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We overview selected artificial intelligence methods used in research on water systems, specifically artificial neural networks
(ANN), adaptive neuro-fuzzy inference systems (ANFIS), genetic programming (GP) and support vector machine (SVM)
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methods. Each method is characterized and the most effective ways of using these methods are discussed. These methods
prove widely useful in forecasting changes in selected surface and groundwater quality parameters, forecasting sewage net-
work failures, assessing water treatment options, climate monitoring, drought detection and environmental issues for farm-

ers and producers. Published studies show that artificial intelligence methods should be used in the analysis of water
systems, especially since artificial intelligence now appears in search results for over 60,000 environmental articles.
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INTRODUCTION

Climate change-related deterioration in the quality of indi-
vidual environmental factors, population growth and increased
waste production have led to the need to create so-called smart
cities (Zhang et al., 2019; Sardella et al., 2020; Laino and
Iglesias, 2023). Such solutions have many advantages, but
their implementation requires the use of modern technical solu-
tions, appropriate policies, the functioning of a rational economy
and an educated society to operate appropriate devices
(Govindan, 2023).

Almost 80% of the European population lives in cities
(Antrop, 2004), and estimates suggest that there may be as
much as 35-60% more city dwellers over the next ten years
(Melchiorri et al., 2018). The challenge is to ensure the safety
and high quality of city services (Bibri et al., 2023).

One solution to the problem seems to be the Internet of
Things, aimed at ensuring the delivery of intelligent services, in-
telligent analytics and reliable communication (Strohbach et al.,
2015; Cui et al., 2018). The Internet of Things involves the co-
operation of sensors and actuators to collect data and analyze it
(Alaa et al., 2017). The impact of artificial intelligence on sys-
tems and activities in urban space is constantly growing (Batty,
2018). The increasing amount of data obtained from various
types of sensors also increases computational possibilities
(Yigitcanlar et al., 2021).

The huge amount of data generated and processed has
forced a connection between artificial intelligence methods and
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Internet of Things solutions. This combination facilitates intelli-
gent and efficient data processing and analysis (Seng et al.,
2022). The Internet of Things enhanced by artificial intelligence
algorithms can allow for environmental sustainability, climate
change monitoring and security.

One of the areas where it is possible to use artificial intelli-
gence connected to the Internet is urban water systems.
Changes in water circulation systems in cities are a conse-
quence of urbanization and climate change. Low infiltration of
rainwater causes the formation of “urban sewage”, degrading the
environment, while extreme weather phenomena pose even
greater threats (Ruangpan et al., 2020). Managing water re-
sources in urban space nowadays is a problem set in the context
of restoring and maintaining the water cycle (Larsen et al., 2016;
Langergraber et al., 2021). The need to provide high-quality wa-
ter in the quantity required to supply the population requires con-
siderable resources (Oral et al., 2021). Moreover, water re-
sources may be also at risk due to pathogens, nutrients, and
heavy metals that migrate into the aquifer, e.g. from landfill
leachates (Li et al., 2012; Xiao et al., 2021; Turan et al., 2022).

In this context, particular attention should be paid to the
monitoring of the quality (Nielsen, 2006; Quevauviller et al.,
2009; Singh et al., 2015) and quantity of groundwater as well as
the need for water disinfection and reuse (Hachoumi et al.,
2021). Animportant issue in the protection of water resources is
the need to conduct rational waste management (Chrysikou et
al., 2007; Bates, 2014; Kong et al., 2016). In order to monitor
water quality, limit the negative effects of extreme events such
as floods, control the water regime, and ensure water quality in
urban water systems, it has become necessary to install sen-
sors and use artificial intelligence for data analysis (Schmitt et
al., 2004).

Due to their simplicity and acceptable results, artificial intelli-
gence methods perform much better in terms of efficiency and
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Fig. 1. Architecture of ANNs

forecast accuracy than other conceptual methods. These meth-
ods are not without drawbacks, such as the possibility of over-
training or taking into account inappropriate data sets, but they
are widely used around the world. Machine learning allows sys-
tems to learn directly from data, examples and experience with-
out predefined rules and does not require knowledge of all pro-
cesses occurring in the environment (Nourani et al., 2008;
2015; Butler et al., 2016).

Machine Learning algorithms are divided into two main
groups: supervised and unsupervised learning. The first group
uses a training set of examples with correct responses, and the
second one identifies similarities between inputs and groups
them (Hastie et al., 2009).

Here, we review and compare the application of artificial in-
telligence methods in urban water systems solutions: specifi-
cally, neural networks (ANNs), adaptive neuro-fuzzy inference
systems (ANFIS), genetic programming (GP) and support vec-
tor machine (SVM) methods. Each of these methods used in
urban water systems solutions is characterized. The number of
solutions using artificial intelligence methods is constantly
growing and is providing huge advantages over traditional
methods of environmental management. Selection of material
for the preparation of this article was based on a review of cur-
rent problems related to the functioning of water systems, on
the possibility of using software such as Matlab or the Python
programming language to create models, and on the timing of
publication of relevant articles. The use of so-called deep learn-
ing for water systems, however, is not as developed as classic
artificial intelligence methods, hence the current study focuses
on the methods used.

METHODS

ARTIFICIAL NEURAL NETWORKS (ANNs)

An ANN is a computer program whose task is to model the
human brain and its ability to learn tasks at various levels of
complexity (Kisi, 2004, 2011). This system is not rule-based like
an expert system. An ANN is a mathematical technique that
has some similarities to the human brain due to its ability to

learn and generalize (Butler et al., 2013). Both biological and ar-
tificial neural networks use processing elements, i.e. neurons.
Algorithmic functions and learning rules, used to modify the
weights in the network in an orderly manner, also play an impor-
tant role here. Neural networks can be used to approximate fea-
tures that are unknown, and can cause noisy time series values
to emerge from prior values. ANNs consist of processing ele-
ments, i.e. neurons, and the connections between them. Net-
work architecture usually distinguishes three separate layers,
i.e. input, hidden and output layers. The input layer contains in-
put variables related to the variables analysed. In the hidden
and output layers, each neuron passes weighted and biased in-
puts through the desired transfer (activation) function to pro-
duce an output. The general architecture of an ANN is shown in
Figure 1.

Due to the fact that ANNs are primarily used for forecasting,
they have found many applications in environmental research
(Abrahart et al., 2012). Some of these applications concern hy-
drology and hydrogeology (Dawson and Wilby, 2001; Feng et
al., 2008; Nourani et al., 2008; Razavi and Araghinejad, 2009;
Taormina et al., 2012; Wu et al., 2014). The possibilities of us-
ing ANNs are currently increasing also in industry due to the
lower costs of measuring devices, sensors and data availability.

Neural networks in modeling can function as surrogate
models that can replace simulation models (Broad et al., 2015).
Multi-layer perceptron (MLP) ANNs are the most commonly
used types of networks in the field of forecasting (Maier et al.,
2010). AMLP represents a typical ANN architecture. After com-
puting the weighted sum of its inputs, each node in the network
feeds this sum into a nonlinear activation function so that it can
be used to generate an output. These networks can learn com-
plex relationships between inputs and outputs, which can be
trained using back-propagation algorithms that adjust the net-
work’s weights to minimize the error between predicted and ac-
tual outputs (Venkatesan and Anitha, 2006).

Recurrent neural networks (RNNs) are neural networks de-
signed to describe functions and increase performance through
feedback connections, that is, passing the results of the hidden
layer back to itself (Sameen et al., 2019). They are more func-
tional and technically acceptable than forward networks. Radial
basis function (RBF) networks also work with feedback, but
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they only have one hidden layer. These networks are character-
ized by high approximation accuracy and high convergence
speed. An RBF uses a Gaussian transfer function and standard
Euclidean distance to measure the distance of the input vector
from a centre vector (Song and Li, 2011). A special type of ANN
comprises self-organizing map networks (SOM), which consist
of one input layer and one output layer called the “Kohonen”
layer (Boniecki et al., 2004). The input layer is connected to the
output layer for this architecture. These networks map the
high-dimensional input space to a low-dimensional space.

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS

An adaptive neuro-fuzzy inference system is a combination
of an adaptive neural network and fuzzy logic principles (FIS).
Jang (1993) introduced the architecture together with a learning
procedure for this method to simulate nonlinear functions, de-
termine nonlinear components, and predict cluttered time se-
ries (Fazilat et al., 2012; Safa et al., 2016). The FIS works as in-
put-output mapping that has a learning capability to approxi-
mate nonlinear functions. There are two approaches to a FIS:
Mamdani and Sugeno. The first one uses fuzzy membership
functions, while the second approach uses linear or constant
fuzzy logics.

An ANFIS is a five-layer feed-forward network to create a
hybrid model capable of practical fit and efficient performance
where all nodes are adaptive in the first and fourth layers.
Non-adaptive nodes exist in the other layers. The nodes in the
second layer are fixed nodes whose functions are multiplied by
input signals to generate an output signal. There are fixed
nodes with a function in the third layer to calculate the ratio of
each node’s strength to the sum. There are four fixed nodes in
the fifth layer with a node function to calculate the total output.
An ANFIS uses a unique algorithm known as a hybrid-learning
algorithm which breaks down into gradient descent method and

least-squares method to update the parameters (Wang et al.,
2009). A general ANFIS architecture is shown in Figure 2.

GENETIC PROGRAMMING

A Genetic Algorithm is a population-based optimization al-
gorithm that resembles natural evolution theories inspired by
Darwinian concepts. A Genetic Algorithm uses reproduction,
selection, crossover, and mutation to discover better solutions
to a given problem that has a random starting set of solutions.
Genetic programming is a generalization of the genetic algo-
rithm. The Genetic Algorithm operates in a straightforward way
inspired by the mutation-selection process. A Genetic Program
(GP) considers an initial population of randomly generated
equations. There are random variables, numbers and functions
in the algorithm scheme (Li et al., 2023). Solutions are repre-
sented in binary code as strings of 0 or 1. Evolution happens
across generations. In each generation, the fitness of each indi-
vidual in the population is evaluated. The algorithm terminates
when a maximum number of generations have been produced.
The root mean squared error between forecasted and ob-
served data is used as the fitness function. A GP generates an
initial population of random computer programs composed of
primitive functions and problem terminals. Then it iteratively
performs generations by executing each program in the popula-
tion, determining its usefulness, creating a new generation, and
copying the selected program to the population. Ultimately, the
algorithm selects the best solution (Shiri et al., 2013). A general
flowchart of the algorithm is shown in Figure 3.

SUPPORT VECTOR MACHINE (SVM)

An SVM is a statistical machine learning theory that was
created by Alexey Chervonenkis and Vladimir Vapnik in 1963
(Ebrahimi and Rajaee, 2017). The Support Vector Machine al-
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gorithm is intended for regression and classification problems.
The input vectors supporting the model structure are selected
through a model training process (Ebrahimi and Rajaee, 2017).
An SVM constructs hyper-planes in an infinite dimensional
space which separates n-dimensional space into various
classes, making it easy to place a different point in the appropri-
ate category. The mapping schemes are designed to ensure
that dot products may be computed easily. There are two types
of SVM: a linear type SVM algorithm is useful in cases where
the data set can be divided into two classes separated by a sin-
gle straight line and a non-linear type SVM, which is useful in
cases where the data set cannot be divided into classes using a
straight line.

The quality of classification is determined by the hyperplane
of the SVM algorithm. It is the best possible decision boundary,

Input X

among various possible decision boundaries, that accurately
classifies classes in n-dimensional space. A hyperplane is pre-
ferred where the distance between two data points is maximum.
In terms of an SVM, support vectors are also distinguished, i.e.
the closest data indicators influencing the position of the
hyperplane (Bansal et al., 2020). Note that this method works
best where there is a clear separation between classes in
high-dimensional spaces. It is important that the number of
sample values is greater than the number of spaces (Vapnik,
1998). The overall architecture of the SVM is shown in Figure 4.

APPLICATIONS OF SELECTED METHODS

ARTIFICIAL NEURAL NETWORK

The use of artificial neural networks may be a promising al-
ternative to classical statistical methods. The water supply net-
work in the north of France was described by Jafar et al.
(2010).The database was built by collecting available data on
historical failures, pipe characteristics, hydraulic pressure, soil
type, and pipe locations. The database includes 4,862 water
supply networks, in which 424 failures were recorded during the
observation period. Based on the initial database analysis, six
ANN models were established. They are classified according to
input indicators: three material layers (plastic, cement and me-
tallic), two layers of the number of failures (low, high) and the
global model. The model was subjected to two calibrations.
Data from 1991-1999 were used for calibration, and data from
2001-2004 were used to validate the ANN model. The average
squared error (ASE) system was used to calculate both training
and test patterns. The performance of ANN models is assessed
by comparing target and predicted values. The highest ability to
predict ANN failures was obtained for the “High-Fail” model and
the lowest for the AMC model, which may be due to the smaller
database. The study indicates that ANNs can be effectively
used to develop investment strategies for the maintenance and
renovation of urban water networks.

The effectiveness of ANNs in assessing the efficiency of
municipal wastewater treatment was described by Ghosh et al.
(2021), who discussed the water quality parameters of bio-
chemical oxygen demand (BOD) and chemical oxygen demand
(COD). Four important predictor variables such as inlet concen-

Fig. 4. The general architecture of an SVM
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tration, plant density, hydraulic retention time and pH value
were analysed from secondary sources of laboratory experi-
ments that were conducted around the world. For BOD, after re-
moving redundant data, the set contains 85 inputs. For COD,
with the same improvements, the dataset contains 84 inputs. In
total, data came from 12 experiments covering BOD and COD
remediation variables in wastewater. The model proved effec-
tive despite data from different wastewater media, plant densi-
ties, pH and retention times in different climate zones. The pre-
dictive model will enable urban policymakers, urban planners,
and water managers to predict the wastewater remediation po-
tential of any urban water body in order to make informed
wastewater decisions.

Neural networks have also been used in research on de-
tecting land cover changes and predicting urban development
(Al-Dousari et al., 2023). They examined the effectiveness of
random forest (RF) classification based on machine learning in
monitoring land cover classes for 2016 and 2021 for the Kuwait
metropolitan region. In the first part, spatial-temporal Land Use
Land Cover (LULC) maps were developed based on remote
sensing data. Then, historical (2016) and current (2021) LULC
data, future (2026) LULC patterns and urban development
changes were assessed using the multilayer perceptron neural
network Markov chain model. The accuracy assessment of the
spatial development maps obtained reached levels of 93.6%
and 95.3%. The value of the kappa coefficient was 0.86 (for
2016) and 0.93 (for 2021). The results showed an 11% increase
in built-up area. The overall forecast accuracy was 83.6%. De-
velopment was expected to increase by 15% between 2021 and
2026. The results of the research conducted by Al-Dousari et al.
(2023) show that MLPNN techniques combined with remote
sensing and geographic information systems can be used to
determine land cover and predict urban growth while achieving
high accuracy and precision.

Selim et al. (2023) described a predictive model for dis-
solved oxygen in a city lake. They used typical water quality pa-
rameters: temperature, pH, conductivity and oxidation-reduc-
tion potential (ORP) for Hatirjheel Lake in Dhaka. Data was col-
lected using three standard real-time sensors such as an optical
sensor for dissolved oxygen, an inductive conductivity sensor
for salinity, conductivity and temperature data and a pH sensor
for pH. The correlation study showed a positive linear correla-
tion for pH, temperature, salinity and conductivity, and the
model was corroborated by an R-score of 0.687 and
root-mean-square error of 0.834. An ANN method was devel-
oped using the Levenberg-Marquardt algorithm. The perfor-
mance of the models was verified, and the R2 accuracy was
0.963 for MLR and 0.93 for ANN. The ANN model performed
better than the regression model. This suggests that Al is more
efficient relative to the linear model. However, the network
model validation process resulted in a lower value of R2 = 0.80,
highlighting the importance of further validation and refinement
to improve model performance.

Another example of the use of artificial intelligence is moni-
toring water quality in rivers in China (Chen et al., 2023). This
study proposed a multi-source remote sensing water quality in-
version method, solving the problem of scale inconsistency of
multi-source remote sensing data. The concentrations of chlo-
rophyll a (Chla), nitrogen (NH3-N) and turbidites (TUB) in the
Nanfei River were used as experimental indicators. A novel
self-optimizing machine learning monitoring method was pro-
posed that could automatically find optimal model parameters
based on a small number of samples and reduced training time.
To increase the correlation between water quality parameters
and remote sensing data, a feature improvement method was
used. Then, to solve the problem of the quantity and quality of

data coming from multiple sources, a spatial mapping method
was used to obtain consistency of water quality information.
The results showed that for unmanned aerial vehicle (UAV) im-
ages, the R2 of Chla, TUB and ammonium NH3-N can achieve
accuracies of 0.917, 0.877, and 0.846, respectively. Using sat-
ellite imagery, R2 for Chla, TUB, and NH3-N can achieve accu-
racies of 0.827, 0.679, and 0.779, respectively. The main result
was that the method used provides a new way of monitoring the
air and ground space of urban inland rivers.

These results indicate that ANN models have wider applica-
tions than traditional regression models. An important issue in
obtaining the best possible model performance results is the
adjustment of the transfer function, learning algorithm and net-
work architecture.

ANFIS

The evolutionary algorithm (EA) is a new technique to im-
prove the performance of artificial intelligence models such as
ANFIS and ANN. Azad et al. (2019) investigated the applicabil-
ity of ANFIS with particle swarm optimization (PSO) and ant col-
ony optimization for adjacent domains (ACOR) to estimate wa-
ter quality parameters in three stations along the Zayandehrood
River in Iran. This study also compared the ANFIS-PSO and
ANFIS-ACOR methods with the classic ANFIS method, which
uses least squares and gradient descent as training algorithms.
Water quality parameters in this study included electrical con-
ductivity (EC), total dissolved solids (TDS), sodium adsorption
rate (SAR), carbonate hardness (CH), and total hardness (TH).
The analysis of the results obtained results showed that SAR
and CH were the two parameters whose estimation was the
most accurate. The ANFIS-PSO model is a better model than
the ANFIS-ACOR. EA models could improve the performance
of ANFIS at all three stations for different water quality parame-
ters.

Air temperature information can provide farmers and food
producers with knowledge on climate monitoring, drought de-
tection and environmental issues. The use of ANFIS for such
monitoring was described by Karthika and Deka (2015). The
study used meteorological data and air pollution (SO,) data ob-
served at Bhadra station for air temperature forecasts using a
new hybrid method (wavelet-ANFIS). Data from the finely dis-
tributed wavelet subseries were used as input to ANFIS. The
hybrid wavelet-ANFIS method (Gauss affiliation), the hybrid
wavelet-ANFIS method (Gbell affiliation) and the ANFIS
method were compared. The hybrid wavelet-ANFIS method
(Gaussian affiliation) shows a coefficient of determination (R2)
of 0.95 and RMSE of 0.74, which is better than the other two
methods. The study shows that the hybrid model (Wave-
let-ANFIS) has a greater potential to predict air temperature
than the ANFIS model.

Drinking water sources may be contaminated with various
substances depending on geological conditions and agricul-
tural, industrial and other human activities (RadFard et al.,
2019). The quality of drinking groundwater in villages of
Bardascan and determination of the water quality index were
assessed. Water samples were taken from 30 villages and
eighteen parameters were determined, including: calcium hard-
ness, total hardness, turbidity, pH, temperature, total dissolved
substances, electrical conductivity, alkalinity, magnesium, cal-
cium, potassium, sodium, sulfates, bicarbonates, fluorides, ni-
trates, nitrites and chlorides. The groundwater quality index
was estimated using the ANFIS method. Spatial locations were
described using GPS. The results of this study showed that wa-
ter hardness, electrical conductivity, sodium, and sulfate in 66,
13, 45 and 12.5% of surveyed villages, respectively, were
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higher than Iranian drinking water standards. Based on drinking
water quality, 3.3, 60, 23.3 and 13.3% of villages were rated as
excellent, good, poor and very poor, respectively. The research
showed that regular monitoring is necessary to ensure consum-
ers have safe drinking water at optimal levels, consistent with
WHO and national limits, especially in villages with poor and
very poor water quality status.

Suparta et al. (2020) demonstrated that floods limit the de-
velopment of cities and may also pose a threat to life and prop-
erty. Monthly rainfall in southern Tangerang, Indonesia, was
predicted with an average test success rate of ~80%. This tech-
nique used 6 years of historical rainfall data to predict future
rainfall, with the mapping function in the 1950s for training and
testing purposes being 4:2, giving the best forecast results. In
this ANFIS technique, a time series containing no numbers or
being empty (no data) will have a disadvantage in terms of
ANFIS capabilities. Characteristics of the data that are highly
variable or very extreme will also yield low predictive scores.
Since 10 years of historical, year-long rainfall data are not avail-
able, it was concluded that future studies should predict rainfall
amounts using other parameters that are closely correlated,
such as surface temperature, relative humidity and wind speed.
Further analysis will also include categories of rainfall that have
the potential to trigger flash floods, including urban floods af-
fecting areas where there is rapid housing development or the
conversion of marginal areas to residential areas.

In another study, MLR, ANN, ANFIS techniques were de-
veloped to predict dissolved oxygen concentration in the lower
reaches of the Agra River (Abba et al., 2017). For this purpose,
monthly input data were used which included dissolved oxygen,
pH, biological oxygen demand and water temperature at three
different locations, namely upstream, middle, and downstream.
Performance was assessed using the coefficient of determina-
tion and RMSE. The dissolved oxygen result showed that both
ANN and ANFIS can be used for modelling in Agra city and also
indicates that an ANN model is better than ANFIS and shows
significant advantage over MLR.

As ANFIS allows the approximation of any real continuous
function on a compact set with any degree of accuracy, which
makes functional mapping possible that uses the advantages of
both ANN and FIS, it can be concluded that it gives better re-
sults than only ANN. In publications assessed, only one com-
parison was made in which ANN was more favourable.

GENETIC PROGRAMMING

Genetic programming is a methodology based on evolu-
tionary algorithms that is best suited for modeling nonlinear dy-
namic systems. In the first article discussed, in single- and
multi-site studies, an algorithm was trained to capture the dy-
namics of urban rainfall runoff using a series of reservoirs, with
each reservoir being a storage unit in the catchment corre-
sponding to different depths below the surface (Chadalawada
et al., 2016). The hydrometeorological data used in the study
are for the Kent Ridge National University Singapore catchment
- a small urban catchment (8.5 ha) that receives an average an-
nual rainfall of 25600 mm. Conceptual Hydrogeological Modeling
in Genetic Programming is an R-based GP optimization pro-
gram designed to identify systems in the field of hydrology. Ele-
ments of the conceptual model (reservoir model) were incorpo-
rated into the GP structure to determine rainwater runoff in cit-
ies. The study showed that the dual-basin model provided a
better representation of this urban watershed in terms of perfor-
mance and complexity when tested with real data.

Rebuilding sewage infrastructure is cheaper than repairing
it after a failure. To counteract the occurrence of network fail-

ures, a predictive model can be built. This task was undertaken
by Hoseingholi and Moeini (2023). For this purpose, genetic
programming was used in the Isfahan region, using data from
2014-2017, and the results obtained were compared with the
results of the corresponding artificial neural network. Three dif-
ferent approaches were proposed. In the first approach, called
GA-CLU-T, the number of pipe failures was predicted from all
the data. in the second, called GA-CLU-Y, models were created
and trained based on data from 2014, and the resulting model
was used to predict the number of pipe failures in future years.
Finally, a third model called GA-CLU-R was proposed to deter-
mine the number of pipe failures in other regions. Here, two dif-
ferent models were proposed for each GP approach. The result
shows that the best RMSE (R2) values for the first, second and
third approaches for the test dataset were 0.00316 (0.966),
0.00074 (0.996) and 0.00075 (0.997), respectively. The results
show that the accuracy of the results of GP models is better
than that of the corresponding ANN models. Comparison of the
results obtained showed that the methods proposed are practi-
cal in that the sewage operator can use them to plan mainte-
nance and assess the repair time of the sewage network, to
thus reduce operation and maintenance costs.

High levels of soil impermeability as well as increased ur-
banization contribute to the occurrence of floods around the
world. To mitigate the negative effects of floods, low impact de-
velopment (LID) techniques may be used. These aim to pre-
serve the hydrology of urban catchments closer to pre-develop-
ment conditions through the use of distributed stormwater con-
trol systems. Lopes et al. (2021) explored the use of hydrologi-
cal simulation models integrated with optimization techniques
as an alternative, to aid in LID scenario planning. This study
tested the feasibility of using an adaptation of the NSGA-II ge-
netic algorithm together with the SWMM hydrological model to
aid in the optimal design of an LID scenario aimed at reducing
stormwater runoff and total costs in different return periods. The
study analyzed a combination of permeable pavements, green
roofs and bioretention cells, and the model was optimized for
rainfall with return periods of 10, 25 and 50 years. The results
showed that the model was able to find multiple optimal solu-
tions with different levels of runoff reduction at different costs.
However, the research revealed some limitations related to
practical applications and possible oversizing of adjacent LID
layers.

The GP is considered an algorithm that gives worse results
in water level forecasts (Rajaee et al., 2019), though it turned
out to be more effective than ANN in solving problems related to
sewage infrastructure.

SUPPORT VECTOR MACHINE

A analysis for the northern Colombian city of Riohacha used
physics-based modeling using 2D models (Cardenas-Mercado
et al., 2023). The study aimed to identify social and economic
variables and flood magnitude under extreme hazard condi-
tions. To obtain twenty social hydrological variables, a survey
analysis was conducted using the Kruskal-Wallis test and multi-
ple correspondence analysis. Determination of the optimal
combination of parameters and calibration of the TELEMAC-2D
hydrodynamic model was based on the iterative use of SVM.
The curve number (CN) and the Manning friction coefficient
were used as calibration parameters. The optimization process
included introducing SVM dummies for the socio-hydrological
variables CN and the Manning friction coefficient, testing as
many as 20,000 parameter combinations, and the evaluation
included mean absolute error (MAE), mean error (ME), relative
absolute error (RAE), mean squared error and inertia root
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mean square error (IRMSE). In standard simulations, RMSE
values of 0.48 m, MAE of 0.37 m, and an IRMSE of 1.37 m,
were obtained. In contrast to the previous indicators, the ME in-
dicator slightly increased from 0.15 m to 0.17 m after taking into
account the socio-hydrological variables. The authors suggest
that the results achieved may provide further scope for optimi-
zation, especially through the implementation of digital terrain
models, which would allow obtaining a more realistic represen-
tation of the complexity of urban structures. Additionally, poten-
tial improvements may include expanding research related to
the integration of social and hydrometeorological variables to
more accurately analyse flood risk and identify more precise
tools for predicting crisis situations.

The concept of green development is an innovative ap-
proach that assumes simultaneous progress in the field of envi-
ronmental protection and socio-economic development. As part
of one study, based on the grey water footprint theory and using
physical and statistical models, the main goal was to conduct a
comprehensive analysis, assessment and forecasting of the
spatio-temporal dynamics of the evolution of the relationship
between the water environment and the social economy in the
Yangtze River area (Deng et al., 2021). The concept of grey wa-
ter footprint in this context is defined as the amount of freshwa-
ter necessary to absorb pollutants, taking into account natural
background concentrations and applicable water quality stan-
dards in a given area. The results of the study revealed interest-
ing trends: firstly, in the period from 2003 to 2017, the grey wa-

ter footprint carrying capacity indicators, such as KCOD,
KNH3-N and KTP have been systematically decreasing, which
indicates an observed decrease in the degree of coordination of
connections, especially noticeable from east to west; secondly,
the degree of coordination of connections showed a decreasing
spatial trend, while increasing temporally in the years
2003-2017; thirdly, sustainable development (Plan 1V) turned
out to be the optimal scenario, bringing about an improvement
in the overall degree of coordination. It is worth adding that, in
addition to describing the results, the study also contained polit-
ical suggestions which added to its practical value. The results
may influence the achievement of sustainable water manage-
ment. Their implications go beyond theoretical aspects, offering
concrete guidelines for making political decisions and actions
aimed at improving the state of the environment and the quality
of life of local communities.

In a further study, an innovative support vector machine
(SVM) model used a complex polynomial kernel function to
forecast monthly water demand in the Canadian city of Kelowna
(Shabani et al., 2017). The focus was mainly on precisely ex-
amining the effectiveness of phase space reconstruction before
determining the optimal combination of input variables for the
prediction models. The results obtained clearly show that the
optimal delay time of the input variables significantly increases
the efficiency of SVM models. As part of the analysis, the AMI
technique was used, to precisely determine the optimal delay
time for explanatory variables, such as water demand, temper-

Table 1

Details of the reviewed papers

Used . . .
No Authors (year) models Main topic Input variables
model of the failure rate and
estimation of the optimal ID of pipe, material, diameter, length, thickness, age at which
Jafar et al. : ] . ) f )
1 (2010) ANN replacement time for the the pipe failure occurred, soil type assigned, location, pressure
individual pipes in an urban variation, number of failures
water distribution system
2 Karthika and ANFIS air temperature prediction rainfall, wind speed, humidity, sunshine hour, SO
Deka (2015) P P : peed. v o2
Chadalewada et urban rainfall-runoff process rainfall intensity, discharge at the catchment outlet,
3 GP . -
al. (2016) modeling evapotranspiration
4 Abba et al. ANN, prediction of the dissolved dissolve oxygen, pH, biological oxygen demand, water
(2017) ANFIS oxygen concentration in a river temperature
Shabani et al. prediction of the monthly water .
5 (2017) SVM demand water demand, temperature, precipitation
Azad et al EC, total dissolved solids, SAR, carbonate hardness, total
6 (2019) ' ANFIS estimation of water quality hardness, pH, concentrations of sodium, chlorine, carbonate,
bicarbonate, sulfate, magnesium and calcium
calcium hardness, total hardness, turbidity, pH, temperature,
7 RadFard et al. ANFIS estimation of water qualit total dissolved solids, electrical conductivity, alkalinity,
(2019) quality concnetration of magnesium, calcium, potassium, sodium,
sulphate, bicarbonate, fluoride, nitrate, nitrite and chloride
8 Supartfze(a)r;%)Samah ANFIS rainfall prediction average monthly rainfall values
Deng et al. estimation of water quality in dissolved oxygen, permanganate index, ammonia nitrogen
9 SVM .
(2021) river value
10 Ghosh et al. ANN urban wastewater remediation inlet concentration, plant density, hydraulic retention time,
(2021) efficiency modeling biochemical and chemical oxygen demand and pH
1 Lo?2e§2e1t)al. GA runoff reduction levels modeling technical parameters of storm water system, precipitation
12 AI-Dc()LZJ(ngg)et al ANN land use cover change model Google Earth maps, terrain model data
Cardenas- hvsics-based flood model initial condition of wetlands and water depth, base flow,
13 Mercado et al. SVM phy creation altimetric information incorporated with the digital terrain model,
(2023) precipitation
14 Ch(ggzeat)al. ANN water quality prediction UAV multispectral data and measured water quality data
Hoseingholi and . . - pipe diameters, pipe slopes, distance between two manholes
15 Moeini (2023) GA pipe failure prediction (pipe length), pipe cover depth and pipe age
Selim et al. predictive models for dissolved .- o . .
16 (2023) ANN oxygen in creating an urban lake temperature, pH, conductivity and oxidation reduction potential
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ature and rainfall. Particular attention was paid to the optimal
delay time of these variables, both individually and in the con-
text of a model that takes into account all the delays noted until
the optimal value is obtained. Importantly, the results obtained
clearly indicate that a model using additional information as in-
dependent time series can significantly outperform models fo-
cused solely on the individual optimal delay time for individual
variables. It should be emphasized that support vector ma-
chines have shown high sensitivity to the reconstruction of the
phase space of input variables, which highlights the importance
of appropriate design of input data for demand forecasting
models. The study provided a new perspective on the impor-
tance of the optimal delay time, precisely determined using the
average mutual information. The results suggest the need to
implement advanced combination strategies in the input data of
forecasting models to achieve more effective and precise re-
sults.

SVM is a very good machine learning method that can be
used to solve not only classification problems, but also predic-
tion problems. Good performance of this method is related to
the selection of kernel functions and parameter values, which
can be selected randomly or using optimization methods.

A summary of the articles described is shown in Table 1.

CONCLUSIONS

Artificial intelligence methods have been used in water sys-
tem research. The research results as described confirm the
wide use of artificial inteligence methods in forecasting
changes in selected surface and groundwater quality parame-
ters, forecasting sewage network failures, assessing water
treatment options, climate monitoring, drought detection and
environmental issues for farmers and producers.

The analysis encompassed four methods: ANN, ANFIS, GP
and SVM. As our re-view covered non-comparable topics, it is
difficult to indicate one method that would be the most effective
for all the applications described. However, our analysis show
that these methods provide more effective results than tradi-
tional (linear) statistical methods. When using artificial intelli-
gence methods in research on water systems, attention should
be paid to the quality of the input data so that the model devel-
oped is as accurate as possible. Each use of artificial intelli-
gence methods should be supported by verification of the re-
sults obtained. The artificial intelligence methods described
work best in modeling changes in water quality or groundwater
level modeling, and it is for these issues that deep learning
methods will be described in a subsequent paper.
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