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The Badenian/Sarmatian boundary in the Paratethys basin, that marks the transition from normal marine to restricted
semi-marine conditions due to isolation of the basin from the world ocean at the onset of Sarmatian time, is still far from being
fully understood. The Kreminna section is located at the northeastern margin of the Carpathian Foreland Basin (Central
Paratethys) in the Medobory Hills region. The Miocene deposits that overlie here the Upper Cretaceous substratum com-
prise the >1 m thick upper Badenian marls and clays passing upwards into ~4 m thick Sarmatian marly limestones with inter-
calations of marls, clays and limestones, and >2 m thick limestones in the uppermost part of the exposure. Fifty-three
species of benthic foraminifera and four species of planktonic foraminifera have been recorded. Six benthic foraminiferal as-
semblages are composed almost exclusively of calcareous forms; agglutinated taxa are practically lacking. Elphidium spp.,
miliolids, Lobatula lobatula and Ammonia spp. are the most common calcareous benthic foraminifera in the material studied.
Planktonic foraminifera are represented only by species of Globigerina and occur rarely in the lowermost part of the section.
A characteristic feature of palynofacies is the very low proportion of land-derived elements — sporomorphs and cuticles,
which suggests a sedimentary setting without terrestrial influx, and taxonomical impoverishment of dinoflagellate cyst as-
semblages, which are either monospecific or consist mainly of two to three species: in a majority of samples, assemblages
with Polysphaeridium zoharyi and P. subtile occur. Most 8'%0 values range from —1.5 to ~+0.5%o VPDB and most §'°C values
are between 0 and +2%. VPDB. In general, the 8'°C curve mirrors the §'°0 changes in the section. The Badenian/Sarmatian
boundary is placed at the level where the Cibicidoides ungerianus Assemblage is replaced by the Elphidium fichtelianum As-
semblage. At the boundary, planktonic foraminifers and most abundant stenohaline benthic foraminifera disappeared. Bot-
tom waters were well-oxygenated both in the latest Badenian and earliest Sarmatian in the Kreminna location.
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INTRODUCTION open marine conditions were re-established at ~13.36 Ma (Si-

mon et al., 2019) owing to the reconnection of the Central

Paratethys basin with the Mediterranean and Eastern Para-

Following the Badenian Salinity Crisis initiated at 13.81  tethys. Marine conditions persisted until ~12.65 Ma when a sud-
+0.08 (de Leeuw et al., 2010), when massive evaporite deposi- ~ den change to brackish-marine conditions occurred (Palcu et
tion occurred in parts of the Central Paratethys (Peryt, 2006),  al., 2015; Simon et al., 2019). This triggered the elimination of
stenohaline organisms known as the Badenian/Sarmatian Ex-
tinction Event (BSEE; Harzhauser and Piller, 2004a; cf. Sliwin-
ski et al., 2012 with references therein). Successions in mar-
ginal basins are reported to show erosional features and fauna
* Corresponding author, e-mail: d.peryt@twarda.pan.pl reworking at the boundary level in the Carpathian Foredeep Ba-
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published online: March 25, 2024 rovich et al.,, 1997; Studencka and Jasionowski, 2011; cf.
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Leszczynski and Nemec, 2015) and the Pannonian Basin Sys-
tem (e.g., Kojumdgieva, 1969; Kovac et al., 2007; Rogl et al.,
2008; Cornée et al., 2009; Szuromi-Korecz et al., 2021). How-
ever, Palcu et al. (2015) indicated that there is no evidence for
sea level change at or close to the BSEE in the Romanian part
of the Carpathian Foredeep and suggested that sea level
change is not a dominant factor at the BSEE. They concluded
that the BSEE does correspond to a change in the configuration
of the Central-Eastern Paratethys gateway and the resulting
unification of the Paratethys at the beginning of the Sarmatian
which caused, during less than 10 kyr, less saline conditions in
the Central Paratethyan basins (Palcu et al., 2015). On the
other hand, it seems that the BSEE timing is diachronous due to
the complex tectonic evolution of the Carpathian-Pannonian re-
gion, reflecting the final isolation of the Central Paratethys
(Kovac et al., 2018 with references therein).

As the Badenian-Sarmatian boundary — a key interval for
understanding Central Paratethys evolution —is still far from be-
ing fully understood, analysis of every outcrop through this in-
terval is essential (cf. Silye and Filipescu, 2016; Ruman et al.,
2017). This paper deals with the Kreminna outcrop in Podolia,
the Ukrainian Carpathian Foreland Basin (Fig. 1). The late
Badenian and Sarmatian (Serravallian) evolution of depositio-
nal environments in this part of the Carpathian Foreland, east of
the Medobory Reef Tract that was subject to many studies (Stu-
dencka and Jasionowski, 2011; Gorka et al., 2012 with refer-
ences therein), has never been fully explored. The aim of this
paper is to clarify the palaeoenvironmental changes that took
place in this area around the Badenian/Sarmatian boundary
based on micropalaeontological analyses (foraminifers, dino-
flagellate cysts, palynofacies) of the Kreminna section. This
section is located ~500 km north of the Tisa Valley section stud-
ied by Palcu et al. (2015) and ~300 km ESE of the Babczyn 2

and Cieszanow 1 borehole sections recently examined by Peryt
et al. (2021, 2024).

Foraminifers seem to be the most reliable group for the
biostratigraphic dating of the Badenian/Sarmatian interval in the
Carpathian Foredeep and its foreland basin because of direct
and indirect age indications, good resolution, and the relatively
easy identification of reworked specimens studied (Filipescu et
al., 2020). They are also reliable indicators of environmental
factors such as depth, salinity, and oxygen content of water us-
ing the data on environmental requirements of recent Mediter-
ranean foraminifers (see review in Murray, 1991, 2006). In turn,
changes of palynofacies composition correlated with taxonomi-
cal variations in dinoflagellate cyst assemblages may reflect
some minor environmental fluctuations.

GEOLOGICAL SETTING

In the Carpathian Foredeep Basin and its foreland — the larg-
est Central Paratethyan basin — the marine shelf-slope facies oc-
curred during deposition of the Middle Miocene strata that are in-
cluded into two regional stages: Badenian and Sarmatian (e.g.,
Oszczypko et al., 2006; Kovac et al., 2017 with references
therein). Following the late Badenian transgression that resulted
in the inundation of a much wider area in the northeastern part of
the central Paratethys, sediments of the Machéw Formation (in
Poland) and Kosiv Formation (in Ukraine) were deposited. In the
outer (Bilche-Volytsa) zone of the Ukrainian Carpathian Fore-
deep grey silty clays that alternate with interbeds of silts, sand-
stones, tuffs, and tuffites occur (Andreyeva-Grigorovich et al.,
1997); they are 10-150 m thick (Kurovets et al., 2004). They are
gradually passing, toward the basin margin, into scallop or
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Fig. 1A - simplified palaeogeographic reconstruction of the Mediterranean-Paratethys region during the late
Badenian (modified after Popov et al., 2006; Palcu et al., 2015), overlain on the present day map contours; B —
distribution of Middle Miocene deposits in the northeastern part of the Carpathian Foredeep and the location
of the Kreminna section
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glauconitic marls, and then into calcareous marls and marly lime-
stones with fine rhodoids. The thickness of this marginal facies of
the Kosiv Formation is usually 4 to 15 m (tomnicki, 1897;
Teisseyre, 1900; Maslov and Utrobin, 1958; Studencka et al.,
2012; Gedl et al., 2016). In the north-eastern part of the Ukrai-
nian Carpathian foreland coralline algae-vermetid reefs in the
Medobory Reef Tract and a variety of bioclastic facies occur
(e.g., Korolyuk, 1952; Kudrin, 1966; Studencka and Jasionowski,
2011; Gorka et al., 2012); these pass shoreward into siliciclastic
deposits (Maslov and Utrobin, 1958).

In the Medobory Reef Tract, a geographically widespread
unconformity occurs at the top of the Ternopil Beds. Field ob-
servations have shown the presence of breccias, vadose silt
and vadose leaching in the uppermost coralline-algal bound-
stones, indicating considerable sea level fluctuations and a
phase of emergence of the Medobory reefs in the latest Bade-
nian (Jasionowski, 2006). The overlying Sarmatian deposits
that partially overlay the Badenian reef deposits, are composed
of a complex of carbonate, sandy and sandy-clay deposits col-
lectively assigned to the Volhyn Beds (Andreyeva-Grigorovich
et al., 1997). The thickness of the Volyn Beds reaches 35 m
(Andreyeva-Grigorovich et al., 1997).

The Kreminna section (Khmeln'nyts’kyi province), one of
classical middle Miocene localities in the Ukrainian Carpathian
Foreland, for mentioned the first time in the geological literature
by Du Bois de Montpereux (1831). It is located at the northeast-
ern margin of the Carpathian Foreland Basin (Central Para-
tethys) in the Medobory Hills region, ~60 km north of the town of
Kamyanets Podil's’kyi and 50 km north-east of the town of
Khmeln’nyts’kyi. The Miocene deposits that overlie here the
Upper Cretaceous substratum comprise the >1 m thick upper
Badenian marls passing upwards into ~4 m thick lower Sarma-
tian marly limestones and marls with intercalations of limestone
and clay followed by >2 m thick limestones (Fig. 2).

MATERIAL AND METHODS

The sampling of the section was done in 2010 (samples
marked with numbers) and 2019 (samples marked with letters).
At the base of the section, the light-grey and then olive-green
marls with lithothamnia, bivalves (including pectens) and gas-
tropods occur that are followed by light grey-green graded-bed-
ded marls occur containing a 7 cm thick intercalation of clay
near their top. Above these marls, a 20 cm thick limestone bed
occurs (Fig. 2A); the limestone is bioclastic wackestone at the
base (Fig. 2G) and bioclastic packstone at the top (Fig. 2F).
Then, a thin bed of marl is followed by marly limestone (Fig. 2E)
containing a clay intercalation near the top (Fig. 2A). The marly
limestone bed above the clay is covered by the second lime-
stone unit that in turn is overlain by marly limestone (Fig. 2C, D)
with thin marl and thin limestone intercalations (Fig. 2A). The
marly limestone unit is covered by a clay bed followed, one by
one, by the third limestone bed characterized by varied thick-
ness (4-20 cm), clay, marly limestone (Fig. 2B), and then the
top limestone unit occurs (Fig. 2A).

Thirty-one samples from the Kreminna section were stud-
ied for foraminifera; sampling points in relation to the section
are shown in Figure 3. Washed residues for foraminiferal
study were obtained from the rocks by disaggregation using
Na,SO,. An aliquot of ~200-300 specimens of foraminifers
from the 63-700 um size fraction was picked for the fora-
miniferal analyses.

Taxonomy of foraminifers follows Venglinskyi (1958, 1975),
tuczkowska (1972, 1974), Papp and Schmid (1985), and Cicha
et al. (1998). The stratigraphically and palaeoenvironmentally
important specimens were studied in detail and documented
using a Philips XL20 SEM (Figs. 4-7). The figured specimens
are deposited in the Institute of Paleobiology, Polish Academy
of Sciences, Warsaw (ZPAL F. 77).

The relative abundance of infaunal and epifaunal forms
within benthic foraminiferal assemblages, simple benthic diver-
sity, the Shannon-Wiener diversity index H(S) were calculated
(Fig. 8). The palaeoenvironmental interpretation based on fora-
minifera applies the requirements of present-day representa-
tives of the recorded taxa (Jorissen et al., 2018; Dumitriu et al.,
2020, with references therein; Consorti et al., 2021).

Taking into account the differentiated morphogroups and
the inferred microhabitat depth of foraminifera the ecostrati-
graphic trends registered in foraminiferal assemblages were
analysed. Foraminiferal assemblages are understood as
groups of species whose composition and aspect is determined
by the properties of the environment and by the relations to
each other. They represent ecozones.

Changes in water salinity and other environmental parame-
ters such as productivity, oxygen level in bottom waters, were
interpreted using qualitative and quantitative analyses (Murray,
2006). To estimate the level of oxygenation of the sea floor the
benthic foraminifera were grouped into oxic, suboxic and dyso-
xic indicators according to Thomas (1980), van der Zwaan
(1982, 1983), Verhallen (1991), Jorissen et al. (1992), Kaiho
(1994), Loubere (1996, 1997), Bernhard and Sen Gupta (1999),
Kouwenhoven and van der Zwaan (2006), Holcova and Zagor-
Sek (2008), and Kaminski (2012). The following taxa are in-
cluded into the oxic group: Cibicidoides spp., Heterolepa dute-
mplei, Lobatula lobatula, Anomalinoides badenensis, Hanza-
waia boueana, miliolids, keeled elphidiids. Oxic indices repre-
sent epifaunal species. Taxa tolerant of suboxic environments
are: Melonis pompilioides, Sphaeroidina bulloides, Porosono-
nion, Astrononion perfossum, Reussella spinulosa, Dorothia
sp., Semivulvulina pectinata, Textularia laevigata and taxa tol-
erant of dysoxic environments — Bolivina spp., Bulimina spp.
and Fursenkoina acuta.

Foraminifera tolerant of suboxic environments represent
mostly shallow infaunal species, while foraminifers tolerant of
dysoxic environments represent mostly deep infauna and spe-
cies with opportunistic behaviour.

Thirty five samples from the Kreminna section have been
studied for palynology; sampling points in relation to the section
are shown in Figure 9. The applied palynological procedure in-
cluded 38% hydrochloric acid (HCI) treatment, 40% hydrofluoric
acid (HF) treatment, heavy liquid (ZnCl, + HCI; density 2.0 g -
cm™) separation, ultrasound for 10-15 s and sieving at 15 um
on a nylon mesh. No fuming nitric acid (HNOj3) treatment was
applied. The quantity of rock processed depended on lithology:
pale-coloured marls ~250 g, whereas clays up to 100 g. The
rock samples, palynological residues and slides are stored in
the collection of the Institute of Geological Sciences, Polish
Academy of Sciences, Krakéw.

Samples for isotopic analyses were carefully selected by
picking foraminifer tests under binocular microscope. Analyses
of carbon and oxygen stable isotope composition in the se-
lected samples were performed using a Thermo Scientific™
KIEL IV Carbonate Device connected on-line to a Finnigan
Delta Plus mass spectrometer in a Dual Inlet system in the Sta-
ble Isotope Laboratory (ISOLAB), Institute of Geological Sci-
ences of the Polish Academy of Sciences, Research Centre in
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limestone
marly limestone
marl

Fig. 2A — the sampled Kreminna section (photo 2019): outcrop and generalized lithology; B — lower part of the marly limestone unit
below the top limestone unit (peloidal-lump packstone); C, D — lower part of the marly limestone unit above the second Sarmatian
limestone bed (C is above D): C — peloidal-lump packstone, D — bioclastic packstone; E — lowermost part of the marly limestone
above the first Sarmatian limestone bed (fossiliferous mudstone); F — upper part of the first Sarmatian limestone bed (bioclastic
packestone); G — lower part of the first Sarmatian limestone bed (bioclastic wackestone)

Warsaw, Poland. Sample preparation was performed automati- RESULTS
cally according to the method described by McCrea (1950).
Samples (min. 20 ug carbonate) were reacted with ortho-

phosphoric acid (density 1.94 g/dm) at 70°C. One NBS 19 inter- FORAMINIFERA
national standard was analyzed for every 10 samples. Results
were given as d against the VPDB standard. The accuracy of Fifty seven species of foraminifera were identified in the

measm118rements (standard deviation) is: (18) 8"°C +0.03%0 and  Kreminna section (Fig. 3). Foraminiferal assemblages were
(18) 6°0 +0.07%o. composed mostly of calcareous benthic forms; agglutinated
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Fig. 3. Distribution of foraminifera in the uppermost Badenian and lowermost Sarmatian of the Kreminna section

ones occurred in the lowermost part of the succession. Re-
corded species are listed in Appendix 1. Figure 10 shows the
relative percent abundances of common and dominant spe-
cies, i.e. species that show abundance >5% in at least in one
sample.

Planktonic foraminifera are represented primarily by Globi-
gerina bulloides, G. praebulloides, Globigerina tarchanensis
and Globigerina sp. They occurred in the lowermost part of sec-
tion where they formed 5 to 20% of the assemblages. The last
occurrence of this group was coeval with the disappearance of

most Badenian stenohaline foraminifera (sample 2). Aggluti-
nated foraminifera (Dorothia sp., Textularia laevigata and Semi-
vulvulina pectinata) occurred in the basal part of the section
(samples A, B). They formed up to 10% of foraminiferal assem-
blages (Fig. 10). Among the calcareous benthic foraminifera in
the lower part of the section (samples A to 2), Cibicidoides dom-
inated assemblages (25 to 45%). Heterolepa dutemplei, Astro-
nonion perfossum and Melonis pompilioides also significantly
contributed to the assemblages; they formed 15 to 20% of the
assemblages. Keeled Elphidium, primarily E. fichtelianum and
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Fig. 4A — Globigerina tarchanensis Subbotina and Chutzieva; B — Globigerina sp.; C — Globigerina bulloides d'Orbigny;
D, E — Elphidium fichtelianum (d'Orbigny); F, G — Elphidium josephinum (d'Orbigny); H, | — Elphidium aculeatum
(d'Orbigny); J-L — Elphidium reginum (d'Orbigny)

A-E — sample 2; F-G — sample 29; H-| — sample 21; J-L — sample 28; scale bar = 200 um

E. crispum, also were important components of the assem-
blages and formed 5 to 15% of them. Hanzawaia boueana,
Neoeponides schreibersi and Lobatula lobatula temporarily ex-
ceeded 5%; other species, e.g., Bolivina spp., Bulimina sp,
Glandulina sp., Sigmoilinita tenuis were minor components of
assemblages. In the sample 2 stenohaline Cibicidoides unge-
rianus, Melonis pompilioides, Astrononion perfossum, Hetero-
lepa dutemplei occurred for the last time in the section (Fig. 10).

In the overlying rock interval (samples G-K) Elphidium
flourished and formed 40 to 80% of the assemblages. Miliolids
appeared in the lower part of this interval (sample G) reaching
10% in samples H and 4, and at the top of this interval (sample
4) Ammonia beccarii appeared (Fig. 10).

The rock interval represented by samples L to Q was domi-
nated by Lobatula lobatula (40 to 93%); miliolids exceeded 10%;
Elphidium formed ~10% except in sample O where it reached
30%. In this sample also the last appearance of E. fichtelianum
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Fig. 5A, B — Hanzawaia boueana (d'Orbigny); C, D — Cibicidoides austriacus (d'Orbigny); E, F — Cibicidoides sp.;
G — Cibicidoides ungerianus (d'Orbigny); H, J — Lobatula lobatula (Walker and Jacob);
| — Anomalinoides badenensis (d'Orbigny);

A-H, J — sample 2, | — sample 8; scale bar = 200 um

was observed. At the same level the lowest occurrence of E.
listeri was recorded. In this interval also Anomalinoides badene-
nsis occurred as a minor component of the assemblages.

The rock interval comprising samples 10 to 26 was domi-
nated by elphidiids, Lobatula lobatula, miliolids and Ammonia
beccarii. Elphidium reginum, which appeared in sample N of the
underlying interval, was a minor component. Abundances of
miliolids and Ammonia beccarii are negatively correlated. In-
creasing abundance of miliolids was accompanied by decreas-

ing trends of Ammonia beccarii. Lobatula lobatula did not occur
in the rock interval represented by samples 27-29; the interval
was dominated by elphidiids (Elphidium crispum, E. macellum,
E. listeri, E. aculeatum, E. reginum) forming 75 to 85% of the
assemblages. Elphidium reginum together with E. listeri were
dominant species in these assemblages, and their contribution
ranged between 25 and 35%. In the interval miliolids formed
15%, and Ammonia occurred rarely (Fig. 10).
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Fig. 6A, C — Ammonia beccarii (Linné); B, E — Elphidium macellum (Fichtel and Moll); D, H, | — Elphidium crispum
(Linné); F — Elphidium joukovi Serova; G — Elphidium friedbergi Serova; J — Elphidium antoninum (d'Orbigny);
K, L — Elphidium listeri (d'Orbigny)

A, C, D, H, |, K, L — sample 29; B, E — sample 21; F, G, J — sample 14; scale bar = 200 um

In the topmost part of the section (sample 29) within the PALYNOFACIES
Elphidium association, E. reginum was replaced by E. jose-
phinum, and miliolids disappeared from the foraminiferal as- The following groups of phytoclasts and palynomorphs
semblage. have been distinguished in the material studied:

The Badenian/Sarmatian boundary is placed at the level — black opaque phytoclasts;
where the most abundant stenohaline benthic foraminifera dis- — dark brown translucent, commonly highly disintegrated par-
appeared (sample 2) (Fig. 10). ticles, in some cases larger, with preserved cuticular struc-

ture;
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Fig. 7A - Bolivina sp.; B — Bolivina dilatata Reuss; C — Bolivina plicatella Cushman; D, E — Articulina problema Bogdanowicz;
F — Sigmoilinita tenuis (Czjzek); G — Reussella spinulosa (Reuss); H — Triloculina eggeri (Bogdanowicz); I, J — Pseudo-
triloculina consobrina (d'Orbigny); K— Quinqueloculina bogdanovichi (Serova); L — Varidentella reussi (Bogdanowicz); M, P
— Astrononion perfossum (Clodius); N — Melonis pompilioides (Fichtel and Moll); O — Varidentella sp.; Q — Porosononion
martkobi (Bogdanowicz); R — Nonion tumidulus Pishvanova; S — Rosalina obtusa d'Orbigny; T, U — Neoeponides schreibersi
(d'Orbigny)

A-F — sample 4; G — sample K; H-L, O — sample 24; M, N, P, S-U — sample 2; Q, R — sample 29; scale bar = 200 um

— pollen grains;
— dinoflagellate cysts (Fig. 11).

Their distribution is shown in Figure 9. It should be noted
that the presented ratios of particular palynofacies elements,
especially those representing palynodebris, might be impre-
cise. This is due to the low frequency of counted particles (com-

monly <300, especially in lower part of the section), and due to
their tendency to disintegrate.

Majority of studied samples yielded low to even trace
amounts of palynological organic matter, despite that quantity
of processed rock was exceeding standard amounts. Their
palynofacies consists of black opaque phytoclasts, in some
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samples associated by rare dinoflagellate cysts. Some samples
contain dark brown translucent particles, which tend to disinte-
grate (14-16, 25-28). A few samples only, mainly from upper
part of the studied section, contain a slightly higher amount of

palynological organic matter (13, 19A, 22—24, 28, 29). The latter
consists chiefly of dinoflagellate cysts, and subordinate black
phytoclasts. Some samples contain a high ratio of land plant tis-
sues (12, 26, 28), which, are rather a recent contamination.



Danuta Peryt et al. / Geological Quarterly, 2024, 68: 7 11

ing

KREMINNA:

sampli

[ | [m]

PALYNOFACIES

Number of dinoflagellate
cyst species

I sampling

[ ]
N
©
N
©

6-

® 28 28

® 27 27

SARMATIAN

e

SRR SS—

wo~

BADENIAN

®A A

N cays 20%
T mars
[ I marly imestones

[ Timestones

10% 30%

o
X

40%

[ Tpollen grains

$

50% 60% 70% 80% 90% 100%0 1 2 3 4 5 6

B dark-brown translucent and cuticular palynodebris
™ black opaque phytoclasts

[ dinoflagellate cysts
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Sporomorphs are rare; they are represented in the material
studied by infrequent bisaccate pollen grains, which occur in
samples 9, 13, 17, 21A (Fig. 9).

Dinoflagellate cysts occur in majority of the samples studied
(Fig. 9). They are absent in samples B, 3-5, 15, 17, 20, 27, i.e.,
samples, which contain a very low amount of palynological or-
ganic matter. The distribution of dinoflagellate cysts in the re-

maining samples shows a quantitative and qualitative diversifi-
cation. The basal part of the section (samples A-10), which gen-
erally yielded a very small amount of palynological organic mat-
ter, contain very rare dinoflagellate cysts. Higher samples
11-14 contain frequent dinoflagellate cysts, but samples 15-18
that follow are barren or they yielded very rare, single speci-
mens only. In this interval, frequent dark brown translucent par-
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Fig. 11. Dinoflagellate cysts from the Kreminna section

A, B — Polysphaeridium zoharyi(Deflandre et Cookson, 1955) Wall,
1967; C — Operculodinium centrocarpum (Rossignol, 1962) Bujak et
al. (1980); D, E — Cleistosphaeridium placacanthum (Deflandre et
Cookson, 1955) Eaton et al. (2001); F — Lingulodinium machaero-
phorum (Deflandre et Cookson, 1955) Wall (1967)

ticles occur. Frequent dinoflagellate cysts occur in samples 19A
and 19B, whereas samples 20 and 21A are almost barren. The
highest part of the section, except samples 26 and 27, contains
frequent dinoflagellate cysts, which in some samples occur in
mass amount (22, 24, 29). Dark brown translucent particles
dominate in samples 25-28, which coincide, similarly as in case
of samples 15-18, with a decline of dinoflagellate cyst assem-
blages. Aquatic palynomorphs are also represented by infre-
quent Leiosphaeridia (sample 26).

Qualitatively, dinoflagellate cysts show a low diversification
(Fig. 9). Polysphaeridium is the only genus that occurs in lower
part of the section (samples A-19A). Cleistosphaeridium placa-
canthum has its lowest occurrence in sample 19B. Higher sam-
ples (20—28) that yielded dinoflagellate cysts contain assem-
blages composed of Polysphaeridium zoharyi, or dominated by
this species and with subordinate Cleistosphaeridium placa-
canthum and Batiacasphaera. An exception is the assemblage
from sample 24, which consists of dominant Cleistosphae-
ridium placacanthum, and subordinate Polysphaeridium zo-
haryi (rare specimens of Lingulodinium machaerophorum,
Operculodinium centrocarpum, Batiacasphaera sp., Spinife-
rites sp. also occur). The highest sample 29 yielded a similarly
diversified assemblage: it consists of dominant Polysphaeri-

Table 1

5"C and 5'®0 values of Middle Miocene foraminifera
of the Kreminna section

Sample Taxon measured 5'%0 [%o] | 8'°C [%o]
2 Cibicidoides 0.273 1.715
4 Elphidium fichtelianum 0.483 0.283
5 Lobatula lobatula -3.659 0.723
8 Lobatula lobatula 0.741 2.377
10 Ammonia beccarii -3.477 | —4.412
14 Elphidium spp. -0.171 1.215
18 Elphidium spp. —-0.057 0.311
21b Elphidium Crrgg?gg'g Elphidium _0.555 0.77
22 Ammonia beccarii —1.426 0.198
24 Lobatula Ioggétélﬁ n;- Elphidium 0.29 0.385
25 Ammonia beccarii -1.43 -0.952
Elphidium crispum -0.253 0.119
28 Elphidium reginum 0.364 1.281
29 Elphidium aculeatum -0.957 0.408

dium zoharyi, and subordinate Cleistosphaeridium placaca-
nthum, Pentadinium laticinctum, Spiniferites pseudofurcatus
and Operculodinium? sp.

ISOTOPES

The 8"°C and §'°0 values of studied foraminifer taxa are
shown in Table 1. Most §'%0 values range from —1.5 to ~+0.5%o
VPDB (Fig. 12). The exceptions are two samples from the lower
part of the section where §'°0 values are as low as ~—3.5%o.
Generally very slight gradual decrease of §'®0 values (i.e. de-
pletion in heavy oxygen isotope) upward the section can be ob-
served (Fig. 12). Excluding one sample with a very low §"°C
value (just below —4%. VPDB), all other measurements range
from —1 to >+2.5%0. VPDB, and most are between 0 and +2%o
VPDB. In general, the §"™C curve mirrors the §'°0 changes in
the section.

The sample(s) from the bottommost part of the section be-
ing undoubtedly of Badenian age, do not differ isotopically from
the Sarmatian samples from the rest of the section. In fact, the
isotopically heaviest sample is of Sarmatian age (sample no. 8).

The carbon isotopic signatures of the Kreminna foraminifers
are identical, as e.g. those from the roughly coeval Sarmatian
sections of the Zsambék Basin in Hungary (the central part of
the Pannonian Basin near Budapest). The §'°0 values in Kre-
minna are quite high when compared to other Sarmatian loca-
tions — in the Zsambék Basin 5'°0 in foraminifers ranges from
—3.5to ~—0.5 (Toth et al., 2010). Comparison of the Kreminna
isotopic data with those measured in benthic foraminifers com-
ing from other upper Badenian sections in the Paratethys
shows that the Kreminna data are usually isotopically slightly
lighter in the case of oxygen and significantly heavier for carbon
(cf. Peryt et al., 2014). In the Shchyrets section in Ukraine the
5'%0 values are usually close to +2%. VPDB and §'°C values
are in the range between -3 and 0%0 VPDB (Perytetal., 2014).
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INTERPRETATION

FORAMINIFERA

Five foraminiferal assemblages were recognized in the Kre-
minna section (Fig. 12) which suggests changes in the palaeo-
environment. There is a direct relationship between the abun-
dance of species within community and its environment. Abun-
dance fluctuations of benthic foraminifera are sensitive palaeo-
ceanographic indicators responding to changing palaeotem-
perature, salinity, nutrient supply and oxygen conditions.

The extinction of several rare species would have a minor
impact on the total population as their combined species abun-
dances are not likely to exceed 2—10%. Extinction of one or
more of the dominant species, however, would have a major
impact as they may comprise 50% or more of the total popula-
tion and reflect significant environmental change.

The Cibicidoides ungerianus Assemblage (Assemblage )
occurs in marls with common biodetritus of lithothamnia, bi-
valves and gastropods at the base of the studied section (sam-
ples A—F, 2; Fig. 10). This assemblage is characterized by the
dominance (30 to almost 50%) of Cibicidoides represented
mainly by Cibicidoides ungerianus and C. austriacus. Other im-
portant components are the elphidiids, which exceed 20%.
Rare specimens of Lobatula lobatula and Quinqueloculina sp.
also occur. In the lowermost part agglutinated forms and He-
terolepa dutemplei in the middle form up to 20% of the assem-
blage. The presence in this assemblage of planktonic fora-
minifera, mainly Globigerina bulloides indicates a normal salin-

ity marine environment, and approximately 50 to 70 m water
depth (Hemleben et al., 1989; Schiebel et al., 1997). Moderate
benthic foraminiferal diversity indicated by 19 to 24 species,
H(S) diversity index from 1.9 to 2.4 and the predominance of
stenohaline species over euryhaline ones confirm such a sug-
gestion. Bottom waters were well-oxygenated; epifaunally living
foraminifera form >70% of the assemblage (Fig. 10).

The Elphidium fichtelianum Assemblage (Assemblage Il) is
recorded in light grey-green marls underlying a limestone com-
plex (samples G, H, 4, K; Fig. 10). This assemblage is domi-
nated by elphidiids; they contributing 40-80% to the assem-
blage (Fig. 10). Minor components in this assemblage are
miliolids and Lobatula lobatula. Recent keeled elphidiids occur
in shallow marine environments (inner shelf) with warm to tem-
perate and normal to hypersaline (35-70%c) waters (Murray,
1991, 2006). Miliolids which exceed 10% in the assemblage
also tolerate a wide range of salinity limits (32—65%o) (Murray,
1991, 2006).

This assemblage reflects a significant palaeoenvironmental
change. The disappearance of abundant groups of stenohaline
Badenian foraminifera, such as Cibicidoides, Melonis, Hetero-
lepa, Astrononion, and their replacement, in Assemblage I, by
keeled forms of Elphidium and the absence of planktonic fora-
minifera (in contrast to Assemblage |) can be interpreted as due
to a shallowing of the sea to a depth <50 m and a salinity in-
crease. Oxygenation of bottom waters was similar to that in As-
semblage |.

The Lobatula lobatula-Anomalinoides badenensis Assem-
blage (Assemblage lIl) occurs in organodetrital limestone and
dark brown marls with numerous gastropods (samples L, 5, N,
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0, 8, Q; Fig. 10). It is dominated by Lobatula lobatula which
form 40 to 90% of the assemblage. Lobatula lobatula is accom-
panied by Anomalinoides badenensis. Miliolids, elphidiids and
Ammonia beccarii are minor components and in most samples
they slightly exceed 10%; only in sample O elphidiids reached
30%. This assemblage indicates a shallow high energy shelf
environment and is characterized by the dominance of epi-
faunal morphotypes and almost the complete absence of
infaunal ones (Fig. 8). According to the TROX model proposed
by Jorissen et al. (1995), this is the response of benthic micro-
fauna either to oligotrophic or to fully eutrophic environments. In
such environments, the degradation of organic matter within
the sediment where infaunal foraminifera thrive consumes
more oxygen than that provided by bioturbation and diffusion.
This results in excess of food in the sediment. A further in-
crease in the organic flux results in an increased consumption
of oxygen in the benthic environment and shallowing of the oxy-
genated sediment layer. In extreme situations, all oxygen is
consumed at the sediment surface and deeper sediment layers
are anoxic, as under extremely oligotrophic conditions, all ben-
thic foraminifera are observed exclusively at the sediment-wa-
ter interface (Jorissen et al., 1995).

The Ammonia beccarii Assemblage (Assemblage V) oc-
curs in ~2 m thick rock interval (from sample 10 to 26) com-
posed by clays, marls and two thin limestone beds (Fig. 10). In
this part of the succession Ammonia beccariiis a dominant spe-
cies reaching from 30 to 80%; miliolids form ~15%, except of
two short intervals in the lower and upper part where they domi-
nate and form almost 60% of the assemblage. Lobatula loba-
tula in the lower and middle part of this interval forms from 10 up
to 30% of the assemblage in sample W. It disappears in the up-
per part. Elphidiids occur constantly throughout the interval and
are minor contributors (10-15%). (Fig. 10). Ammonia is a
foraminifer characteristic of littoral and neritic environments.
This genus usually thrives in estuarine, brackish and saltmarsh
environments (Jorissen, 1988; Murray, 2006) or under the influ-
ence of fluctuating water salinity, temperature and nutrient input
(Debenay et al., 1998). Adult A. beccarii mostly prefers an
epiphytic suspension-feeder life style, both on seagrass leaves
or on calcareous algae (Debenay et al., 1998). Ammonia be-
ccarii is also abundant under more open marine conditions or
estuaries with fluctuating water salinity. Hayward et al. (2021)
placed A. beccarii in their “subtidal inner shelf group” of Ammo-
nia species characterizing 0—-50 m water depth.

Miliolids (Cycloforina, Varidentella, Quinqueloculina, Trilo-
culina) are epiphytes, however, their distribution is not related to
a specific type of phytal substrate (Langer, 1993). They prefer
shallow marine environments (0—50 m water depth) of normal
salinity to hypersaline (32—-65%o), characteristic of lagoons
(Murray, 1991, 2006). Because Ammonia beccarii and miliolids
are epiphytes it seems that changes in temporal availability of
phytal substrates are primarily responsible for their abundance
fluctuation. Their co-occurrence with stenohaline forms indi-
cates normal salinity marine environments. A very high share of
shallow infauna indicates depletion of oxygen within the sedi-
ment (Fig. 10).

The Elphidium reginum-Elphidium aculeatum Assemblage
(Assemblage V) occurs in the uppermost limestone bed (sam-
ples 27-29). Elphidium forms 75 to 85% of the assemblage
while Elphidium with spines (E. reginum, E. aculeatum, E. jose-
phinum) are very abundant and reach 35 to 50% of the assem-
blage. Miliolids and Ammonia beccarii are minor components of
the assemblage. Stenohaline species are practically absent.
Elphidium aculetaum lives recently on arborescent algae and is
an epiphytic, suspension feeding form. Elphidium macellum

presumably also had the same smaller algae microhabitat
(Langer, 1993). Recently it is a common member of low tidal
and shallow subtidal (0—20 m depth) foraminiferal associations
(Hayward et al., 1997). The predominance of keeled elphidiids
suggests dense arborescent algal substrate. However, E. regi-
num possesses a few long spines on the periphery, and the rea-
son of morphological adaptation can be explained with the tran-
sition of the algal into seagrass vegetation (cf. Toth etal., 2010).
This assemblage reflects an increased salinity environment,
with a sediment layer very impoverished in oxygen.

PALYNOFACIES

A characteristic feature of palynofacies from the studied
section is the very low proportion of land-derived elements —
sporomorphs and cuticles (Fig. 9), suggesting a sedimentary
setting without terrestrial influx. Another characteristic feature is
the taxonomical impoverishment of dinoflagellate cyst assem-
blages, which are either monospecific or consist mainly of two
to three species (Fig. 9).

Assemblages with Polysphaeridium zoharyi and P. subtile,
which occur in a majority of samples, suggest stressed condi-
tions, most likely related to increased salinity. Pyrodinium baha-
mense, the recent motile stage of P. zoharyi, forms mono-
specific blooms in hypersaline waters; fossil P. zoharyi is com-
monly found in rocks deposited during increased salinity condi-
tions (e.g., Wall and Dale, 1969; Dale, 1976; Wall et al., 1977;
Morzadec-Kerfourn, 1979, 1983; Bradford and Wall, 1984; Ed-
wards and Andrle, 1992). The occurrence of these species, to-
gether with a limited terrestrial influx may suggest a restricted,
hypersaline lagoonal environment.

A basal part of the section studied, characterized by very
low amounts of palynological organic matter, consists of inter-
layering intervals of strata that yielded Polysphaeridium only
with dinoflagellate cyst barren intervals. Strata with Polys-
phaeridium (samples A, C, D, 1, 2, 6-13) were deposited in
conditions favourable for this genus only and hostile for other
species. The lack of dinoflagellate cysts in samples B and 3-5
is presumably related to the increased factors responsible for
stress conditions hostile for all dinoflagellates. Higher up in the
section, an interval with P. zoharyi (samples 6—13), which pre-
sumably reflects similar environmental conditions as the basal
one (samples A, C, D, 1 and 2), passes into an interval with an
increased content of dark brown translucent particles and a de-
cline in dinoflagellate cysts (samples 14—16). The latter interval
was presumably deposited in a similar setting as the topmost
one (samples 25-28) characterized by a high ratio of dark
brown translucent particles and lack of dinoflagellate cysts.
These two intervals are separated by an interval, which yielded
dinoflagellate cysts, in some samples appearing in mass
amounts.

The occurrence of Cleistosphaeridium placacanthum at
some levels suggests slightly different, but presumably still in-
creased-salinity conditions compared to the levels with mono-
specific P. zoharyi assemblages. C. placacanthum is a cosmo-
politan species known from marine palaeoenvironments. It was
reported from fully marine Middle Miocene strata of Carpathian
Foredeep where it is associated with diversified assemblages
(e.g., Gedl, 1996; Peryt and Gedl, 2010; Peryt et al., 2014). But
it also occurs, commonly as frequent to dominating species, in
numerous settings of proximal Badenian of the Carpathian
Foredeep where it is associated with taxonomically impover-
ished assemblages with Polysphaeridium zoharyi and Lingulo-
dinium machaerophorum (Ged| and Peryt, 2011; Ged|, 2016;
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Gedl et al., 2016). This distribution pattern of C. placacanthum
suggests that this species occurs in a wide spectrum of palaeo-
environments, being also tolerant for proximal settings with a
presumably increased salinity.

The diversity increase noted in the upper part of the studied
section (above sample 19B; Fig. 9) suggests a slight improve-
ment in environmental conditions. Most diversified assembla-
ges from samples 24 and 29 presumably reflect fairly marine
conditions, although salinity remained still above normal levels
as suggested by the common occurrence (sample 24) and
dominance (sample 29) of Polysphaeridium zoharyi. Another
indication of stress conditions related to increased salinity might
be the presence of Leiosphaeridia in sample 26. This appar-
ently prasinophycean alga (see Guy-Ohlson, 1996) is known to
have appeared in various environments, commonly related to
increased salinity (e.g., Brugman et al., 1994). Leiosphaeridia
commonly occurs in the Badenian evaporite deposits of Carpa-
thian Foredeep (Ged|, 1997, 2004; Gedl in Peryt et al., 1997) or
in strata directly overlying them (Gedl, 1999).

ISOTOPES

Isotopic studies of calcareous skeletons cannot escape the
question of a possible diagenetic alteration that may potentially
modify their pristine composition; another constrain in the case
studied is the reliability of the small data set for any palaeo-
environmental considerations (Fourel et al., 2015). The isotopic
data from Kreminna are likely obscured to some degree by
diagenesis, which makes the possibility of their use in the
palaeoenvironmental interpretation difficult. However, most of
the §'®0 and §'°C isotopic signatures measured in the Kre-
minna section may be considered more or less primary as they
do not deviate from values reasonably expected for pristine
biogenic carbonate both in the case of oxygen as well as carbon
signatures (Fig. 12). Only two samples with the lowest 30 val-
ues are influenced undoubtedly by meteoric diagenesis (i.e.
contamination of foraminifer tests with meteoric cement and/or
recrystallization of the tests itself) and should be excluded in
further considerations.

The measured §'®0 and 8"C signatures are within the
range typical of the Sarmatian of the Carpathian Foredeep in
Poland and Ukraine (see Jasionowski, 2006). Their highest val-
ues, however, are significantly lower (by ~2%. in the case of
880 and by over 1%o for §'°C) than the isotopically heaviest
samples of roughly coeval precipitates (cements and microbial
sediments) building the nearby serpulid-microbialite reefs of the
Medobory region (see Jasionowski, 2006). The reefs are inter-
preted to originate in semi-marine waters that were enriched in
the heavy oxygen isotope due to intense evaporation (Jasio-
nowski, 2006; Studencka and Jasionowski, 2011). The Kre-
minna site was situated closer to the shore of the basin, actually
in the lagoon at the back of the reefs, and was probably more
exposed to inputs of meteoric water, which was also enriched in
isotopically lighter biogenic carbon.

Because salinity of the Paratethys basin cannot be pre-
cisely determined it is difficult to interpret the oxygen signatures
of the Kreminna section in terms of temperature. As already
mentioned above, it is generally believed that the Sarmatian
Paratethys as a whole was a semi-marine basin with reduced
salinity due to isolation from the world ocean and an excess of
meteoric water entering the basin over evaporation (e.g., Rogl,
1998; Studencka and Jasionowski, 2011). Although, there have
also been views of normal marine or even locally hypersaline
conditions in the Paratethys (see e.g., Piller and Harzhauser,

2005). Anyway, locally the Sarmatian water could be strongly
enriched in the heavier oxygen isotope, as presumably hap-
pened during the formation of Sarmatian serpulid-micriobialite
reefs (Jasionowski, 2006; Studencka and Jasionowski, 2011).
Thus, local conditions may have played a key role in the forma-
tion of the oxygen isotopic composition of water at specific loca-
tions in the Sarmatian basin, which consequently makes virtu-
ally impossible to make unambiguous estimations of palaeo-
temperature.

With the above in mind if one assumes the present-day iso-
topic composition of seawater (i.e. §'°0 0%c VSMOW), the pre-
cipitation temperatures of the foraminifer tests from Kreminna
fall within the wide range from ~12 to ~22°C (calculated using
equations given e.g., by Epstein at al., 1953 or Kim and O’Neil,
1997). Lowering the §'°0 of water by 1%o gives temperatures in
the range of 8-17°C, and by 2% as low as 5-13°C. So it is clear
that the depletion of water in the heavy oxygen isotope cannot
be very strong, otherwise calculated temperatures would be un-
realistic.

The barely visible decreasing trend in §'°0 (i.e. depletion in
heavy oxygen isotope) upward the section (Fig. 12) may reflect
a gradual decrease in salinity with time, after the transition from
normal marine conditions in the latest late Badenian (the very
bottom of the section studied) to semi-marine ones with re-
duced salinity in the earliest Sarmatian (the rest of the section).
The same explanation can be applied to the similar decrease in
8"3C upward the section, reflecting a slightly increasing contri-
bution of biogenic TOC in Sarmatian waters coupled with larger
input of meteoric water. Fluctuations of carbon isotope signa-
tures may reflect the variable contribution of biogenic carbonate
ions in water possibly correlated with the meteoric water inflows
to the marginal parts of the basin and its mixing with the basin
water reservoir. The apparent linear correlation between 5'%0
and §'°C supports this hypothesis (unless it is diagenetic).

DISCUSSION

At the Badenian/Sarmatian boundary a major change in the
benthic and planktonic foraminiferal assemblages occurred,
and stenohaline foraminifers were replaced by euryhaline ones.
tuczkowska (1964, 1985) concluded that above the level of ex-
tinction of foraminifers from the upper Badenian Hanzawaia
crassiseptata Zone, the assemblage with Anomalinoides divi-
dens and some other Sarmatian species appeared abruptly as
a reflection of shallowing and a decrease in salinity. She intro-
duced the Anomalinoides dividens Zone considered an assem-
blage zone with a mass occurrence of A. dividens along with
elphidiids and miliolids in its upper part (tuczkowska, 1964) that
is widely applied in the regional biostratigraphy of the Central
Paratethys (e.g., tuczkowska, 1967; Czepiec, 1996; Filipescu,
2004; Harzhauser and Piller, 2004b; Dumitriu et al., 2017; Fig.
13). However, Peryt et al. (2021) documented, in two borehole
sections from the Carpathian Foredeep of SE Poland (Babczyn
2 and Cieszanow 1), Anomalinoides dividens appeared some
time after the extinction of Badenian foraminifers because it
was separated by an interval with depauparate assemblages
composed of a few species of elphidiids and miliolids of the
Elphidium angulatum Partial Range Zone. Consequently, the
base of Anomalinoides dividens Zone, considered as an indica-
tor of the Badenian/Sarmatian boundary, is not coeval with the
upper boundary of the Hanzawaia crassiseptata zone (Fig. 13).
They discussed two options to assign the Badenian/Sarmatian
boundary based on the foraminiferal assemblages: one on the
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Fig. 13. Comparison of benthic foraminiferal assemblages in the Central Paratethys

major change of foraminiferal assemblages, induced by a
change in the configuration of the Central-Eastern Paratethys
gateway (cf. Palcu et al., 2015), and the second at the base of
Anomalinoides dividens Zone, being in favour of the first one.
In the Kreminna section a distinctive change in the compo-
sition of foraminiferal assemblages, from those dominated by
stenohaline species to those dominated by euryhaline species
is observed within marls occurring in the lower part of the sec-
tion (Figs. 2A, 3, 8 and 10). The place of this change was lo-

cated between samples 2 and G, and above it the planktonic
species disappeared, which otherwise was characteristic for the
BSEE (Harzhauser and Piller, 2007). Therefore, this change is
regarded as an indication of the Badenian/Sarmatian boundary.

Some Badenian stenohaline species, minor contributors to
the foraminiferal assemblages (such as Hanzawaia boueana,
Neoconorbina schreibersi, Eponides nanus, Reussella spinu-
losa) crossed the boundary but disappeared soon after, and
some species continued till the top of the section although they
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became rarer upwards. On the other hand, new, previously
not-occurring, species appeared: first Ammonia beccarii (in the
top part of the interval with foraminifers disappearing soon after
the Badenian/Sarmatian boundary), then Anomalinoides bade-
nensis (starting from the first limestone bed) and next Elphidium
aculeatum, E. reginum and Articulina problema (Fig. 3). As no-
ticed by Harzhauser and Piller (2007), the foraminiferal fauna of
the onset of the Sarmatian was characterized by large elphi-
diids, Anomalinoides species, and very characteristic Scha-
ckoinella imperatoria (d’Orbigny) which, however, in the Kre-
minna section was noted higher in the section (Fig. 3). At the
same time, this is the most diversified assemblage, possibly re-
lated to the Sarmatian transgression that was recorded in many
basins of the Central Paratethys (Novakova et al., 2020 with
references therein) and that effected that the early (but not the
earliest, as indicated by Peryt et al., 2021) Sarmatian deposi-
tion covered a larger surface than the latest Badenian one. This
transgression was triggered by the tectonic reorganization in
the region combined with a global sea level rise (see Palcu et
al., 2015). The first relative sea level fall in Central Paratethys
occurred within the Early Sarmatian Mohrensternia Zone and
divides the Anomalinoides dividens Zone from the Elphidium
reginum Zone (Harzhauser and Piller, 2004b).

The boundary between the upper Badenian and Sarmatian
sediments in the Kreminna section is characterized by its con-
formity like the coeval boundary at the Donje OresSje locality
(Croatia) described by Vrsaljko et al. (2006). In the Croatian
case, a gradual change of palaeoecological characteristics they
observed from a normal marine to reduced salinity fauna has
been interpreted as due to sedimentation in the deeper part of
the basin (Vrsaljko et al., 2006). In the Kreminna section, the
foraminiferal turnover was gradual. Assemblage | records the
changes. First the agglutinated forms went extinct, followed
soon by Heterolepa dutemplei. The third step was the disap-
pearance of planktonic Globigerina spp and Cibicidoides and
Melonis pompilioides which were dominant benthic forms. This
level, i.e. the extinction of the abundant group of stenohaline
Badenian foraminifera, marks the Badenian/Sarmatian bound-
ary. The Cibicidoides Assemblage corresponds to the Hanza-
waia crassiseptata Zone distinguished in the Babczyn 2 bore-
hole (Peryt et al., 2021). The Elphidium fichtelianum Assem-
blage corresponds to the Elphidium angulatum Zone from SE
Poland (Fig. 13). Anomalinoides dividens was not recorded in
the Kreminna section. A possible explanation may be that, as
concluded by Czepiec (1997), the species had a mass occur-
rence in the clayey-marly facies, but in the detrital facies it was
very rare. This, however, raises the question if such facies
control does not contradict a possibly planktonic or pseudo-
-planktonic mode of life of Anomalinoides dividens as was as-
sumed by Filipescu (2004). In turn, in the detrital facies,
Elphidiidae prevailed over Miliolacea that are dominant in the
clayey-marly facies.

However, Anomalinoides badenensis appeared in the first
limestone bed as minor contributor in the Assemblage Il with
Lobatula lobatula. This Assemblage is regarded as coeval with
the Anomalinoides dividens Zone from the Babczyn 2 borehole.
Bobrinskaya et al. (1998) distinguished it as “Cibicides bade-
nensis”. The following assemblage (Ammonia beccarii assem-
blage) can be correlated with the Quinqueloculina crassiseptata
assemblage of Bobrinskaya et al. (1998). The youngest assem-

blage, the Elphidium reginum—E. angulatum Zone, corresponds
to the Elphidium reginum assemblage of Bobrinskaya et al.
(1998) (Fig. 13). Garecka and Olszewska (2011) included the
lower part of the Dashava Formation from the NE Ukrainian
Carpathian Foredeep into two foraminiferal Zones of t.uczko-
wska (1964): Anomalinoides dividens and Cycloforina karreri
ovata.

Palcu et al. (2015) assumed that the BSEE does corre-
spond to a change in the configuration of the Central-Eastern
Paratethys gateway but Silye and Filipescu (2016) suggested
that the end Badenian closure of the Paratethyan basins was
most probably diachronous due to their complex tectonic evolu-
tion. Both the Babczyn 2 section and Kreminna section that
show a similar pattern of changes of foraminiferal assemblages
that are possibly isochronous considering that the both locali-
ties are located within the East European Platform.

CONCLUSIONS

1. The Miocene deposits comprising the >1 m thick upper
Badenian marls clays passing upwards into ~4 m thick Sarma-
tian marly limestones with intercalations of marls, clays and
limestones that are overlain by >2 m thick limestones in the
Kreminna section, contain 53 species of benthic foraminifera
and four species of planktonic foraminifera.

2. Five benthic foraminiferal assemblages that are distin-
guished in the Kreminna section, are composed almost exclu-
sively of calcareous forms; agglutinated taxa are recorded only
in the lowermost part of the Cibicidoides ungerianus Assem-
blage. Elphidium spp., miliolids, Lobatula lobatula and Ammo-
nia spp. are the most common calcareous benthic foraminifera;
planktonic foraminifera are represented only by Globigerina
species and occur rarely in the lowermost part of the section.

3. Palynofacies are characterized by a very low proportion
of land-derived elements — sporomorphs and cuticles, implying
a sedimentary setting without terrestrial influx, and taxonomical
impoverishment of dinoflagellate cyst assemblages.

4. Dinoflagellate cyst assemblages are either monospecific
or consist mainly of two to three species: in a majority of samples,
assemblages with Polysphaeridium zoharyi and P. subtile occur.

5. Most §'®0 values range from —1.5 to ~+0.5%. VPDB and
most 8'*C values are between 0 and +2%. VPDB. In general,
the 8">C curve mirrors the §'®0 changes in the section.

6. The Badenian/Sarmatian boundary is placed at the level
where planktonic foraminifers and most abundant stenohaline
benthic foraminifera disappeared, i.e. at the boundary between
the Cibicidoides ungerianus Assemblage and the Elphidium
fichtelianum Assemblage.

7. Bottom waters were well oxygenated both in the latest
Badenian and earliest Sarmatian in the Kreminna location.
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Appendix 1

List of the identified foraminifera

Benthic foraminifera

Ammonia beccarii (Linné, 1758)
Anomalinoides badenensis (d’Orbigny, 1846)
Articulina problema Bogdanowicz, 1952
Astrononion perfossum (Clodius, 1922)
Bolivina dilatata Reuss, 1850

Bolivina plicatella Cushman, 1930

Bolivina sp.

Bulimina subulata Cushman and Parker, 1937
Bulimina sp.

Cibicidoides austriacus (d'Orbigny, 1846)
Cibicidoides ungerianus (d’Orbigny, 1846)
Cibicidoides sp.

Dorothia sp.

Elphidium aculeatum (d’Orbigny, 1846)
Elphidium antoninum (d’Orbigny, 1846)
Elphidium crispum (Linné, 1758)

Elphidium fichtelianum (d’Orbigny, 1846)
Elphidium friedbergi Serova, 1955

Elphidium josephinum (d’'Orbigny, 1846)
Elphidium joukovi Serova, 1955

Elphidium koberi Tollmann, 1955

Elphidium listeri (d’Orbigny, 1846)

Elphidium macellum (Fichtel and Moll, 1798)
Elphidium reginum (d'Orbigny, 1846)
Elphidium sp.

Eponides nanus (Reuss, 1850)

Eponides repandus (Fichtel and Moll, 1798)
Favulina hexagona (Williamson, 1848)
Fursenkoina acuta (d'Orbigny, 1846)
Glandulina sp.

Globulina sp.

Hanzawaia boueana (d’Orbigny, 1846)
Heterolepa dutemplei (d'Orbigny, 1846)
Lobatula lobatula (Walker and Jacob, 1798)
Melonis pompilioides (Fichtel and Moll, 1798)
Neoeponides schreibersi (d’Orbigny, 1846)
Nonion commune (d'Orbigny, 1846)

Nonion tumidulus Pishvanova, 1960
Porosononion martkobi (Bogdanowicz, 1947)
Pseudotriloculina consobrina (d’Orbigny, 1846)
Reussella spinulosa (Reuss, 1850)

Rosalina obtusa d’'Orbigny 1846
Quinqueloculina bogdanovichi (Serova, 1955)
Quinqueloculina sp.

Schackoinella imperatoria (d’Orbigny, 1846)
Semivulvulina pectinata (Reuss, 1850)
Sigmoilinita tenuis (Czjzek, 1848)
Sphaeroidina bulloides d’Orbigny, 1826
Textularia laevigata d'Orbigny, 1826
Triloculina eggeri (Bogdanowicz, 1952)
Valvulineria complanata (d’Orbigny, 1846)
Varidentella reussi (Bogdanowicz, 1947)
Varidentella sp.

Planktonic foraminifera

Globigerina bulloides d'Orbigny, 1826

Globigerina praebulloides Blow, 1959

Globigerina tarchanensis Subbotina and Chutzieva 1950
Globigerina sp.
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