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Abstract 
This paper presents the potential application of supervised machine learning algorithms to assess the 
environmental impact of mine disposal sites. Algorithms available for Python from the scikit-learn and 
pandas libraries were applied to a group of sites representing mine waste dumps used for the disposal 
of hard coal mining waste. Each disposal site was described with 11 attributes (site characteristics, 
waste characteristics, groundwater, surface water, air, soil, atmospheric factors, geology, geohazards, 
nature, and human environment) and 73 features (categorical, numerical, and descriptive) detailing the 
sites’ environmental impact. As a result of applying the learning process to training data and verifying it 
on test data, prediction results of at least 80% were obtained for all algorithms tested. The results 
indicate that the best algorithm for determining the environmental impact of the waste dumps would be 
the BernouliNB algorithm (86% prediction accuracy), followed by the RidgeClassifier algorithm (87% 
prediction accuracy), with the currently available training dataset.  Potential extension of the dataset 
could improve the results of the MLPClassifier, Support Vector Machine, and LogisticRegression 
algorithms. 
 
Introduction 
Hard coal mining has since the 15th century generated waste, deposited in heaps in former mining 
areas, near the then-existing mining plants (Jaros, 1975; Piątek, 1995; Rostański, 2006; Chudy et al., 
2014; Świtała-Trybek and Świtała-Mastalarz, 2018) and mostly located in exploited open-pit deposits of 
sand and gravel without protection layers above the permeable bedrock (Szczepańska-Plewa et al., 
2010). The location of these disposal sites directly in the environment (without the protections required 
by current legislation) has contributed to their negative impact on groundwater, surface water, air, soil 
and vegetation (Kostrz-Sikora et al., 2013). The extent and type of impacts result from the sum of 
physicochemical processes occurring in the mass of accumulated waste, the unfavorable 
hydrogeological and geological conditions in the surrounding area, and the lack of technical solutions to 
limit the release of potential contaminants into the environment. The potential negative impact of mining 
waste dumps on the environment is influenced by several factors, the most important of which include: 
the chemical composition of the accumulated waste, its compaction, selective or non-selective waste 
storage, rainwater infiltration through the structure, ventilation conditions (Konior, 2006; Czajkowska et 
al., 2018), hydrogeological and hydrological conditions in the area of the site, climatic factors, the time 
of waste deposition, and the extent and nature of geohazards (landslides, floods, and mining-induced 
deformation in the areas where the heap is located; Sroga et al., 2017; Baza Hałdy). The chemical 
composition of the accumulated waste is determined by the type of mineral extracted and the 
technological processes used during its processing, which in turn influence the diversity of impacts of 
the dumps on the soil and water environment, as well as on air pollution. 
 
The impact of hard coal mining and processing waste disposal sites on groundwater and surface water 
is mainly related to the leaching of sulphates, chlorides and heavy metals from the accumulated waste 
(Twardowska, 1981; Szczepańska, 1987; Chudy and Marszałek, 2010: Czajkowska et al., 2018; 
Łaganowska, 2019). The following elements were found in these waters: Al, Mn, Fe, V, Zn, Li, Co, Cd, 
Be, Pb and Cu (Twardowska, 1981; Szczepańska, 1987; Szczepańska and Twardowska; 1999; 



Stefaniak and Twardowska, 2009; Szczepańska-Plewa et al., 2010; Zając and Zarzycki, 2013; Chudy 
et al., 2014; Czajkowska et al., 2018; Łaganowska, 2019; Wolkersdorfer and Mugova, 2022),  
The impact of hard coal waste heaps on soils may be related to their increased salinity and sulphur 
content as well as the concentration of heavy metals (Rusin et al., 2018; Piekut et al., 2018). Sulphur 
compounds and tar substances resulting from the self-heating of mining waste accumulated on burned 
heaps are washed out by rainwater from the dumps and permeate into the soil (Styrol, 2020). Heavy 
metals, including Zn, Pb, Cd, Cu, Ni, As, Cr and Hg, were found in the soils (Rusin et al., 2018, Piekut 
et al., 2018). In the area around the waste dumps, air pollution may occur through the release of fine 
dust from their surfaces, that lack or are only sparsely covered with vegetation. Furthermore, in the case 
of self-heating and spontaneous combustion of hard coal waste heaps, CO2, CO, SO2, H2S, CH4 are 
released into the atmosphere (Różański, 2019; Fabiańska et al., 2019; Styrol, 2020). 
 
Current legal regulations specifically concern reduction of the negative impact of waste disposal facilities 
on the environment (Polish Mining Waste Act, 2008; Polish Waste Act, 2023), through the obligation to 
monitor environmental components (Regulation, 2014). As part of the monitoring of waste heaps, 
compounds and indicator parameters (specific to the type of waste deposited) are examined in surface 
water, leachate, and groundwater, and subsidence of the surface of the mining waste disposal facility is 
monitored (Regulation, 2014). Mining waste disposal sites have been adapted to applicable 
environmental protection law (i.e., monitoring is conducted) or closed if such technological possibilities 
are not justified (Polish Mining Waste Act, 2008). However, disposal sites that were once used by the 
mining industry, and for which it is impossible to identify their owners or current managers, are not 
environmentally monitored (Glubniak-Witwicka et al., 2012). The environmental impact of historical 
mining waste dumps has been the subject of many studies (Paszcza and Krogulski, 2006; Pikoń and 
Bugla, 2007; Zdechlik et al., 2011; Foltyn et al., 2011; Wróbel et al., 2012; Stefaniak et al., 2013; Chrzan 
and Mojza, 2018; Sołtysiak and Różkowski, 2025). Research on the environmental impact of waste 
dumps, dumping grounds and landfills where mining waste was deposited has also been conducted at 
the Polish Geological Institute - NRI (PGI-NRI) since 2012. As part of the work, an inventory of mining 
waste dumps, including historical ones, was conducted and their negative environmental impact was 
assessed. This assessment was based on archival and current research results, historical information 
from the literature on groundwater and surface water, air pollution (in some cases), soil and the chemical 
composition of waste deposited in the dumps. The inventory conducted constituted material for the 
diagnosis of environmental conditions in the area of individual mining waste disposal sites, as well as 
for the assessment and scope of their potential impact at a national scale (Fajfer et al., 2013; Kostrz-
Sikora et al., 2013; Sroga et al., 2017; Baza Hałdy). 
 
Assessing the environmental impact of historic waste dumps is a complex process requiring a thorough 
understanding of the chemical composition of the stored waste, as well as of the geological, 
hydrogeological and hydrological conditions in the area surrounding the dump. This involves conducting 
a series of tests of physicochemical parameters (including chemical leaching) in waste samples 
collected from various depths within the dump, monitoring groundwater (installing piezometers) and 
surface water, as well as soils in the area surrounding the site. This is a lengthy and capital-intensive 
process, as each dump is analysed individually. 
An alternative to this assessment process can be the use of supervised machine learning algorithms. 
This type of learning utilizes algorithms that map input data onto output data based on sample datasets 
divided into test and training data, as well as classification (for data separation) and regression (for data 
matching) algorithms (Sarker, 2021). However, important conditions for using machine learning methods 
include the appropriate definition of the research goal, having a large dataset and proper preparation of 
the data for the learning process. 
 
Machine learning (ML) algorithms are currently widely used in the field of environmental sciences 
(Kuźniar, 2016; Sun et al., 2020; Ma et al., 2021; Haupt et al., 2022; Xia et al., 2022: Uddin et al., 2023; 
Piotrowska and Dąbrowska, 2024; Pasa et al., 2025). One area of application of ML algorithms, although 
little explored, is the assessment of the environmental impact of mining waste dumps. Recurrent neural 
networks have been used to predict the rate of rainwater infiltration through the dump body and the 
chemical composition of leachate flowing from the dump depending on weather conditions, with 
particular emphasis on rainfall amounts over the years (Ma et al., 2021). Decision tree algorithms and 
the long-short-term memory (LSTM) algorithm were used to forecast the amount of leachate generated 
during spring in waste dumps (with particular emphasis on spring floods resulting from snow and ice 
melt) (Zhang et al., 2023). Machine learning models: multiple linear regression (MLR), support vector 
regression (SVR), random forest (RF), decision tree (DT), and extreme gradient boosting (XGB), were 



used to predict the stability of tailings pond slopes (Chand et al., 2025). Automatic machine learning 
(AutoML) combined with Bayesian modeling was used to predict the environmental impact assessment 
of mining activities (Gerassis et al., 2021). Support Vector Machine (SVM), Artificial Neural Network 
(ANN) and Random Forest (RF) methods were used to predict heavy metal concentrations (Zn, Pb, Mn, 
Cu and Cd) in soils near a mining waste disposal facility due to acidic drainage seepage into the soil 
(Trifi et al., 2022). The literature search indicated the application of machine learning methods in various 
areas of the dump’s environmental impact (including soils, slope stability and leachate), but did not 
provide information regarding the use of such methods to assess comprehensive environmental impact. 
Modeling processes occurring within heaps, while taking into account external factors, is a very 
demanding task, both in terms of the proper selection of input data and knowledge of the processes 
occurring within the facility. 
This paper attempts to assess the environmental impact of waste heaps using supervised machine 
learning algorithms. The goal was to determine whether supervised machine learning algorithms are a 
suitable tool for this type of task. If the answer is positive, the next step was to find the optimal machine 
learning algorithm whose prediction results would most accurately represent the environmental impact 
of mining disposal sites. Supervised machine learning algorithms are primarily used to forecast and 
predict outcomes based on previously defined patterns. Regression, classification, and clustering 
algorithms are most commonly used. Depending on the defined research goal and the size of the dataset 
planned for the study, the appropriate algorithm is selected, preceded by testing stages on as many 
algorithms as possible using scaling algorithms (reducing the ranges of features in the dataset) 
describing the object. 
 
Characteristics of the Study Area 
Geographical and geological setting. The study area is located in southern Poland in the Upper 
Silesian Coal Bassin (USCB). Geographically the USCB is sited in the Silesian Upland, the Kraków-
Częstochowa Upland and the Oświęcim Basin.The USCB covers a total area of 7250 km2. Most of the 
USCB (5 650 km2) belongs to the Silesian and western Lesser Poland regions, an the smaller part to 
the Czech Republic (1 600 km2 in the Moravian-Silesian region). The Carboniferous basement is 
composed of Precambrian (slates, gneisses), Cambrian (sandstones and mudstones) and Devonian 
(dark grey and black dolomites, as well as organic and detrital limestones) deposits. The Carboniferous 
succession begins with a carbonate association, which transitions into marine clastic deposits and then 
into the molasse-like coal-bearing strata of the Mississippian and Pennsylvanian (Kotas, 1995; Jureczka 
and Nowak, 2016). These deposits are divided into four lithostratigraphic units: the Paralic Series, the 
Upper Silesian Sandstone Series, the Mudstone Series, and the Kraków Sandstone Series. A 
characteristic feature of the Carboniferous coal-bearing deposits is their distinct division into a Paralic 
Series and a Limnic Series. Formations developed exclusively under terrestrial conditions overlie Paralic 
formations with a stratigraphic gap. The total thickness of coal-bearing deposits reaches 8,500 m 
(Jureczka and Nowak, 2016). 
The Paralic Series is composed of mudstones, claystones, and sandstones with interbeds 
conglomerates, coal and carbonaceous shales. The thickness of the strata in this series ranges from 
~200 m in the eastern part of the USCB to ~3,800 m in its western part. The numerous coal seams 
typically have a thickness of 1.0 to 1.5 m. The Limnic Series is represented by the Upper Silesian 
Sandstone Series, the Mudstone Series, and the Kraków Sandstone Series. The Upper Silesian 
Sandstone Series is composed of gravels and sandstones, which dominate over the mudstones and 
claystones. The coal seams in this series are usually thick, commonly with a thickness of 4–8 m, up to 
a maximum of 24 m (Jureczka et al., 2005). The maximum stratal thickness in this series (700 m) occurs 
in the western part of the USCB. It decreases towards the east, until it disappears at the north-eastern 
border. The Mudstone Series is represented by mudstones and claystones with sandstone interbeds. 
The maximum thickness of the series in the western part of the USCB reaches 2 km to several tens of 
metres in the eastern part. Coal seams in this series are numerous, reaching thicknesses of up to 1.5 
m. The Krakow Sandstone Series is dominated by coarse- and medium-grained sandstones with 
interbeds of mudstones and claystones, as well as coal seams. The thickness of the coal seams is up 
to 6.0 m. The overburden consists of Triassic, Neogene (Miocene) and Quaternary deposits, less 
frequently Permian and Jurassic (Jureczka et al., 2005; Jureczka and Nowak, 2016). 
Hydrogeological setting. The USCB is divided into two subregions: Subregion I (northeastern) and 
Subregion II (southwestern). Subregion I contains Quaternary, Jurassic and Triassic aquifers, 
hydraulically connected to Carboniferous strata. In Subregion II, the hydraulic connection between 
Carboniferous and Quaternary aquifers occurs only locally within hydrogeological windows (Różkowski 
et al., 2013). 



The most important aquifers within the USCB are found in Quaternary, Triassic and Carboniferous 
formations. Quaternary formations have varied hydrogeological conditions. They are fed by infiltrating 
water from precipitation and surface water. Quaternary aquifers occur in sandy gravel deposits and their 
thickness varies from a few to several dozen metres (Różkowski et al., 2013). The Triassic 
hydrogeological profile has three main aquifers : the Muschelkalk, the Roet and the middle and lower 
Buntsandstein. The main Triassic aquifers occur in carbonate units of the Muschelkalk and the Roet. 
These are fissured-karst aquifers, highly permeable and strongly water-bearing. The hydrogeological 
profile of the Carboniferous System of this region includes sets of separate fissured-porous aquifers 
composed of sandstones and conglomerates. These aquifers, with thicknesses ranging from several to 
several tens of metres, are isolated from each other by impermeable claystone intercalations. The 
aquifer of the Upper Carboniferous reaches a thickness of up to 4,500 m (Różkowski, 2008; Różkowski 
and Różkowski, 2011). 
Selection of sites for study. The basic condition for selecting the study sites was the assumption of 
the availability of as many heaps and facilities as possible and of data describing each site. This 
condition is important when using supervised machine learning methods.  
Mining waste from hard coal mining constitutes the largest group of waste accumulated in heaps and 
dumps in Poland. Currently, over 436,154 million tonnes of mining and processing waste has been 
accumulated in sites in the USCB area (Environment, 2025). As part of the work carried out by PGI-NRI 
in 2012, 104 mining waste disposal sites were inventoried, where waste from hard coal mining and 
processing had accumulated (Kostrz-Sikora et al., 2013; Fajfer et al., 2025). The selection of study sites 
was made on the basis of previous work carried out at PGI-NRI (Kostrz-Sikora et al., 2013; Fajfer and 
Kostrz-Sikora, 2022; Baza Hałdy; Fajfer et al., 2025), available published data, archival materials and 
expert knowledge. The initial selection of sites was made at the data collection stage (among other 
things, it was analysed whether a given facility had been demolished and the area designated for other 
services) and the next selection was made at the stage of constructing the input dataset (the availability 
of data describing the facilities was analysed in available published data or archival materials). As a 
result, 48 heaps and facilities from hard coal mining located in the USCB area in the provinces of Silesia 
and Małopolska (in its western part) were selected for the environmental impact assessment study 
(Fig.1). These were active (3 sites), inactive (45) with some reclaimed and partially reclaimed (22 sites) 
where mainly hard coal mining and processing waste was accumulated in a non-selective manner, but 
also in some cases industrial waste (e.g. slag from heat and power plants).  
 

 



Fig. 1 Location of the sites analysed to test their environmental impact (simplified geological sketch map 
after Jureczka et al., 1995) 
 
 
Methods 
Attributes and features. Each heap was described with 11 attributes (site characteristics, waste 
characteristics, groundwater, surface water, air, soils, atmospheric factors, geology, geohazards, nature 
and human environment) and 73 features (categorical, numerical and descriptive) detailing the site's 
impact on the environment (Table 1), creating a dataset for further research (Baza Hałdy; Baza OPPI 
TPP 2.0; CBDG, 2025; Bank Danych o Lasach, 2025; GDOŚ, 2025; INMoTep, 2025; Meteoblue, 2025; 
Worldclim, 2025; Karty JCWPd, 2025; Karty JCWP, 2025; DTM, 2025). The set of input data 
characterizing attributes and features may tend to decrease, due to the recovery of waste accumulated 
on the heaps and no new ones being created, which will impact future analyses. 
 
Table 1 Environmental attributes and features including type of feature 

No. Attribute Feature Type of feature 

1. Site characteristic area, height  numerical 

status of the heap (operational, closed, 
reclaimed, unreclaimed, complete, exploited 
– waste recovery from the heap) 

categorical 

heap id, heap name, municipality name  descriptive 

2. Waste characteristic type of waste (mining, processing, mining and 
processing, other - mining waste not 
selectively deposited with energy waste) 

categorical 

amount of accumulated waste, storage time numerical 

3. Underground water  occurrence and susceptibility to 
anthropopressure on the major groundwater 
reservoir, ocurrence and characteristics of the 
groundwater bodies (including risk of 
exposure to pollution), protection zones of 
groundwater intakes (designated by the 
authorities) 

categorical 

status of the groundwater bodies descriptive 

4. Surface water characteristics of the Surface bodies (risk of 
exposure to pollution, location of the disposal 
site in areas: waterlogged, marshy, dry, in 
river valleys, in close proximity to water 
bodies), risk of flooding  

categorical 

5. Air  thermal condition of the heap (active or 
inactive), presence of vegetation on the site, 
waste recovery from the heap 

categorical 

6. Atmospheric factors precipitation amount in the area of the dump, 
average annual rainfall from 1970-2020 

numerical 

7. Soils occurrence of soils of quality class I-III and on 
organic soils in the area of the site 

categorical 

8. Geology the presence of permeable and impermeable 
deposits in the base of the facility 

categorical 

9. Geohazards  occurrence of landslides and surface flows as 
a result of the large slope of heaps, operation 
of a mining plant in the vicinity, presence of 
deposits of mineral resources  

categorical 

10. Nature occurrence of protected area forms of nature 
(Natura 2000 areas, Protected Landscape 
Areas, National Parks, Landscape Parks, 
nature reserves, ecological areas, protected 
forest areas) 

categorical 

11. Human environment occurrence of spa area, residential and public 
buildings, prevailing wind direction, presence 
of groundwater protection zones (designated 
by the authorities) 

categorical 



Source: Fajfer et al., 2025 modified 
 
To predict parameters affecting the assessment of the environmental impact of the waste dumps, the 
first stage of the study (aimed at determining whether supervised machine learning algorithms are a 
suitable tool for assessing the environmental impact of waste dumps) involved use of supervised 
machine learning algorithms from the scikit-learn (Scikit-learn, 2025) package available in Python 
libraries. Because the problem at hand boils down to the classification of yes/no (0/1) sites, this 
supervised learning only utilized classification algorithms representing the following classes (Géron, 
2018): 

 Linear models: RidgeClassifier, SGDClassifier and Perceptron Decision trees: 
DecisionTreeClassifier and ExtraTreeClassifier;  

 Naive Bayesian classifiers: GaussianNB, ComplementNB and BernoulliNB Support vector 
machines: NuSVC and LinearSVC;  

 Nearest neighbor algorithms: KneighborsClassifier; 

 Neural network: MLPClassifier; 

 Boosting algorithms (Ensemble): ExtraTreesClassifier, AdaBoostClassifier; 
RandomForestClassifier and GradientBoostingClassifier. 

 
Expert Assessment. Each heap was analysed in terms of representative factors influencing its impact 
on individual elements of the environment, both natural and human. These factors included the site's 
impact on groundwater and surface water, air pollution, impact on soil and vegetation and on the human 
environment. The analyses were carried out taking into account the influence of the following elements: 
the amount and type of waste deposited, the surface area, the geological structure of the ground, as 
well as the distance from protected areas, residential buildings and public buildings. Each of the factors 
defined was assessed and measured by an expert for each of the 48 dumps selected for the study. The 
expert assessed each variable on an ordinal scale from 0 to 0.9, where 0 meant no impact and 0.9 
meant a significant impact. In general, the lack of impact of a given variable on the environment ranged 
from 0 to 0.3, while the impact of a facility on the environment ranged from above 0.3 to 0.9 for a given 
variable. The number of values for each factor analysed was variable.  
 
Data Preparation. To prepare the input data for the training process, a pre-prepared dataset consisting 
of 11 attributes and described by 73 features was used. The data preparation process involved creating 
new features from related features (e.g., relative height from height measurements). Categorical data 
was converted into binary features using One Hot Encoding. Descriptive data was converted into 
features containing word roots and word root pairs and their frequency. After the described data 
transformations into numerical values, the number of features was 183. Removing low-variability 
columns reduced the number of features to 139 and removing intercorrelated features lowered the 
number to 112. Reduction of the number of features is intended to improve the model's training quality, 
as low-variability features contribute little information, while highly intercorrelated features duplicate 
information. 
 
Results and discussion 
Finding the Optimal Algorithm and Its Hyperparameters. Choosing the optimal machine learning 
method involves not only selecting the algorithm but also selecting optimal parameter values (different 
for each algorithm), which influence its behavior and, ultimately, its results. Parameters define algorithm 
behaviors such as the initial partitioning of input data, the size of the algorithm's internal structures (e.g., 
number of neurons, tree size), learning sensitivity and data transformation functions. Parameters should 
be tailored to the input data. Because the number of algorithm and parameter combinations during 
training and testing reached ~30,000, the RandomizedSearchCV method was used to analyse them to 
make an acceptable quantity of repetitions in comparison to GridSearchCV, which does runs for all 
combinations of algorithms and parameters and which would take much more time. This method 
conducts a series of training and testing sessions using these machine learning algorithms on a training 
dataset and various randomly selected combinations of their parameter values from a given range. It 
then creates a ranking list (i.e., identifies the algorithms with the highest prediction confidence). This 
process required several iterations (including changing the list of algorithms analysed by removing both 
the lowest-performing algorithms from the analysis list and the best performing ones to better check 
algorithms that achieved average results) until acceptable results were achieved. 
RepeatedStratifiedKFold was used as the cross-validation algorithm, an algorithm for repeated splitting 
of the dataset into training and test sets, while maintaining the balanced representations of classes 
present in input data. The data number of splits was 4 and 5 and the count of repetitions was 3 to 5, 



using 5 splits with 3 repetitions for final calculations. This was also used to prevent overfitting, together 
with enabling overfitting preventing hyperparameters in specific algorithms, for instance alpha parameter 
or early stopping. 
After searching for the optimal algorithm and its hyperparameters using the method described above on 
a set of 112 features, only two algorithms achieved 80% accuracy. It was assumed that the reason for 
this might be a large number of features exceeding the number of objects in the set (the so-called curse 
of dimensionality (Géron, 2018: a large number of features causes significant variation in both the 
training samples to which the algorithm adapts and the validation samples, which can lead to erroneous 
predictions). Therefore, an initial feature reduction was performed using a combination of the 
SelectFromModel function with the RandomForestClassifier, LogisticRegression, LinearSVC 
algorithms, which give information about feature importance and also the SelectKBest algorithm with 
the f_classif function. The reduction aimed to select sets (10, 15, 20, 25, and 30) of the most significant 
features using selected algorithms, which were then combined into a single set. As a result, sets of 37, 
46, 55, 68, and 86 features were selected (because some features were selected by more than one 
algorithm). Repeated tests on sets with reduced feature counts showed an increase in accuracy to ~88% 
on sets with 37, 46 and 55 features. Training results on sets with a larger number of retained features 
were less accurate (<85%). Further tests were conducted on this 55-feature set due to similar results to 
sets with fewer features and the desire to preserve as many of the original features as possible. The 
results of the search for optimal algorithms and their hyperparameters for assessing the environmental 
impact of spoil heaps using RandomizedSearchCV and cross-validation are shown in Table 2. The table 
shows the algorithms that achieved an average cross-validation accuracy of >85%. Additionally, the 
standard deviation of the cross-validation results is shown. The algorithms in this table, i.e., 
MLPClassifier, RidgeClassifier, BernoulliNB, SVC and LogisticRegression, were selected for further 
testing. Learning quality was verified by generating learning curves for the algorithms noted above (Fig. 
2). 
 
Table 2. Ranking of algorithms resulting from the procedure of selecting algorithms and their 
hyperparameters using RandomizedSearchCV. 

ML algorithm 
Mean of cross-

validation results 

Standard deviation 
of cross-validation 

results 
Scaling 

algorithm 
Number of 
features 

MLPClassifier 89%        0.09  MaxAbsScaler 46 

MLPClassifier 88%        0.11  Normalizer 37 

MLPClassifier 87%        0.10  MaxAbsScaler 55 

RidgeClassifier 87%        0.08  MaxAbsScaler 55 

MLPClassifier 87%        0.09  MaxAbsScaler 46 

BernoulliNB 86%        0.09  StandardScaler 46 

BernoulliNB 86%        0.09  StandardScaler 55 

BernoulliNB 86%        0.10  MinMaxScaler 37 

RidgeClassifier 86%        0.08  MaxAbsScaler 46 

MLPClassifier 86%        0.12  MaxAbsScaler 37 

SVC 86%        0.07  RobustScaler 37 

SVC 86%        0.09  MaxAbsScaler 55 

LogisticRegression 86%        0.10  MaxAbsScaler 68 

MLPClassifier 86%        0.11  Normalizer 37 

MLPClassifier 86%        0.11  Normalizer 46 

SVC 86%        0.08  MaxAbsScaler 46 

LogisticRegression 86%        0.09  MaxAbsScaler 55 

MLPClassifier 86%        0.09  MaxAbsScaler 55 

MLPClassifier 86%        0.09  MaxAbsScaler 46 

LogisticRegression 86%        0.09  MaxAbsScaler 46 

LogisticRegression 86%        0.10  Normalizer 37 

MLPClassifier 86%        0.10  Normalizer 37 



MLPClassifier 86%        0.10  MaxAbsScaler 55 

Source: this study 
 
The table shows the algorithms that achieved an average cross-validation accuracy of over 85%. 
Additionally, the standard deviation of the cross-validation results is provided. The algorithms in this 
table, i.e., MLPClassifier, RidgeClassifier, BernoulliNB, SVC, and LogisticRegression, were selected for 
further testing. Learning quality was verified by generating learning curves for the algorithms noted 
above (Fig. 2). 
 
 

  

  

 
Fig. 2 Learning curves for selected algorithms 
 
The LogisticRegression, MLPClassifier, and SVC algorithms, where the training accuracy is 1 from the 
initial training (from the smallest sample sizes), fit the training data strongly, but the validation results 
are lower, indicating poorer generalization of the trained model to new data. In contrast, the 
RidgeClassifier and BernoulliNB algorithms do not fit the test data closely, and the validation accuracy 
increases, indicating greater resistance to model overfitting. For the algorithms selected, the prediction 
results for the training set were tested using cross-validation (Table 3) to verify the model's performance 
(prediction stability) on specific data. Therefore, those algorithms are recommended for operating on a 
described set of data. 
 



Table 3. Prediction results for the selected algorithms on the training dataset using cross-validation 
 

 
Source: this study 
TP – True Positives, FP – False Positives, FN – False Negatives, TN – True Negatives 
 
Each of the five algorithms tested correctly classified 17 heaps as having no impact on the environment 
(TN) and incorrectly classified 6 heaps as having an impact on the environment (FN) (out of 23 marked 
as having no impact in the training set). Similarly, 22 or 23 heaps were correctly identified as having an 
impact (TP), while 3 or 2 were incorrectly identified as having no impact (FP) (out of 25). Therefore, the 
accuracy for the entire set is 81.25-83.3%, 88-92% for objects marked as having an impact, and 73.9% 
for objects marked as having no impact (values differs from those stated in Table 1, as these are an 
effect of cross-validation without repeats, while the latter are effects of cross-validation with repeats). 
As a result of the test prediction with cross-validation, 9 objects were classified inversely to the expert 
assessment by all or most of the algorithms tested. This may indicate the absence of significant features 
in the set, incorrect values assigned to these features, or an erroneous expert assessment. 
 
Feature Analysis. Features that significantly influence classification results were also identified. 
Shapley values were used for this purpose. They represent the contribution of individual features to the 
final value predicted by the model by analysing possible feature combinations. The advantage of this 
method is that the model analysed is treated as a "black box," meaning that the analysis can be 
performed for various machine learning models regardless of whether and what information about 
feature importance is returned by the model. The disadvantage for larger datasets is the high 
computational complexity. Shapley values can be visualised in many ways helping analysis of feature 
importance, for instance in form of so-called beeswarm plots shown in Figure 3. More detailed plots are 
provided in Figure 4 (bar plots) and Figure 5 (waterfall plots). 
 

 

expert assessment TP FP FN TN

MLPClassifier 23 6 2 17

RidgeClassifier 22 6 3 17

 LogisticRegression 22 6 3 17

BernoulliNB 23 6 2 17

SVC 22 6 3 17

expert assessment: 1 TP TN

0 FP FN
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Red indicates high feature values, blue indicates low feature values, and the distance of a point from 
the centreline indicates the feature's influence on the classification of a single object. 
 

Description of features: 

  
Fig. 3. Shapley value graph for a subset of the data. The lack of the RidgeClassifier algorithm is due to 
incompatibility with the shap library. 
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Fig. 4. Bar plots of Shapley values for classification of True Positives (left plot) and True Negatives (right 
plot) using LogisticRegression 
 
The Shapley values on Figure 4 are means of absolute values of the influence of features. The exact 
influence of each feature on classification result of specific heap is varying, as shown on Figure 5. 
Analysing the features that affect the classification of heaps into groups that impact the environment 
and those that do not impact the environment can contribute to the identification of individual features 
that have the strongest influence on the classification result and those whose influence is negligible. In 
the case of sites classified as True Positives (Fig. 4, left plot) one feature has the strongest influence on 
the classification: C06 – status of heap reclamation, with an absolute value of +0.21. The weaker 
interaction in the absolute value range has 4 characteristics. These are: C18 - Location of the facility on 
soils of quality classes I-III (+0.1), C55 - Agricultural and forestry use (+0.06), C20 - Geohazards - Mining 
areas (+0.06), C15 – Thermal condition of the facility (+0.55) and C22 - Geohazards - Areas at risk of 
landslides. The remaining features indicate a very weak (14 features with an absolute value ranging 
from 0.04 to 0.02) to insignificant impact of the facility on the environment (13 features with an absolute 
value up to 0.01).The 21 remaining features with a total impact of 0.05 have a negligible impact on the 
assessment of the facilities. 
In the case of classifying an heap into a group of disposal sites that do not have an impact on the 
environment, one feature has the strongest impact on the classification: C06 – status of heap 
reclamation, with an absolute value of +0.17. Weaker interaction in the absolute value range has 4 
features, similarly as in the case of True Positives. These are: forestry use (+0.06), C20 - Geohazards 
- Mining areas (+0.06), C15 – Thermal condition of the facility (+0.06). The remaining features indicate 
a very weak (15 features with absolute values ranging from 0.04 to 0.02) to insignificant impact of the 
disposal site on the environment (14 features with absolute values up to 0.01), and they differ in the 
hierarchy of occurrence in relation to the group of features classified as True Positives. Twenty-one 
features have a negligible impact on the assessment of objects (totalling 0.05). 
Analysing the absolute values of attributes in the environmental impact of facilities, it was observed that 
the attribute related to the facility's status as unreclaimed (in the group of disposal sites classified as 
True Positives) and reclaimed (in the group of disposal sites classified as True Negatives) is the leading 
attribute. In practice, when considering the environmental impact of dumps, this feature is also important 
because it directly affects the quality of surface and groundwater in the area of the waste dump. The 
site's location near agricultural and forest lands also has a direct impact on the environment. A waste 
dump fire also negatively impacts air quality, soil quality, water quality and vegetation. The presence of 
active mining areas can affect ground stability, cause mass movements of waste, and increase the 
impact on surface and groundwater. 
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Fig. 5 Waterfall plots of Shapley values for classification of one sample of True Positive classification 
(left plot) and one sample of True Negative classification (right plot) using LogisticRegression 
 
Analysing the occurrence of feature values in the process of the disposal site's impact on the 
environment, it was observed that the feature relating to the dump's status as unreclaimed (in the group 
of disposal sites classified as True Positives) is the leading feature. Other significant features include 
geohazards (surface flows and landslides) and the site's location in river valleys, as well as the presence 
of catchment terraces in the disposal site's subsoil and on its surface. All of the features indicated 
influence the heap's impact on the soil and water environment. In the case of the analysis of the disposal 
sites classified as True Negatives, the leading features also include the disposal sites’ status as 
reclaimed, meaning it has no environmental impact (through, among other things, the elimination of the 
impact of atmospheric precipitation, minimizing dust on the surrounding environment and the absence 
of fires), as well as the presence of impermeable layers in the subsoil. The presence of these factors 
contributes to the dump's lack of environmental impact. 
 

Fe
at

u
re

s 
sy

m
b

o
ls

 a
n

d
 f

ea
tu

re
 v

al
u

es
 

Fe
at

u
re

s 
sy

m
b

o
ls

 a
n

d
 f

ea
tu

re
 v

al
u

es
 



Feature importance analysis (Fig. 6) was also performed using the Permutation Importances method. 
This function changes the values of individual features in the input data and examines the impact of 
these changes on the resulting prediction results relative to those obtained using unmodified data (Scikit-
learn, 2025). 

   
Fig. 6 Graphical representation of feature importance analysis for individual algorithms by means of 
Permutation importance algorithms. The description of features is shown in Figure 3 
 
Permutation importances analysis shows the sensitivity of algorithms under consideration for changes 
in values of specific features. The features with negative values represents noise or overfitting. 
Combining results from Shapley values analysis and permutation importances allows further removal of 
unimportant features from the dataset. 
 
Conclusions 
Over the centuries, mining activities have contributed to the generation of waste, which was stored in 
waste dumps located near mining plants. The location of these facilities directly in the environment 
(without the safeguards required by current legislation) contributed to their negative impact on 
groundwater, surface water, air, soil and vegetation. Assessing the environmental impact of historical 
waste dumps is a complex, lengthy and capital-intensive process, as each facility is analysed individually 
according to a developed research plan. The use of machine learning algorithms can be a tool to 
streamline the process of assessing waste dumps. 
The possibilities described in this article for applying machine learning algorithms to assess the 
environmental impact of coal mining waste dumps, using features characterizing both the object and its 
broader surroundings, demonstrated that this tool meets its intended objectives. Training conducted on 
the training set indicated that it is possible to achieve prediction accuracy of around 80%. The existence 
of objects simultaneously classified by multiple algorithms inconsistently with the training label may 
indicate the absence of a significant feature in the set or incorrect expert assessment. It should be noted 
that the training set is relatively small, and machine learning algorithms may show overfitting, i.e., 
excessive adaptation to the input data, resulting in worst prediction results for new data not seen during 



training. It is advisable to acquire data for new objects, if possible, characterizing new features other 
than those previously available, like changing the properties of the deposited material due to weathering, 
such as the impact of heavy rainfall, and have the results obtained verified by independent experts. The 
research indicates that the best algorithm for determining the environmental impact of spoil heaps would 
be the BernoulliNB algorithm, followed by the RidgeClassifier (both achieving up to 87% prediction 
accuracy), with the currently available training dataset. Its potential extension could improve the results 
of the MLPClassifier, SVM, and LogisticRegression algorithms. 
 
Acknowledgements.  
The authors thank the reviewers for their valuable comments and suggestions, which enriched the 
substantive content of the manuscript. The study was financed from funds allocated to the statutory 
activities of PGI-NRI (Project No. 61.4416.2400.00.0). 
 
References: 
Baza Hałdy, 2025. https://geologia.pgi.gov.pl/haldy/. 
Baza OPPI TPP 2.0, 2025. geoportal.orsip.pl . 
Bank Danych o Lasach, 2025. https://www.bdl.lasy.gov.pl/portal/mapy 
CBDG, 2025. Centralna Baza Danych Geologicznych. https://baza.pgi.gov.pl/  
Chand, K., Kumar, V., Raj, P., Sharma, N., Kumar Mankar, A., Koner, R., 2025. Artificial Intelligence 
Tool for Prediction of Mine Tailings Dam Slope Stability. Journal of Mining and Environment, 16: 127-
142. https://doi.org/10.22044/jme.2024.14602.2754 
Chrzan A., Mojza K., 2018. Preliminary assessment of the heavy metal content on the post-mining 
waste dump in Czerwionka-Leszczyny (in Polish with English summary). Proceedings of ECOpole, 
https://doi.org/10.2429/proc.2018.12(2)044. 
Chudy, K., Marszałek, H., 2010. Changes in the concentration of sulphates and iron in the vertical 
section of mine waste pile in Ludwikowice Kłodzkie (the middle Sudetes) (in Polish with English 
summary). Biuletyn Państwowego Instytutu Geologicznego, 440: 49-54. 
Chudy, K., Marszałek, H., Kierczak, J., 2014. Impact of hard-coal waste dump on water quality — A 
case study of Ludwikowice Kłodzkie (Nowa Ruda Coalfield, SW Poland). Journal of Geochemical 
Exploration, 146: 127–135. https://doi.org/10.1016/j.gexplo.2014.08.011 
Czajkowska, A., Gawor, Ł., Cieślok, P., 2018. The impact of the "Smolnica" mining waste disposal 
site in Trachy on the quality of surface and underground waters (in Polish with English summary). 
Quartely of Environmental Engineering and Design, 170: 61-77. 
https://doi.org/10.5604/01.3001.0012.7463.  
DTM, 2025. Digital Terrain Model. https://www.geoportal.gov.pl/ 
Environment 2025, 2025. Statistics Poland, Warsaw. https://stat.gov.pl/obszary-
tematyczne/srodowisko-energia/srodowisko/ochrona-srodowiska-2025,1,26.html 
[Accessed:15.12.2025 r.]. 
Fabiańska, M., Ciesielczuk, J., Nadudvari, A., Misz-Kennan, M., Kowalski, A., Kruszewski, Ł., 
2019. Environmental influence of gaseous emissions from selfheating coal waste dumps in Silesia, 
Poland. Environmental Geochemistry and Health, 41: 575–601. https://doi.org/10.1007/s10653-018-
0153-5. 
Fajfer, J., Kostrz-Sikora, P., 2022. Initial cost effectiveness of extracting waste accumulated on the 
rehabilitation of waste facilities and the concept of circular economy (in Polish with English summary). 
Przegląd Geologiczny, 70: 190-201. 
Fajfer, J., Krieger, W., Rolka, M., 2013. Closed and abandoned extractive waste facilities – 
methodology of inventory and database structure (in Polish with English summary). Zeszyty Naukowe 
IGSMiE PAN, 85: 23-27. https://min-pan.krakow.pl/wp-content/uploads/sites/4/2017/12/02-11-fajer-
krieger-rolka.pdf 
Fajfer, J., Rolka, M., Kostrz-Sikora, P., 2025. Assessing the potential of secondary raw materials from 
hard coal and iron ore mining waste disposal sites using machine learning. Geological Quarterly, 69, 
14. https://doi.org/10.7306/gq.1787. 
Foltyn, S., Bogda, A., Szopka, K., Karczewska, A., 2011. Properties of anthropogenic soils on a mine 
spoil “Kościelniok” in Pawłowice (Hard Coal Mine Pniówek) (in Polish with English summary). Roczniki 
Gleboznawcze, 62 (2): 79-85. 
GDOŚ, 2025. Centralny rejestr form ochrony przyrody. https://crfop.gdos.gov.pl 
Gerassis, S., Giráldez, E., Pazo-Rodríguez, M., Saavedra, Á., Taboada, J., 2021. AI Approaches to 
Environmental Impact Assessments (EIAs) in the Mining and Metals Sector Using AutoML and Bayesian 
Modeling. Applied Sciences, 11, 7914. https://doi.org/10.3390/app11177914 

https://geologia.pgi.gov.pl/haldy/
https://www.bdl.lasy.gov.pl/portal/mapy
https://baza.pgi.gov.pl/
https://doi.org/10.1016/j.gexplo.2014.08.011
https://www.geoportal.gov.pl/
https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochrona-srodowiska-2025,1,26.html
https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochrona-srodowiska-2025,1,26.html
https://doi.org/10.1007/s10653-018-0153-5
https://doi.org/10.1007/s10653-018-0153-5
https://min-pan.krakow.pl/wp-content/uploads/sites/4/2017/12/02-11-fajer-krieger-rolka.pdf
https://min-pan.krakow.pl/wp-content/uploads/sites/4/2017/12/02-11-fajer-krieger-rolka.pdf
https://doi.org/10.7306/gq.1787
https://crfop.gdos.gov.pl/
https://doi.org/10.3390/app11177914


Géron, A., 2018. Uczenie maszynowe z użyciem Scikit-Learn i TensorFlow: Pojęcia, techniki i narzędzia 
służące do tworzenia inteligentnych systemów (in Polish). Helion S.A. Publishing House, Gliwice. 
Glubiak-Witwicka, E., Wdziekońska, D., Plewnia, B., Szczygieł, A. (eds.), 2012. Ocena stanu 
środowiska w rejonie obiektów objętych monitoringiem lokalnym, na terenie województwa śląskiego ( in 
Polish). Biblioteka Monitoringu Środowiska, Katowice. Wyd. REMI-B, Bielsko-Biała.  
Haupt, S.E., Gagne, D.J., Hsieh, W.W., Krasnopolsky, V., McGovern, A., Marzban, C., Moninger, 
W., Lakshmanan, V., Tissot, P., Williams, J.K., 2022. The History and Practice of AI in the 
Environmental Sciences. American Meteorological Society, 103: 1351-1370. 
https://doi.org/10.1175/BAMS-D-20-0234.1. 
InMoTeP, 2025. Interferometryczny Monitoring Powierzchni Terenu Polski. 
https://www.pgi.gov.pl/monitoring-osiadan.html  
Jaros, J., 1975. An outline of the history of coal mining (in Poilsh with English summary). Śląski Instytut 
Naukowy w Katowicach. PWN Publishing House. Warszawa-Kraków. 
Jureczka J., Aust J., Buła Z., Dopita M., Zdanowski A., 1995. Geological Map of the Upper Silesian 
Coal Basin (Carboniferous Subcrop), 1:200000. Państw. Inst. Geol. 
Jureczka, J., Dopita, M., Gałka, M., Krieger, W., Kwarciński, J., Martinec, P., 2005. Geological Atlas 
of Coal Deposits of the Polish and Czech Parts of the Upper Silesian Coal Basin. Państw. Inst. Geol., 
Ministerstwo Środowiska. 
Jureczka, J., Nowak, G.J., 2016. A short overview of data on geological investigation of the Polish 
bituminous coal basins (in Polish with English summary). Przegląd Geologiczny, 64: 617-630. 
Karty JCWPd, 2025. Karty charakterystyk Jednolitych Części Wód Podziemnych (in Polish). 
http://karty.apgw.gov.pl:4200/jcw-podziemne 
Karty JCWP, 2025. Karty charakterystyk Jednolitych Części Wód Powierzchniowych (in Polish). 
http://karty.apgw.gov.pl:4200/jcw-powierzchniowe 
Konior, J., 2006. The possibilities of limitation of unfavourable influence of mining dumping ground on 
the surrounding environment (in Polish with English summary). Zeszyty Naukowe Politechniki Śląskiej, 
Seria: Górnictwo, 271: 71-82. 
Kostrz-Sikora, P., Bliźniuk, A., Fajfer, J., Rolka, M., 2013. Inventory of closed and abandoned mining 
waste facilities (in Polish with English summary). Zeszyty Naukowe IGSMiE PAN, 85:199–205. 
https://min-pan.krakow.pl/wp-content/uploads/sites/4/2017/12/15-12-kostrz-blizniuk-fajfer-.pdf 
Kotas, A., 1995. Lithostratigraphy and sedimentologic – paleogeographic development. Moravian-
Silesian-Cracovian region. Upper Silesian Coal Basin. Prace Państwowego Instytutu Geologicznego, 
143: 124–134. 
Kuźniar, K., 2016. Artificial neural networks in earthquake engineering (in Polish with English summary). 
Annales Universitatis Paedagogicae Cracoviensis. Studia Technica, 9: 109-118.. 
https://rep.up.krakow.pl/xmlui/bitstream/handle/11716/12928/AF204--12--Kuzniar--Sztuczne-sieci-
neuronowe.pdf?sequence=1&isAllowed=y 
Łaganowska, N., 2019. The influnce of mining waste landfill „Pochwacie” on the ground-water 
environment on the basis of monitoring tests (in Polish with English summary). Acta Geographica 
Silesiana, 13 (2): 75–94. WNoZ UŚ, Sosnowiec. 
https://ags.wnp.us.edu.pl/download/wydawnictwa/ags/ags_34_7.pdf 
Ma, L., Huang, C., Liu, Z.-S., 2021. The Application of Artificial Neural Network to Predicting the 
Drainage from Waste Rock Storages. [in:] Artificial Neural Networks and Deep Learning - Applications 
and Perspective. IntechOpen. https://doi.org/10.5772/intechopen.96162. 
Meteoblue, 2025. History & climate, 
https://www.meteoblue.com/en/weather/historyclimate/climatemodelled. 
Pasa, L., Angelini, G., Ballarin, M., Fedrizzi, P., Sperduti, A., 2025. Enhancing door-to-door waste 
collection forecasting through ML. Waste Management, 194: 36-44. 
https://doi.org/10.1016/j.wasman.2024.12.044. 
Paszcza, H., Krogulski, K., 2007. Hard coal industry impact in environment in 2006 (in Polish with 
English summary). Zeszyty Naukowe Politechniki Śląskiej, Seria: Górnictwo, 276: 121-137. 
Piątek, Z., 1995. Górnictwo węgla kamiennego na Dolnym Śląsku (1434-1945-1994) (in Polish). 
Przegląd Górniczy, (1):11–13. 
Piekut, A., Krzysztofik, L., Gut, K., 2018. Exposure of Zabrze residents to heavy metals emitted from 
post-industrial waste heaps (in Polish with English summary). Inżynieria Ekologiczna, 19 (4):30–36. 
https://doi.org/10.12912/23920629/93487. 
Pikoń, K., Bugla, J., 2007. Emission from restored coal dumping grounds (in Polish with English 
summary). Archives of Waste management and Environmental Protection, 6: 55-70. 
Piotrowska, J., Dąbrowska, D., 2024. Artificial intelligence methods in water systems research – a 
literature review. Geological Quarterly, 68, 19. https://doi.org/10.7306/gq.1747 

https://doi.org/10.1175/BAMS-D-20-0234.1
https://www.pgi.gov.pl/monitoring-osiadan.html
https://min-pan.krakow.pl/wp-content/uploads/sites/4/2017/12/15-12-kostrz-blizniuk-fajfer-.pdf
https://ags.wnp.us.edu.pl/download/wydawnictwa/ags/ags_34_7.pdf
https://doi.org/10.12912/23920629/93487
https://doi.org/10.7306/gq.1747


Polish Mining Waste Act, 2008. The Act of July 2008, 10 on Mining Waste, Journal of Law 2022, item 
2336 as amended (in Polish). 
Polish Waste Act, 2012. The Act of December 2012,14 on Waste, Journal of Law 2023, item 1587 as 
amended (in Polish). 
Regulation of the Minister of the Environment of May 2014, 29 on monitoring mining waste disposal 
facilities, Journal of Laws of 2014, item 875 (in Polish). 
Rostański, A., 2006. Spontaniczne kształtowanie się pokrywy roślinnej na zwałowiskach po górnictwie 
węgla kamiennego na Górnym Śląsku (in Polish). Prace Naukowe Uniwersytetu Śląskiego, 2419.  
Różański, Z., 2019. Management of mining waste and the areas of its storage – environmental aspects. 
Mineral Resources Management, 35: 119-142. https://doi.org/10.24425/gsm.2019.128525. 
Różkowski, A., 2008. Hydrogeological environment of the Paleozoic formations beneath the Productive 
Carboniferous in the Upper Silesian Foredeep (in Polish with English summary). Przegląd Geologiczny, 
56: 490-494. 
Różkowski, A., Różkowski, K., 2011. Impact of coal mining activity on ground and surface waters 
environment in the Upper Silesian Coal Basin in the multiyear period (in Polish with English summary). 
Biuletyn Państwowego Instytutu Geologicznego, 445: 583-592. 
Różkowski, A., Różkowski, K., Sołtysiak, M., 2013. Factors controlling the hydrogeological 
environment of the quaternary aquifer in the Upper Silesian Coal Basin (in Polish with English summary). 
Biuletyn Państwowego Instytutu Geologicznego, 445: 513-518. 
Rusin, M., Ćwieląg-Drabek, M., Dziubanek, G., Osmala, W., 2018. Secondary emission from heaps 
and post-industrial areas as the important source of exposure of Upper Silesia inhabitants to heavy 
metals. Environmental Medicine, 21 (2): 15-21. https://doi.org/10.19243/2018202. 
Sarker, I.H., 2021. Machine Learning: Algorithms, Real‑World Applications and Research Directions. 
SN Computer Science, 2, 160. https://doi.org/10.1007/s42979-021-00592-x. 
Scikit-learn, 2025. Scikit-learn: machine learning in Python - scikit-learn 1.4.1 documentation 
https://scikit-learn.org/stable/ (accessed 10.10.2025) 
Sroga, C., Bobiński, W., Mikulski, S.Z., Adamski, M., Duliban, I., 2017. Mineralne surowce odpadowe 
na hałdach dawnego górnictwa i przetwórstwa kopalin Sudetów – baza danych wraz z mapami 
geochemicznymi wybranych rejonów w skali 1:10000 (in Polish). CAG, Warszawa, Nr Arch. 1551/2018 
Stefaniak, S., Twardowska, I., 2009. Alteration of ground- and surface water quality resulted from the 
contact of infiltration and flood waters with the embankment made of re-disposed coal mining wastes (in 
Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 436: 483-487. 
Stefaniak, S., Miszczyk, E., Kmiecik, E., Szczepańska-Plewa, J., Twardowska, I., 2013. interaction 
of coal mining wastes and powerplant coal ash and its effect on the pore solution chemistry in a disposal 
site (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 456: 555-562. 
Styrol, D., 2020. Environmental impact of mine dumps. Example of mine dump „Marcel” in Radlin (in 
Polish with English summary). Systemy Wspomagania w Inżynierii Produkcji, 9 (2): 48-59.  

Sun, T., Li, H., Wu, K., Chen, F., Zhu, Z., Hu, Z., 2020. Data‑Driven Predictive Modelling of 
MineralProspectivity Using Machine Learning and Deep Learning Methods: A Case Study from Southern 
Jiangxi Province, China. Minerals, 10, 102. https://doi.org/10.3390/min10020102 
Szczepańska, J., 1987. Coal mine spoil tips as a source of the natural water environment pollution (in 
Polish with English summary). Zeszyty Naukowe AGH, 1135, Geologia, 35. 
Szczepańska, J., Twardowska, I., 1999. Distribution and environmental impact of coal-mining wastes 
in Upper Silesia, Poland. Environmental Geology, 38: 249-258. https://doi.org/10.1007/s002540050422 
Szczepańska-Plewa, J., Stefaniak, S., Twardowska, I., 2010. Coal mining waste management and its 
impact on the groundwater chemical status exemplified in the Upper Silesia Coal Bassin (Poland). 
Biuletyn Państwowego Instytutu Geologicznego, 441: 157-166. 
Świtała-Trybek, D., Świtała-Mastalerz, J,. 2018. Post-industrial waste heaps – their cultural and tourist 
potential (exemplified by selected heaps in the silesian province) (in Polish with English summary). 
Zeszyty Naukowe, Turystyka i Rekreacja, 22 (2): 125–141. https://wstijo.edu.pl/wp-
content/uploads/2023/05/zeszyt_naukowy_tir_nr_22.pdf. [Accessed: 2025-10-15]. 
Trifi, M., Gasmi, A., Carbone, C., Majzlan, J., Nasri, N., Dermach, M., Charef, A., Elfil, H., 2022. 
Machine learning-based prediction of toxic metals concentration in an acid mine drainage environment, 
Northern Tunisia. Environmental Science and Pollution Research, 29: 87490–87508. 
https://doi.org/10.1007/s11356-022-21890-8 
Twardowska, I., 1981. Mechanizm i dynamika ługowania odpadów karbońskich na zwałowiskach (in 
Polish). Prace i Studia PAN, 25.  
Uddin, M.G., Nash, S., Rahman, A., Olbert, A., 2023. Assessing optimization techniques for improving 
water quality model. Journal of Cleaner Production, 385, 135671. 
https://doi.org/10.1016/j.jclepro.2022.135671 

https://doi.org/10.1007/s42979-021-00592-x
https://scikit-learn.org/stable/
https://doi.org/10.1007/s11356-022-21890-8


Wolkersdorfer, C., Mugova, E., 2022. Human pressures and management of inland waters. Effects of 
Mining on Surface Water. Encyclopedia of Inland Waters, 2nd edition, 170-188 
https://doi.org/10.1016/B978-0-12-819166-8.00036-0. 
Worldclim, 2025. Historical climate data. https://www.worldclim.org/data/worldclim21.html 
Wróbel, Ł., Dołhańczuk-Śródka, A., Kłos, A., Wacławek, M., 2012. Gamma radiation in selected mine 
waste dumps at Upper Silesia. Proceedings of ECOpole, 6: 799-803. 
https://doi.org/10.2429/proc.2012.6(2)111. 
Xia, W., Jiang , Y., Chen, X., Zhao, R., 2022. Application of machine learning algorithms in municipal 
solid waste management: A mini review. Waste Management & Research, 40: 609–624. 
https://doi.org/10.1177/0734242X211033716. 
Zając, E., Zarzycki, J., 2013. The Effect of Thermal Activity of Colliery Waste Heap on Vegetation 
Development (in Polish with English summary). Annual Set The Environment Protection, 15: 1862–
1880. 
Zdechlik, R., Gołębiowski, T., Tomecka-Suchoń, S., Żogała, B., 2011. Application of 
hydrogeochemical and geophysical methods in assessment of the influence of coal-mining waste dumps 
on hydrogeological environment (in Polish with English summary). Biuletyn Państwowego Instytutu 
Geologicznego, 445: 725-736. 
Zhang, C., Ma, L., Liu, W., 2023. A Machine Learning Approach for Prediction of the Quantity of Mine 
Waste Rock Drainage in Areas with Spring Freshet. Minerals, 13, 376. 
https://doi.org/10.3390/min13030376. 
 

https://doi.org/10.1016/B978-0-12-819166-8.00036-0

