was assumed that the reason for
this might be a large number of features exceeding the number of objects in the set (the so-called curse
of dimensionality (Géron, 2018: a large number of features causes significant variation in both the
training samples to which the algorithm adapts and the validation samples, which can lead to erroneous
predictions). Therefore, an initial feature reduction was performed using a combination of the
SelectFromModel function with the RandomForestClassifier, LogisticRegression, LinearSVC
algorithms, which give information about feature importance and also the SelectKBest algorithm with
the f_classif function. The reduction aimed to select sets (10, 15, 20, 25, and 30) of the most significant
features using selected algorithms, which were then combined into a single set. As a result, sets of 37,
46, 55, 68, and 86 features were selected (because some features were selected by more than one
algorithm). Repeated tests on sets with reduced feature counts showed an increase in accuracy to ~88%
on sets with 37, 46 and 55 features. Training results on sets with a larger number of retained features
were less accurate (<85%). Further tests were conducted on this 55-feature set due to similar results to
sets with fewer features and the desire to preserve as many of the original features as possible. The
results of the search for optimal algorithms and their hyperparameters for assessing the environmental
impact of spoil heaps using RandomizedSearchCV and cross-validation are shown in Table 2. The table
shows the algorithms that achieved an average cross-validation accuracy of >85%. Additionally, the
standard deviation of the cross-validation results is shown. The algorithms in this table, i.e.,
MLPClassifier, RidgeClassifier, BernoulliNB, SVC and LogisticRegression, were selected for further
testing. Learning quality was verified by generating learning curves for the algorithms noted above (Fig.
2).

Table 2. Ranking of algorithms resulting from the procedure of selecting algorithms and their
hyperparameters using RandomizedSearchCV.

Standard deviation
Mean of cross- of cross-validation Scaling Number of
ML algorithm validation results results algorithm features
MLPClassifier 89% 0.09 MaxAbsScaler 46
MLPClassifier 88% 0.11 Normalizer 37
MLPClassifier 87% 0.10 MaxAbsScaler 55
RidgeClassifier 87% 0.08 MaxAbsScaler 55
MLPClassifier 87% 0.09 MaxAbsScaler 46
BernoulliNB 86% 0.09 StandardScaler 46
BernoulliNB 86% 0.09 StandardScaler 55
BernoulliNB 86% 0.10 MinMaxScaler 37
RidgeClassifier 86% 0.08 MaxAbsScaler 46
MLPClassifier 86% 0.12 MaxAbsScaler 37
SvC 86% 0.07 RobustScaler 37
SVC 86% 0.09 MaxAbsScaler 55
LogisticRegression 86% 0.10 MaxAbsScaler 68
MLPClassifier 86% 0.11 Normalizer 37
MLPClassifier 86% 0.11 Normalizer 46
SvC 86% 0.08 MaxAbsScaler 46
LogisticRegression 86% 0.09 MaxAbsScaler 55
MLPClassifier 86% 0.09 MaxAbsScaler 55
MLPClassifier 86% 0.09 MaxAbsScaler 46
LogisticRegression 86% 0.09 MaxAbsScaler 46
LogisticRegression 86% 0.10 Normalizer 37
MLPClassifier 86% 0.10 Normalizer 37




MLPClassifier 86% 0.10 MaxAbsScaler 55
Source: this study

The table shows the algorithms that achieved an average cross-validation accuracy of over 85%.
Additionally, the standard deviation of the cross-validation results is provided. The algorithms in this
table, i.e., MLPClassifier, RidgeClassifier, BernoulliNB, SVC, and LogisticRegression, were selected for
further testing. Learning quality was verified by generating learning curves for the algorithms noted
above (Fig. 2).
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Fig. 2 Learning curves for selected algorithms

The LogisticRegression, MLPClassifier, and SVC algorithms, where the training accuracy is 1 from the
initial training (from the smallest sample sizes), fit the training data strongly, but the validation results
are lower, indicating poorer generalization of the trained model to new data. In contrast, the
RidgeClassifier and BernoulliNB algorithms do not fit the test data closely, and the validation accuracy
increases, indicating greater resistance to model overfitting. For the algorithms selected, the prediction
results for the training set were tested using cross-validation (Table 3) to verify the model's performance
(prediction stability) on specific data. Therefore, those algorithms are recommended for operating on a
described set of data.



Table 3. Prediction results for the selected algorithms on the training dataset using cross-validation

expertassessment [ ENNEN N | B | [ [ [ [ ] [ (] W orremw
MLPClassifier B B 23 6 217
RidgeClassifier | ] | ] B 2 6 317
LogisticRegression . . . 2 6 317
BernoulliNB | ] B 23 6 217
svc | ] B B 2 6 317
expert assessment: . 1 P TN

0 o FN

Source: this study
TP — True Positives, FP — False Positives, FN — False Negatives, TN — True Negatives

Each of the five algorithms tested correctly classified 17 heaps as having no impact on the environment
(TN) and incorrectly classified 6 heaps as having an impact on the environment (FN) (out of 23 marked
as having no impact in the training set). Similarly, 22 or 23 heaps were correctly identified as having an
impact (TP), while 3 or 2 were incorrectly identified as having no impact (FP) (out of 25). Therefore, the
accuracy for the entire set is 81.25-83.3%, 88-92% for objects marked as having an impact, and 73.9%
for objects marked as having no impact (values differs from those stated in Table 1, as these are an
effect of cross-validation without repeats, while the latter are effects of cross-validation with repeats).
As a result of the test prediction with cross-validation, 9 objects were classified inversely to the expert
assessment by all or most of the algorithms tested. This may indicate the absence of significant features
in the set, incorrect values assigned to these features, or an erroneous expert assessment.

Feature Analysis. Features that significantly influence classification results were also identified.
Shapley values were used for this purpose. They represent the contribution of individual features to the
final value predicted by the model by analysing possible feature combinations. The advantage of this
method is that the model analysed is treated as a "black box," meaning that the analysis can be
performed for various machine learning models regardless of whether and what information about
feature importance is returned by the model. The disadvantage for larger datasets is the high
computational complexity. Shapley values can be visualised in many ways helping analysis of feature
importance, for instance in form of so-called beeswarm plots shown in Figure 3. More detailed plots are
provided in Figure 4 (bar plots) and Figure 5 (waterfall plots).
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Red indicates high feature values, blue indicates low feature values, and the distance of a point from
the centreline indicates the feature's influence on the classification of a single object.

Description of features:

Feature symbol Feature name

col Area [ha] 30
coz2 Waste quantity [thousand Mg] E:g
co3 Beginning of operation 33
co4 End of operation caa
Cos Deposition period €35
co6 Reclaimed facility c36
co7 Facility height - highest point c37
o8 Facility height - lowest point at the foot c3s
o9 Height c39
[ lv] Occurrence of a major groundwater reservoir c40
c11 Risk of a threat to a groundwater body

c12 Location of the facility in river valleys cal
c13 Occurrence of inland water bodies in the vicinity of the facility

Cci4 Reliable areas in the vicinity of the facility gi
Cc1s Thermal condition of the facility caa
C16 Vegetation coverage of the facility cas
c17 Facility in operation c46
ci8 Location of the facility on soils of quality classes I-11l ca7
c19 Geological structure of the subsoil on which the facility was located c4s
c20 Geohazards - Mining areas

c21 Geohazards - Terrain deformation according to InMoTep cas
c22 Geohazards - Areas at risk of landslides

c23 Geohazards - Facility location in areas at risk of vertical movements cs0
cz4 Wind rose Dominant wind direction SW c51
C25 Wind rose - dominant wind direction W

26 Wind rose - dominant wind direction WNW cs2
c27 Wind rose - dominant wind direction NW 53
28 Wind rose - dominant wind direction N c54
c29 Wind rose - dominant wind direction ESE C55

Wind rose - dominant wind direction SE

Wind rose - dominant wind direction SSW

Occurrence of meadows in the area of the site

Geological structure of the bedrock - valley floors

Geological structure of the bedrock - valley floors and boulder clays
Geological structure of the bedrock - boulder clays

Geological structure of the bedrock - loess, sands;

Geological structure of the bedrock - lacustrine-glacial and clays

Geological structure of the bedrock - in places with sands and gravels
Geological structure of the bedrock - Valley floor muds

Geological structure of the bedrock - Sands and sands with gravels; Sandstones,
conglomeratic sandstones

Geological structure of the bedrock - Muds, sands, and river gravels of floodplain
terraces

Geological structure of the bedrock - rivers

Geological structure of the bedrock - rivers and valley floors

Geological structure of the bedrock - floodplain/supra-floodplain terraces
Geological structure of the bedrock - floodplain terraces

Geological structure of the bedrock - hard coal

Geological structure of the bedrock - fluvial

Geological structure of the bedrock - Sands and gravels [fluvial glacial; muds],
sands, and gravels

Geological structure of the bedrock - Sands and gravels [fluvial glacial; muds] of
valley floors

Geological structure of the bedrock - floodplain

Geological structure of the bedrock - Sands and river gravels of floodplain terraces
0.5-2.5 m above sea level Rivers and boulder clays

Geological structure of the bedrock - Gravels

Geological structure of the bedrock - River sands and gravels
Geological structure of the bedrock - Fluvioglacial gravels
Agricultural and forestry use

Fig. 3. Shapley value graph for a subset of the data. The lack of the RidgeClassifier algorithm is due to

incompatibility with the shap library.
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Fig. 4. Bar plots of Shapley values for classification of True Positives (left plot) and True Negatives (right
plot) using LogisticRegression

The Shapley values on Figure 4 are means of absolute values of the influence of features. The exact
influence of each feature on classification result of specific heap is varying, as shown on Figure 5.
Analysing the features that affect the classification of heaps into groups that impact the environment
and those that do not impact the environment can contribute to the identification of individual features
that have the strongest influence on the classification result and those whose influence is negligible. In
the case of sites classified as True Positives (Fig. 4, left plot) one feature has the strongest influence on
the classification: C06 — status of heap reclamation, with an absolute value of +0.21. The weaker
interaction in the absolute value range has 4 characteristics. These are: C18 - Location of the facility on
soils of quality classes I-11l (+0.1), C55 - Agricultural and forestry use (+0.06), C20 - Geohazards - Mining
areas (+0.06), C15 — Thermal condition of the facility (+0.55) and C22 - Geohazards - Areas at risk of
landslides. The remaining features indicate a very weak (14 features with an absolute value ranging
from 0.04 to 0.02) to insignificant impact of the facility on the environment (13 features with an absolute
value up to 0.01).The 21 remaining features with a total impact of 0.05 have a negligible impact on the
assessment of the facilities.

In the case of classifying an heap into a group of disposal sites that do not have an impact on the
environment, one feature has the strongest impact on the classification: C06 — status of heap
reclamation, with an absolute value of +0.17. Weaker interaction in the absolute value range has 4
features, similarly as in the case of True Positives. These are: forestry use (+0.06), C20 - Geohazards
- Mining areas (+0.06), C15 — Thermal condition of the facility (+0.06). The remaining features indicate
a very weak (15 features with absolute values ranging from 0.04 to 0.02) to insignificant impact of the
disposal site on the environment (14 features with absolute values up to 0.01), and they differ in the
hierarchy of occurrence in relation to the group of features classified as True Positives. Twenty-one
features have a negligible impact on the assessment of objects (totalling 0.05).

Analysing the absolute values of attributes in the environmental impact of facilities, it was observed that
the attribute related to the facility's status as unreclaimed (in the group of disposal sites classified as
True Positives) and reclaimed (in the group of disposal sites classified as True Negatives) is the leading
attribute. In practice, when considering the environmental impact of dumps, this feature is also important
because it directly affects the quality of surface and groundwater in the area of the waste dump. The
site's location near agricultural and forest lands also has a direct impact on the environment. A waste
dump fire also negatively impacts air quality, soil quality, water quality and vegetation. The presence of
active mining areas can affect ground stability, cause mass movements of waste, and increase the
impact on surface and groundwater.



Features symbols and feature values
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Fig. 5 Waterfall plots of Shapley values for classification of one sample of True Positive classification
(left plot) and one sample of True Negative classification (right plot) using LogisticRegression

Analysing the occurrence of feature values in the process of the disposal site's impact on the
environment, it was observed that the feature relating to the dump's status as unreclaimed (in the group
of disposal sites classified as True Positives) is the leading feature. Other significant features include
geohazards (surface flows and landslides) and the site's location in river valleys, as well as the presence
of catchment terraces in the disposal site's subsoil and on its surface. All of the features indicated
influence the heap's impact on the soil and water environment. In the case of the analysis of the disposal
sites classified as True Negatives, the leading features also include the disposal sites’ status as
reclaimed, meaning it has no environmental impact (through, among other things, the elimination of the
impact of atmospheric precipitation, minimizing dust on the surrounding environment and the absence
of fires), as well as the presence of impermeable layers in the subsoil. The presence of these factors
contributes to the dump's lack of environmental impact.



Feature importance analysis (Fig. 6) was also performed using the Permutation Importances method.
This function changes the values of individual features in the input data and examines the impact of
these changes on the resulting prediction results relative to those obtained using unmodified data (Scikit-
learn, 2025).

Permutation Importances for RidgeClassifier Permutation Importances for BernoulliNB
C06 ] c19 ]
C55 Co6 )
Cl14 co4 )
C26 c22 1 ]
C25 €25 - )
C23 I 244 1 )
€22 1 €28 o
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Fig. 6 Graphical representation of feature importance analysis for individual algorithms by means of
Permutation importance algorithms. The description of features is shown in Figure 3

Permutation importances analysis shows the sensitivity of algorithms under consideration for changes
in values of specific features. The features with negative values represents noise or overfitting.
Combining results from Shapley values analysis and permutation importances allows further removal of
unimportant features from the dataset.

Conclusions

Over the centuries, mining activities have contributed to the generation of waste, which was stored in
waste dumps located near mining plants. The location of these facilities directly in the environment
(without the safeguards required by current legislation) contributed to their negative impact on
groundwater, surface water, air, soil and vegetation. Assessing the environmental impact of historical
waste dumps is a complex, lengthy and capital-intensive process, as each facility is analysed individually
according to a developed research plan. The use of machine learning algorithms can be a tool to
streamline the process of assessing waste dumps.

The possibilities described in this article for applying machine learning algorithms to assess the
environmental impact of coal mining waste dumps, using features characterizing both the object and its
broader surroundings, demonstrated that this tool meets its intended objectives. Training conducted on
the training set indicated that it is possible to achieve prediction accuracy of around 80%. The existence
of objects simultaneously classified by multiple algorithms inconsistently with the training label may
indicate the absence of a significant feature in the set or incorrect expert assessment. It should be noted
that the training set is relatively small, and machine learning algorithms may show overfitting, i.e.,
excessive adaptation to the input data, resulting in worst prediction results for new data not seen during



training. It is advisable to acquire data for new objects, if possible, characterizing new features other
than those previously available, like changing the properties of the deposited material due to weathering,
such as the impact of heavy rainfall, and have the results obtained verified by independent experts. The
research indicates that the best algorithm for determining the environmental impact of spoil heaps would
be the BernoulliNB algorithm, followed by the RidgeClassifier (both achieving up to 87% prediction
accuracy), with the currently available training dataset. Its potential extension could improve the results
of the MLPClassifier, SVM, and LogisticRegression algorithms.
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