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Several event layers have been identified in lacustrine deposits in the Agri Basin of Anatolia (E Turkiye). Sedimentological
and palaeontological data newly indicate a storm-induced origin for some of them. The sedimentary structures in three sec-
tions, a few tens of metres apart from each other laterally, such as hummocky cross-stratification, wave-generated
cross-bedding, parallel bedding, erosional surfaces, and graded bedding, which are considered characteristic of tempe-
stites, are clearly present. Additionally, fining-upwards units and biogenic escape structures located at different levels of
these sections indicate a similar origin. The vertical variations in layer thickness, grain size, and sedimentary structures in
these sedimentary sections indicate fluctuating hydrodynamic conditions during deposition, while lateral decrease in the size
and wavelength of the structures reflects deepening. This interpretation of storm-induced deposition is compatible with re-
gional palaeoclimatological and palaeogeographical data, and is supported by evidence of Quaternary storm-induced sedi-
mentation in adjacent lacustrine basins in the region.
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INTRODUCTION

The shape of coastal systems can change either rapidly or
slowly as a result of erosion or deposition (Boyd et al., 1992;
Bird, 1994). Storm events represent processes that can shape
coasts very quickly. Ancient storm deposits, known as
tempestites, constitute important palaeoclimatic data, but they
are much less commonly reported than deposits of other pro-
cesses in subaqueous environments, such as those generated
by waves, tides, and currents. Most tempestites have been re-
ported from marine (Ball, 1971; Kelling and Mullin, 1975; Aigner
and Reineck, 1982; Jeffery and Aigner, 1982; Johnson, 1989;
Monaco, 1992; Baarli, 1998; Ito et al., 2001; Bussert and
Aberhan, 2004) and transitional settings (Kahn and Roberts,
1982; Liu and Fearn, 1993; Roman et al., 1997; Collins et al.,
1999; Morton, 2002; Donnelly, 2005; Wang et al., 2006; Sa-
batier et al., 2008, 2010, 2012; Woodruff et al., 2009; Dezileau
et al., 2011; Phantuwongraj et al., 2013).

Although heavy storms most commonly occur in oceanic
equatorial regions, they also may affect continental areas, and
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consequently also lacustrine basins. Lacustrine tempestites are
rare in the geological record, due to the rapid erosion that is a
logical consequence of the nature of the storm process itself
(Van Djik et al., 1978; Allen, 1981; Li et al., 2007; Myrow et al.,
2008; Kempf et al., 2009; Page et al., 2010; Orpin et al., 2010;
Liu et al., 2012; Wang et al., 2015; Uner, 2018; Zhang et al.,
2018; Uner et al., 2019). Previous interpretations of ancient lac-
ustrine tempestites have mostly been based on the recognition
of hummocky cross-stratification (Greenwood and Sherman,
1986; Hamblin, 1992; Liu et al., 2012; Zhang et al., 2018). How-
ever, storm deposits may also show erosive surfaces, graded
bedding, parallel bedding, wave-generated cross-bedding,
shell beds and biogenic escape structures (Harms et al., 1975;
Hamblin and Walker, 1979; Allen, 1982; Dott and Bourgeois,
1982; Walker et al., 1983; Myrow and Southard, 1996; Myrow,
2005; Morsilliand Pomar, 2012; Alvan and Von Eynatten, 2014;
Lietal., 2016; Puga-Bernabéu and Aguirre, 2017; Uner, 2018).

The Agri Basin is located on the Eastern Anatolian Plateau
that was formed as a result of the collision between the Arabian
and Eurasian plates (Fig. 1A). The basin developed marine to
terrestrial environments as a result of this collision during the
Early to Mid-Miocene (Okay et al., 2010). The Quaternary suc-
cession in the basin is represented by lacustrine and fluvial de-
posits (Demirkaya et al., 2017; Fig. 1B), their spatial distribution
of indicates that the lake in the Agri Basin covered an area of
~1200 km? during the Quaternary. However, it no longer exists
because of climate changes and structural developments
(Demirkaya et al., 2017).
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Fig. 1. Location maps showing: A — major neotectonic features of the Eastern Anatolia Plateau and adjacent areas;
B — geological features of the Agri Basin (modified from Keskin and Dénmez, 2013)

EAP — Eastern Anatolian Plateau, AB — Agri Basin, NAFZ — North Anatolian Fault Zone, EAFZ — East Anatolian Fault Zone

Eastern Anatolia has both a mid-latitude temperate and a sub-
tropical climate. The high topography has a significant effect on
the atmospheric circulation. Location and topography jointly con-
trol present and past climatic features (Stockhecke et al., 2012;
Meydan et al., 2022). The present contribution describes the first
sedimentological and palaeontological evidence of storm-event
beds in the Quaternary lacustrine deposits of the Agri Basin, and
reconstructs the related palaeoenvironmental conditions.

REGIONAL GEOLOGY

The East Anatolian Plateau emerged from the collision be-
tween the Eurasian and Arabian Plates (Sengor and Yilmaz,
1981). Numerous basins were formed by this compressional
tectonism, including the Pasinler, Mus, Lake Van, and Agri bas-
ins (Saroglu and Guner, 1981). The fan-shaped Agri Basin
trends E-W, with an average elevation of 1700 m. It is a
piggy-back basin formed on basement rocks of Cretaceous
ophiolites, Lower to Middle Miocene marine deposits, and Mio-
cene to Pliocene volcanic rocks (Keskin and Donmez, 2013). It
is bordered by the Elegkirt-Yazici Thrust Fault to the north and
the Agni Thrust Fault to the south (Fig. 1B).

The palaeogeographical evolution of the Agri Basin has
been significantly affected by tectonism. The resulting evolution
can be subdivided into four stages:

— a pre-Late Miocene stage with basin formation and a transi-
tion from marine to terrestrial conditions because of collision
and regional uplift (Saroglu and Guner, 1981; Sengor et al.,
2008);

— a Late Miocene-Pliocene stage with collision-related volca-
nic activity (Karaoglu et al., 2005; Ozdemir et al., 2011;
Aclan et al., 2020) and lake formation (Fig. 2A);

— a Pliocene-Late Quaternary stage with draining of the lake
due to tectonic activity;

— a Late Quaternary-recent stage with fluvial activity (Demir-
kaya et al., 2017).

Quaternary sedimentary successions in the southern part of
the Agri Basin clearly show the sedimentological characteristics
of shallow- and deep-lacustrine deposits (Fig. 2A, B) with a
coastal facies including flattened and rounded pebbles (Fig.
2C). Fluvial channels that eroded these lacustrine deposits rep-
resent the transition from the lacustrine to a fluvial environment
(Fig. 2D). These lacustrine successions also contain storm
event deposits.
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Fig. 2. The lacustrine deposits of the Agri Basin

A — general view of the lacustrine succession, B — deep lacustrine silty and clayey horizontal laminae alternating
with planar cross-bedded sands, C — gravelly marginal deposits and overlying sandy shallow-lacustrine deposits,
D — lacustrine succession eroded by a fluvial channel

METHODS

The Quaternary lacustrine deposits of the Agri Basin were
investigated in the field. The sedimentary structures were ex-
amined in detail. Their size and shape, and the palaeoenviron-
mental setting under which the structures originated, were inter-
preted for each of the three sections investigated and the hy-

drodynamic processes that formed these structures were re-
constructed on the basis of their characteristics. All sedimentary
characteristics were compared with storm deposits (tempe-
stites) described in previous studies (Aigner, 1982; Dott and
Bourgeois, 1982; Walker et al., 1983; Duke et al., 1991; Wei-
dong et al., 1997). A palaeoenvironmental depositional model
was finally prepared by combining all data from the three sec-
tions investigated (Fig. 3).
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Fig. 3. The three sections investigated (see Fig. 1B for locations)
with the level affected by heavy storm action

DESCRIPTION AND INTERPRETATION
OF THE SEDIMENTARY STRUCTURES

The Quaternary fill of the Agri Basin consists mostly of lac-
ustrine successions composed of alternating semi-consolida-
ted, fine- to medium-bedded sands, silts, and clays (Demirkaya
etal., 2017). Gravelly shore deposits with a delta and beach fa-
cies were deposited coevally with these fine-grained lacustrine
deposits. The most important sedimentary structures are ero-
sional structures, graded bedding, parallel bedding, hummocky
cross-stratification, wave-generated cross-bedding and bio-
genic escape structures.

EROSIONAL STRUCTURES

Erosional structures in the study area are present as irregu-
larly undulose surfaces (Fig. 4A). Depressions are maximally
50 cm long and 30 cm deep, and are filled by wave-generated
cross-beds and graded deposits. Erosional structures are fre-
quently observed at different levels of the lacustrine succes-
sions studied.

These types of sedimentary structures have commonly
been interpreted as having formed at the base of storm-induced
sedimentary units due to the action of strong waves and cur-
rents (Harms et al., 1975; Allen, 1982; Walker et al., 1983; Liu et
al., 2012; Morsilli and Pomar, 2012; Li et al., 2014).

GRADED BEDDING

Upwards-fining graded beds consisting of small pebbles
and finer sediments are only rarely present. They were ob-
served in the depressions of the erosional surfaces and are

overlain by undulose sandy and silty parallel beds. The thick-
ness of the graded beds varies between 10 and 30 cm.

The grading is ascribed to turbulent flow related to rapid
fluctuations in hydraulic energy associated with wave action
(Allen, 1982; Obi, 1998; Liu et al., 2012; Li et al., 2014).

PARALLEL BEDDING

Parallel bedding consists of alternating semi-consolidated
sandy and silty deposits. Undulose and laterally continuous par-
allel beds 2—10 cm thick are present among the graded beds
and hummocky cross-strata.

Although parallel bedding may form in oscillatory flow condi-
tions, its coexistence with graded bedding and hummocky
cross-stratification indicates that it formed by strong unidirec-
tional flows (Myrow and Southard, 1991; Li et al., 2014; Zhang
et al.,, 2018).

HUMMOCKY CROSS-STRATIFICATION

Hummaocky cross-stratification is present above the horizon-
tal parallel bedding. According to their wavelengths and ampli-
tudes, they can be divided into metre- and centimetre-scale sets.
The metre-scale structures have a wavelength of 3-5 m and an
amplitude of 50-90 cm (Fig. 4B) whereas the centimetre-scale
sets have a wavelength of 30-80 cm and an amplitude of 5-25
cm (Fig. 4C). Both groups consist of sediments of granule size
and coarse to fine sand size and have limited lateral continuity.
The orientation of the long axes of the grains is variable.

This structure, which is the combined result of multidirec-
tional flows and intense oscillation of gravitational waves (Hays,
1967), is considered as the key criterion for the recognition of
storm events (Harms et al., 1975; Barron, 1989).
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A —irregular strongly and slightly eroded surfaces showing erosion of the fine-grained shallow-lacustrine deposits;
Section 2 (see Fig. 3); B — metre-scale hummocky cross-stratification; Section 1; C — centimetre-scale hummocky
cross-stratification; Section 2; D — wave-generated cross-beds; Section 2

WAVE-GENERATED CROSS-BEDDING

The wave-generated cross-bedding occurs between sedi-
ments with hummocky cross-stratification and parallel beds. It
consists of granules and coarse sand. These structures, having
a wavelength of 30—70 cm and an amplitude of 5-30 cm, con-
sist of laminae with opposing inclinations that override each
other. Their angles of inclination decrease upwards (Fig. 4D).

These wave-generated cross-beds have been indicated in
previous studies (Allen, 1982; Morton et al., 2007; Koma-
tsubara et al., 2008; Phantuwongraj et al., 2013; Uner, 2018) as
a criterion for the recognition of past storm events.

BIOGENIC ESCAPE STRUCTURES

Two types of burrows are present at different levels of the
lacustrine deposits of the study area. Narrow burrows
(0.5—1 cm in diameter) in silts and fine sands have vertical ori-
entations (Fig. 5A), while larger ones (2—4 cm in diameter and
length maximally 60 cm) that occur in fine to coarse sandy and
gravelly deposits are also vertical, but occasionally are con-
nected to each other by horizontal pathways (Fig. 5B).

These large tube-like structures were created by organisms
that tried to reach the sediment/water contact when suddenly
buried, so as to reach again an oxygen-rich environment
(Bhattacharya et al., 2004; Magyar et al., 2006; Liu et al., 2012).
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Fig. 5. Biogenic escape structures

A — narrow burrows; Section 3 (see Fig. 3);
B — wide burrows; Section 2

ANALYSIS OF THE HYDRODYNAMIC
PROCESSES

The variations in layer thickness, grain size, and sedimen-
tary structures in the sections investigated indicate variable hy-
drodynamic conditions during deposition. For instance, ero-
sional structures (erosional scours) at different levels of the lac-
ustrine succession occur mostly above fine-grained, horizontal
beds that represent the fair-weather conditions at the end of a
depositional event and indicate the beginning of a new depo-
sitional episode. Erosional structures formed by strong waves
and currents are the most common structures at the base of
storm sediments and are considered direct evidence, when co-
existing with other storm-induced structures such as
hummocky cross-stratification, wave-generated cross-bedding
etc., for a storm event (Harms et al., 1975; Allen, 1982; Walker
et al., 1983; Liu et al., 2012; Morsilli and Pomar, 2012; Li et al.,
2014). The erosion surfaces were at different levels, indicating
that the wave energy fluctuated during the storm and resulted in
both erosion and deposition.

The depressions caused by these erosional surfaces were
filled by normally graded sediments and subsequently by sandy
and silty horizontally-bedded sediments. This vertical arrange-
ment indicates changes in the flow regime. The upwards fining
results from the size/weight dependent settling velocity related
to instability in the prevailing hydraulic energy connected with
wave activity (Allen, 1982; Obi, 1998; Liu et al., 2012; Li et al.,
2014). The overlying sediment with parallel bedding reflects the
upper flow regime and developed under strong unidirectional
flow conditions (Myrow and Southard, 1991; Li et al., 2014;
Zhang et al., 2018).

The metre-scale hummocky cross-stratification in coarse
sand and granule-sized sediments indicating strong storm ac-
tivity overlies parallel beds. The formation of this metre-scale
hummocky cross-stratification is related to oscillatory combined
flows (Dott and Bourgeois, 1982; Armnott and Southard, 1990;
Southard et al., 1990; Cheel, 1991; Cheel and Leckie, 1993;
Midtgaard, 1996). The centimetre-scale smaller hummocky
cross-stratified units, which have limited lateral continuity, are
located in the top parts of storm-induced depositional units
throughout the stratigraphic sections. Decrease in the size of
structures represents a relative reduction in storm impact (Li et
al., 2014).

Deposits with wave-generated cross-beds overlie gravelly
and sandy deposits with metre-scale hummocky cross-stratifi-
cation. These wave-generated cross-beds were produced by
oscillatory combined flows (Yokokawa et al., 1995; Yamaguchi
and Sekiguchi, 2010; Perillo et al., 2014; Zhang et al., 2018).
The upwards diminishing size and depositional angle of the
wave-generated cross-beds indicate a decrease in current en-
ergy during deposition. The upwards succession of parallel
bedding, hummocky cross-stratification and wave-generated
cross-stratification is characteristic of lower-shoreface deposits
influenced by storm waves (McCubbin, 1982; Greenwood,
2006).

Tube-like vertical biogenic structures are frequent in lacus-
trine deposits. These structures are created by organisms to
avoid becoming buried and so are also considered as an indica-
tor of storm-induced rapid deposition (Pemberton et al., 2001;
Bhattacharya et al., 2004; Magyar et al., 2006; Liu et al., 2012;
Scoft et al., 2012). The vertical attitude and the abundance of
these structures are attributed to the increase in energy level
due to the storm effect (Howard 1971a, b, 1975; Pemberton et
al., 2001). These vertical escape traces with occasionally
roughly horizontal interconnections are characteristic of the
most common trace fossil in high-energy lacustrine environ-
ments, Skolithos (Bromley and Asgaard, 1979; Mangano et al.,
1994; Melchor et al., 2003; Buatois and Mangano, 2004;
Nehyba and Roetzel, 2022). The presence of such trace fossils
burrowing through hummocky cross-stratified deposits indi-
cates energy fluctuations (Buatois and Mangano, 2009).

DISCUSSION

SEDIMENTARY MODEL

All the sedimentary structures that occur in the successions
under study have frequently been mentioned in previous stud-
ies of storm-induced deposits (Schwartz, 1975; Aigner, 1982;
Dott and Bourgeois, 1982; Walker et al., 1983; Duke et al.,
1991; Myrow and Southard., 1996; Weidong et al., 1997; Tuttle
et al., 2004; Komatsubara et al., 2008; Liu et al., 2012; Wang et
al., 2015). These studies have in common that they deduce that
an ideal tempestite shows sedimentary structures such as ir-
regular erosional surfaces, graded bedding and/or parallel bed-
ding, hummocky cross-stratification, wave-generated cross-
beds, and silty or sandy deposits with biogenic escape struc-
tures. However, the order and size of these features can vary
due to fluctuations in environmental conditions such as wind
speed, wavelength and water depth (Liu et al., 2012; Li et al.,
2014). Similar storm-induced depositional records have been
reported from Quaternary lacustrine deposits in different lakes
in the region such as Lake Van (Tirkiye) (Uner, 2018; Uner et
al., 2019), Lake Hamoun (Iran) (Hamzeh et al., 2016), and the
Caspian Sea (Kazanci et al., 2004).
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Three sedimentary sections, only a few tens of metres apart
from each other laterally (Fig. 3), which contain the studied part
of the lacustrine deposits of Agri Basin, have been investigated
in detail. They all contain the hummocky cross-stratification,
which is diagnostic of storm-induced sediments; moreover, this
structure indicates the shoreface-to-offshore transition zone
(Hays, 1967).

Section 1 is 4.3 m high and includes metre-scale
hummaocky cross-stratification (Fig. 3). Sections 2 and 3 show
such structures at a centimetre-scale. The size difference of the
hummocky cross-stratification indicates that the storm effect on
deposition decreased, which might be ascribed to deepening
(Fig. 6). In addition, the presence of several erosional struc-
tures, hummocky cross-stratification, and silty parallel beds in
vertical order in all three sections supports interpretation of fluc-
tuations in the energy of a single storm during formation of
these tempestites.

Vertical biogenic structures are commonly considered as
evidence of rapid deposition due to storms (Savrda and
Nanson, 2003; Bhattacharya et al., 2004; Magyar et al., 2006;
Buatois and Mangano, 2009; Liu et al., 2012; Uner, 2018;

water level

Section 1
Section 2

Section 3
storm induced
deposition

not to scale

Fig. 6. Schematic depositional model of the lacustrine setting
in which the tempestites accumulated

Schwarz et al., 2021). Fairly rare narrow and short escape
structures occur in the sandy and silty deposits (section 3),
whereas relatively closely-spaced, thick and long structures oc-
cur in the coarse-grained deposits (section 2). This may be re-
lated with the higher sedimentation rate near the shore than in
the deeper water during the storm (Fig. 6).

CONCLUSIONS

Lacustrine environments are very sensitive to climate-re-
lated changes and effectively store the sedimentological re-
cords of these changes. However, storm-induced deposits are
not commonly found in such records due to rapid erosion during
the storm. Storm activity is recorded in the present study by the
presence of hummocky cross-stratification, erosional surfaces,
graded and parallel bedding, wave-generated cross-beds, and
biogenic escape structures in the Late Quaternary lacustrine
deposits of the Agri Basin.

Hummocky cross-stratification is present in different levels
of the sections investigated. These structures, which result from
oscillatory combined flows, are present in all three sections fol-
lowed by horizontal silt layers, deposited under relatively quiet
conditions. Repetition of this combination of features indicates a
powerful storm and fluctuations in the storm energy. The
hummocky cross-stratification also indicates that deposition oc-
curred in a shoreface-to-offshore transitional zone, and the lat-
erally decrease in the size of these structures suggests deepen-
ing of the water in this direction.

The various findings about the Quaternary palaeogeo-
graphic and palaeoclimatic approach to lacustrine deposits of
the Agri Basin provide a new perspective in further study about
the basin evolution.
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