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The trace fossil Tubulichnium rectum, probably produced by a soft-bodied wormlike animal, normally consists of a single
tube lined with organic-rich pellets, which were stored as a food resource during periods of scarcity (ethological category:
sequestrichnia). On a large sandstone bedding surface in the Eocene flysch of western Greece, this trace fossil occurs in
fan-shaped clusters oriented almost perpendicular to the direction of sand transport within the host bed. This unusual config-
uration, documented here for the first time, is attributed to specific palaeoenvironmental conditions in this part of the
deep-sea fan depositional system, where the periodic supply of organic matter and the prevailing current direction remained
stable over extended periods. The formation of these clusters reflects an adaptive response to changes in flow direction. The
near-perpendicular alignment of the tubes to the current may have reduced ventilation, thereby delaying the oxygenation of

=

the stored organic matter within the pellets.
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INTRODUCTION

Trace fossils showing preferred orientation likely reflect a
rheotactic behaviour of their tracemakers. In aquatic sedi-
ments, such traces are typically aligned with the direction of cur-
rent or the percolation pathways of pore water. Most examples
are known from shallow-marine deposits, with records dating
back to the Ediacaran (Uchman and Martyshyn, 2020) and con-
tinuing throughout the Phanerozoic (e.g., Salter, 1856; Seila-
cher, 1953, 1959; Hill, 1979; Mason, 1980; Hary et al., 1981;
Garcia-Ramos et al., 1984; Pickerill, 1995; Worsley and Mark,
2001; Bromley et al., 2009; Pandey et al., 2014; Boyer and
Mitchell, 2017; Uchman et al., 2016). Oriented recent traces
(lebensspuren) are also known from shallow-marine and mar-
ginal marine settings, including burrows of decapod crusta-
ceans (Hohenegger and Pervesler, 1985; Pervesler and Ho-
henegger, 2006), isopod burrows (Koyama, 1983), and surface
traces produced by amphipods or isopods (Uchman and
Pervesler, 2006). Preferred orientations have also been re-
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ported, though more rarely from hard rocky substrates, where
bivalve borings may exhibit consistent alignment (Cachao et al.,
2011).

Oriented trace fossils from deep-sea deposits are much
rarer. Simpson (1970) reported Cardioichnus (his “n.f. cf. Sa-
gittichnus”) from the Eocene Hieroglyphic Beds in the Magura
Nappe (Carpathians, Poland), which was oriented parallel to
the main flow directions documented by sedimentary struc-
tures. From the Aberystwyth Grits (Lower Silurian, Wales),
Crimes and Crossley (1980) described Paleodictyon and Squa-
modictyon exhibiting elongated mesh structures, which are
preferentially oriented parallel to flow on the soles of turbiditic
sandstones. Uchman (1995) documented Ophiomorpha rudis
(as Ophiomorpha isp.) from the Miocene turbidites of the
Marnoso-arenacea Formation in the Apennines (ltaly), also
aligned with sediment transport directions. Additionally, Gaillard
(1991) described the so-called “FC trace”, oriented downslope
on the modern muddy slope at depths of 1600—-2000 m in the
New Caledonia region of the SW Pacific.

In this paper, the trace fossil Tubulichnium rectum (Fischer-
-Ooster, 1858) described from a large bedding surface of a
turbiditic sandstone in the Eocene deep-sea deposits of west-
ern Greece. Until now, this trace fossil has been known as an in-
clined, solitary tube lined with pellets, interpreted as a sequestri-
chnion — i.e. a burrow used for food storage (Uchman and
Wetzel, 2017, 2024). However, the specimens described herein
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form fan-shaped, oriented clusters, a configuration not previ-
ously documented. This study describes and interprets this
newly recognized arrangement, contributing to a deeper under-
standing of the palaeoecological significance of T. rectum in the
deep-sea environment.

GEOLOGICAL SETTING

The study area is located in southwestern Greece (Fig. 1)
and forms part of the Pindos foreland basin, which is bounded
to the east by the Pindos Thrust and to the west by the lonian
Thrust. Minor thrusts, including the Gavrovo Thrust and the In-
ternal and Middle lonian thrusts, subdivide the basin into elon-
gate, narrow sub-basins that trend roughly parallel to the basin
axis in a NNW-SSE direction. The activity of the Pindos Thrust
led to the formation of a foredeep basin during the Middle
Eocene (IGSRG and IFP, 1966; Avramidis et al., 2002) within
the pre-existing domains of the Gavrovo and lonian zones
(Underhill, 1985, 1989; Alexander et al., 1990; Botziolis et al.,
2021). Subsequent internal thrusting during the Late Oligocene
transformed the foreland in its northern part into a complex fore-
land basin (Avramidis et al., 2002). Later, during the early Plio-
cene (in the Zakynthos area; Zelilidis et al., 1998, 2023) or the
Middle Miocene (in the Corfu, Paxoi, and Zakynthos areas;
Maravelis et al., 2012; Bourli et al., 2022), it evolved into a pig-
gyback basin.
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From the Middle Eocene to the Early Miocene, the Pindos
foredeep was infilled with submarine fan deposits (Fig. 2; Pavlo-
poulos, 1983; Alexander et al., 1990; Konstantopoulos and
Zelilidis, 2012). In the study region, they the basin fill is >2350 m
thick (Fig. 3A). The source of these deposits was located at the
leading edge of the Pindos Thrust (Piper et al., 1978;
Wilpshaar, 1995; Faupl et al., 1998; Avramidis et al., 2002;
Konstantopoulos and Zelilidis, 2012). The evolution of the basin
and its depositional environments was further influenced by
strike-slip faults, which acted synchronously with the main
thrust systems (Avramidis and Zelilidis, 2001; Konstantopoulos
etal., 2013; Bourli et al., 2022; Botziolis et al., 2023). The accu-
mulation of turbiditic sequences was ultimately driven by west-
wards-directed deformation within the external Hellenides.

The section studied (Charavgi 2) is located in the Tritea re-
gion of southern Achaia, in the Peloponnese. The Cenozoic
sedimentary succession in this area is developed over the
pre-existing Gavrovo Zone, bounded to the east by the Pindos
Thrust and to the west by Gavrovo Thrust, near Skolis Moun-
tain. The section studied represents part of the upper portion of
submarine fan deposits and is primarily exposed in a small,
abandoned roadside quarry (GPS coordinates: N37.98330°,
E21.62302°), situated along the road connecting the villages of
Charavgi and Roupakia, south-west of Patras (Fig. 1C). The
bedding planes dip towards the W-NW at 40° (295°/40°). The
measured section is 14 m thick (Fig. 3B) and comprises fine-
grained, quartz-rich sandstones interbedded with greenish-
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Fig. 1. Location maps

A — location of the study region on a contour map of Greece (Bourli et al., 2022); B — general sketch map of the western Peloponnese,
with indication of the study area; B — study area with indication of the sections studied (1-3) (based on Mpornovas et al., 1981)
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Fig. 3. Stratigraphic column of the Pindos Foreland Basin (A) and the Charavgi 2 section (B)

Red arrow points to the large surface bearing clusters of Tubulichnium rectum; Co — Cosmorhaphe gracilis,
Go — Gordia arcuata, Ha — Halopoa imbricata, Oa — Ophiomorpha annulata, Or — Ophiomorpha rudis,
Th — Thalassinoides cf. suevicus, Tu — Tubulichnium rectum

grey, poorly calcareous mudstones containing scattered, very
fine muscovite flakes and carbonised plant debris.

The lower part of the section (0-5.7 m) is dominated by
thick- to medium-bedded sandstones, which grade upwards
into a succession of thin-bedded sandstones intercalated with
mudstones or sandstone/siltstone-mudstone heterolithic de-
posits, with an increasing proportion of mudstones towards the

top. Two thick sandstone beds in the lower part of the section
are well-exposed over wide surfaces measuring ~70 m? (with
Tubulichnium) and 50 m?, respectively (Fig. 4). The upper sur-
faces of several beds display linguoid ripples, which also form
ripple cross-lamination in the upper parts of the sandstone
beds. These ripples indicate sediment transport towards the
west (azimuth 240°). Groove and flute casts on the lower sur-
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Fig. 4. The Charavgi 2 exposure

A metre-long stick is placed within the white ellipse on the upper bedding plane bearing
the clusters of Tubulichnium rectum

faces of some beds record also currents towards the south-
west. The middle part of the section (5.7-10.8 m) is composed
of heterolithic deposits, dominated by thin and very thin sand-
stone/siltstone beds intercalated with mudstones. The upper
part of the section (10.8—14 m) is characterized by thick- and
medium-bedded sandstones with intercalations of finer-grained
deposits.

TUBULICHNIUM AND ASSOCIATED
TRACE FOSSILS

The trace fossils described were observed in the field, pri-
marily on well-exposed bedding surfaces in the lower part of the
section. Their positions are indicated in the stratigraphic column
(Fig. 3B). The beds in the upper part of the section, consisting
mainly of heterolithic deposits, are either heavily weathered or
poorly exposed. Consequently, ichnological data from this part
of the section are limited or unobtainable.

Tubulichnium rectum (Fischer-Ooster, 1858; Figs. 5 and 6)
is present in several beds, but is only readily accessible on the
main, extensive upper bedding surface in the quarry. It occurs
either as individual tubes or as fan-shaped clusters. The individ-
ual tubes are straight to slightly curved and range from sub-
horizontal to inclined up to 20°. They are 4-18 mm wide, with a
characteristic gradual widening in the middle segment and nar-
rowing towards the tips that gives them a car silencer-like
(pinching and swelling tube) appearance. The tubes are com-
monly open at one end, with elevated margins surrounding the
aperture. Their interior is thickly lined with elongate, ovoid,
muddy pellets (Fig. 5A), which can be ascribed to Coprulus
oblongus Mayer, 1952 (see Knaust, 2020). These pellets mea-
sure up to 1.5 mm in length and up to 1 mm in width, are
densely packed, and show variable orientations. The tubes ar-
ranged in clusters show the same morphology. Each cluster is
composed of up to five tubes, which diverge from a single point
at angles ranging from 15° to 30° and penetrate up to 7 cm into
the bed. The clusters are fan-shaped, with angles of divergence
reaching up to 65°. In some specimens, the lateral tubes di-
verge slightly outwards, giving the entire structure a palmate

outline (Figs. 5C and 6A). On the large bedding surface, the
density is ~10-15 tubes per square metre, though locally it may
be about half that. The tubes have a consistent orientation, gen-
erally trending in a N-NE to S—-SW direction (Fig. 7). Tubuli-
chnium rectum is interpreted as belonging to the ethological
category sequestrichnia, in which the tracemaker (possibly a
polychaete worm) lined its burrow with pellets to serve as a food
reserve during periods of scarcity (Uchman and Wetzel, 2017,
2024).

Cosmorhaphe gracilis Ksiazkiewicz, 1977 (Fig. 8A) appears
as a hypichnial ridge, ~1.5 mm wide, exhibiting two orders of
meanders. The first-order meanders are closely spaced, while
the second order may partially interlock. The higher parts of the
second-order meanders widen to 6-8 mm, with amplitudes
ranging from 10 to 15 mm. Cosmorhaphe is a graphoglyptid
trace fossil, primarily known from Cretaceous to Neogene flysch
deposits (Uchman, 1998).

Gordia arcuata Ksigzkiewicz, 1977 (Fig. 8B) is a hypichnial
ridge, 1.0-1.2 mm wide, forming complete or incomplete loops.
Gordia is considered to be a grazing trace produced by small in-
vertebrates and is known from both low-energy marine (e.g.,
Gibert et al., 2000) and non-marine deposits (e.g., Buatois and
Mangano, 1993; Uchman et al., 2009).

Halopoa imbricata Torell, 1870 (Fig. 8A, C) is observed as
straight to slightly curved, mostly simple, and occasionally bran-
ched ridges, ~10 mm wide, marked by longitudinal, discontinu-
ous, uneven striae and wrinkles. This trace fossil is common in
the Eocene turbiditic deposits of the Pindos foreland basin in
the Peloponnese. It was produced by deposit feeders (probably
priapulids) in the sandy portions of beds, with the striae and
wrinkles resulting from tension during the intrusion of the trace-
maker into the sediment (Uchman, 1998).

Helminthoidichnites isp. (Fig. 8C) is a hypichnial, semicyl-
indrical, smooth, winding ridge, rarely forming loops, 0.8—1.0
mm wide. Helminthoidichnites is interpreted as a locomotion
and possibly feeding trace; it occurs in both marine and non-
-marine environments (e.g., Fillion and Pickerill, 1990; Uchman,
1995, 1998; Wetzel et al., 2007). It may show transitional forms
to Gordia (Hofmann and Patel, 1989).

Thalassinoides cf. suevicus (Rieth, 1932; Figs. 6A, B and 8D)
is mainly found on the second large bedding surface of the adja-
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Fig. 5. Tubulichnium rectum on the large, upper bedding surface

A —tube lined with pellets; B — a single tube alongside a cluster composed of two successive tubes (tube 2 overlaps tube 1); C —
cluster composed of several tubes; D — two clusters of tubes (cluster a is overlapped by cluster b); E — another cluster composed
of several tubes; F — cluster composed of three successive tubes (tube 2 overlaps tube 1 and is overlapped by tube 3)

cent bed. It is an epichnial, straight to winding, cylindrical, bran-
ched, sand-filled burrow, 10—25 mm wide. The branches are
Y-shaped, and the branching points are enlarged. These fea-
tures resemble T. suevicus (Rieth, 1932), although the distance
between branching points appears greater than in the typical ex-
amples of this ichnospecies. Thalassinoides is a feeding and
dwelling burrow, primarily produced by decapod crustaceans,
typically in shallow marine settings (e.g., Schlirf, 2000), although
it may also occur in deep-sea deposits (e.g., Uchman, 1998).

DISCUSSION

Studies of the Pindos foreland basin (e.g., Avramidis et al.,
2002; Botziolis et al., 2022, 2023), along with sedimentary fea-
tures, basin fill characteristics, and trace fossils from the section
studied, point to a deep-sea fan depositional system. In particu-
lar, graphoglyptid trace fossils such as Cosmorhaphe, which
are also found in nearby exposures of the same succession
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Fig. 6. Tubulichnium rectum and Thalassinoides cf.
suevicus (Th) on the large, upper bedding surface

(e.g., Paleodictyon, Helminthorhaphe, Spirorhaphe in the
Charavgi 3 section; for the location, see Figs. 1 and 3) are char-
acteristic of the Nereites ichnofacies (Uchman and Wetzel,
2012), further supporting interpretation of a deep-sea environ-
ment. In the section Charavgi 1, Ophiomorpha rudis, Tubu-
lichnium rectum, and Halopoa imbricata have been identified.
The lower part of the Charavgi 2 section, where the large bed-
ding surface with Tubulichnium incertum is located, displays a
thinning- and fining-upwards trend within a broader thickening-
and coarsening-upwards interval of the sedimentary succes-
sion of the Pindos foreland basin in the study area (Fig. 3A).
This arrangement of beds in the part of the Charavgi 2 section
discussed suggests a local channel-fill deposit developed on a
depositional lobe within a deep-sea fan system.

The most intriguing aspect is the occurrence of Tubuli-
chnium rectum in clusters and their orientation. This is unusual,
as the orientation is almost perpendicular to the inferred direc-
tion of sediment transport. T. rectum is interpreted as a
sequestrichnion, produced by a tracemaker that stored its own
faecal pellets along the burrow walls during periods of organic

fow
\aeC
p‘a

n=188

Fig. 7. Rose diagram showing the orientation of Tubuli-
chnium rectum galleries on the large, upper bedding
surface, with an indication of the direction of transport
based on linguoid ripples

matter abundance on the sea floor, subsequently using them as
a food resource during times of scarcity. Feeding was likely me-
diated by microbial activity (Uchman and Wetzel, 2017, 2024).

Until now, Tubulichnium rectum has mostly been reported
as solitary burrows, primarily from Upper Cretaceous to Paleo-
gene turbiditic deposits (Uchman and Wetzel, 2017). The oc-
currence in the form of clusters, as described in this paper, is
exceptional. It is possible that such occurrences are not really
rare, but that previous observations, commonly restricted to
small bedding surfaces, have simply failed to capture these
clusters. Alternatively, the clusters may represent three-di-
mensional structures that manifest on exposed bedding
planes only as a single visible burrow, thereby obscuring their
true complexity.

In some clusters, the tubes overlap, with older tubes being
partially truncated by younger ones (Fig. 5B, F). This suggests
that the tubes were produced successively, and more likely by a
single tracemaker rather than different individuals. If so, the
clusters would have developed over a relatively extended pe-
riod. The trace makers appear to have dominated the sea floor
habitat, at least within the deeper tier as shown by the burrows
penetrating up to 7 cminto the beds, and the observed absence
of other trace fossils. In rare cases, the clusters are cross-cut by
sand-filled Thalassinoides (Fig. 6A), likely originating from a
younger colonisation surface at the top of one of the overlying
sandstone beds. This pattern suggests that an older tube was
abandoned, and a new one produced from approximately the
same proximal position, diverging distally in a slightly different
direction. Some clusters overlap such that tubes of one cluster
crosscut those of another (Fig. 6D), indicating that the cut clus-
ter had already been abandoned. If so, colonization by the
tracemaker occurred in multiple phases.

This prolonged colonisation of the sea floor suggests that
the supply of organic matter for sequestration was not incidental
but recurrent and predictable. It is plausible that each tube in a
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Fig. 8. Associated trace fossils

A — Cosmorhaphe gracilis (Co) and Halopoa imbricata (Ha); B — Gordia arcuata; C — Halopoa imbricata (Ha)
and Helminthoidichnites isp. (He); D — Thalassinoides cf. suevicus

cluster represents a response to one such episode of organic
matter availability. However, this raises the question: Why were
new tubes created, rather than reusing the existing one? A pos-
sible explanation is that the clustered arrangement was a be-
havioural adaptation to fluctuating current directions. Alterna-
tively, though less likely, extended periods between food supply
events may have compelled the tracemaker to construct multi-
ple storages — that is, tubes lined with pellets for future feeding.
The current responsible for depositing the sand was not neces-
sarily the same as the one influencing burrow orientation, as the
apertures of the tubes were probably situated on the surface of
the overlying mud, and the burrows may have been in use long
after the sand was deposited. Unfortunately, the mudstone is
heavily weathered, hindering reliable analysis of its sedimen-
tary and bioturbation structures. If the burrows were aligned
with a current roughly perpendicular to the sand-transporting
current, the clusters would be expected to diverge consistently
in one direction. However, examples of clusters diverging in op-
posite directions (Fig. 6B) suggest that the burrows were more
likely oriented relative to currents roughly parallel to the
depositional current. This raises another question: Why, then,
are the clusters generally oriented perpendicular to the inferred
current direction?

Animals typically align their burrows with prevailing currents
to enhance ventilation, particularly passive ventilation in bur-
rows with two apertures (e.g., Vogel, 1978; Pervesler and
Hohenegger, 2006). Ventilation may occur not only through the
burrow apertures but also through sediment pore spaces
(Meysman et al., 2005). In the case of Tubulichnium the oppo-
site strategy may have been beneficial. Degradation of organic
matter within the faecal pellets would proceed more slowly un-
der low-oxygen conditions, thereby preserving the nutritional
value of the pellets for a longer period. If this interpretation is
correct, the orientation of the clusters may reflect a behavioural
adaptation aimed at reducing ventilation and thus enhancing
food conservation. Nevertheless, the cluster orientations may
record behavioural adjustment by the tracemaker to ambient
current directions, and the orientation of individual tubes may
reflect an optimization in response to current deviations.

A working hypothesis to explain the occurrence of (1) clus-
tered and consistently oriented Tubulichnium versus (2) iso-
lated and randomly oriented forms could be as follows: the for-
mer suggests long-term, predictable episodes of organic matter
supply, separated by extended intervals, in an environment in-
fluenced by a stable, oxygen-rich bottom current. The latter may
indicate more frequent but less predictable episodes of organic
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matter availability, occurring in the absence of stable bottom
currents or in settings where the currents were oxygen-de-
pleted and/or variable in direction.

CONCLUSIONS

The trace fossil Tubulichnium rectum, occurring in fan-
-shaped clusters oriented almost perpendicular to the direction
of sediment transport, is interpreted as an adaptation by its
tracemaker to facilitate the prolonged sequestration of food to
be used during periods of scarcity. Such behaviour could have
minimised the oxidation of organic matter stored within the
pelleted linings of the tubes. This distinctive occurrence of T.

rectum suggests long intervals between episodes of organic
matter supply and a stable, oxygenated bottom current of pre-
dictable direction.
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