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Hydrocarbon generation modelling in the Permian and Triassic strata
of the Polish Basin: implications for hydrocarbon potential assessment
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Hydrocarbon generation in the Zechstein Main Dolomite and Upper Triassic potential source rocks of the Polish Basin was
investigated by 1-D thermal maturity modelling in 90 boreholes across the basin. This identified major zones potentially wor-
thy of further exploration efforts. The maximum burial depth of the Zechstein Main Dolomite and Upper Triassic reached
>5 km during the Late Cretaceous leading to maximum thermal maturity of organic matter. Hydrocarbon generation develop-
ment reveals considerable differences between particular zones of the Zechstein Main Dolomite and Upper Triassic. The
kerogen transformation ratio (TR) in the Zechstein Main Dolomite reached values approaching 100% along the basin axis.
The TR in the Upper Triassic source rocks is generally lower than in the Zechstein Main Dolomite due to lesser burial. The
Upper Triassic source rocks have the highest TR values (>50%) along the basin axis, in the area between boreholes Pita IG 1
and Piotrkéw Trybunalski IG 1, with the most pronounced zone in the Kro$niewice Trough (i.e., between the Krosniewice |G 1
and Budziszewice IG 1 boreholes), where the TR reached >90%. The Zechstein Main Dolomite and Upper Triassic entered
the oil window in the Late Triassic to Early—Middle Jurassic, respectively. Hydrocarbon generation continued until the Late
Cretaceous, and was completed during tectonic inversion of the basin.
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INTRODUCTION

Although petroleum and natural gas exploration in northern
Europe has reached an advanced stage, certain stratigraphic
intervals are still under-explored (Doornenbal and Stevenson,
2010; Doornenbal et al., 2019). In particular, the Zechstein and
Mesozoic strata in the area of the Southern Permian Basin
(SPB), extending from the UK to Poland (Van Wees et al,
2000; Maystrenko et al., 2008; Doornenbal and Stevenson,
2010), continues to provide new insights into the geological his-
tory of this area, where most hydrocarbon fields are related to
the Cambrian to Rotliegend strata (Kilhams et al., 2018a;
Underhill and Richardson, 2022). Mesozoic conventional hy-
drocarbon reserves (>90%) within the SPB are predominantly
found in the Netherlands, Germany and Denmark, with only mi-
nor amounts associated with the UK and other countries such
as Poland (Kus et al., 2005; Pletsch et al., 2010; Kilhams et al.,
2018a). This geographical pattern is due to the geological evo-
lution of the SPB area. In particular, the extent of rift systems
(e.g., the Central Graben and associated Jurassic source rocks
present in a limited area), as well as tectonic inversion,
source-rock presence and charge timing influenced on the oc-
currence of oil and gas fields (Cornford, 1998; Pletsch et al.,
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2010; Petersen and Hertle, 2018; Schovsbo and Jakobsen,
2019; Underhill and Richardson, 2022). However, further hy-
drocarbon discoveries in the Mesozoic strata, for example, in
the Polish Basin and other less explored basins are still possi-
ble (e.g., Krzywiec et al.,, 2017a; Kilhams et al., 2018b;
Kortekaas et al., 2018). The Zechstein plays on the flanks of the
SPB are complex and highly variable. The sedimentary se-
quence includes repeating evaporite sequences with significant
lateral facies variations. Among these there are several dolo-
mite horizons, among which the Zechstein Main Dolomite is still
an attractive target with excellent reservoir properties, particu-
larly in areas of platform facies (Peryt et al., 2010; Pletsch et al.,
2010; Stowakiewicz and Mikotajewski, 2011; Kosakowski and
Krajewski, 2014, 2015; Stowakiewicz et al., 2018; Mikotajewski
etal., 2019). Although in the Polish Basin area hydrocarbon de-
posits also occur in rocks ranging in age from the Cambrian to
Permian (Karnkowski, 1999a, b, 2007a, b), recent studies
(Kosakowski et al., 2015; Wiectaw, 2016; Zakrzewski et al.,
2020, 2022a, b) show also that several petroleum source rock
horizons exist in the Mesozoic, particularly within Jurassic
strata. These studies shed new light into hydrocarbon potential,
as summarized by Bachleda-Curus and Semyrka (1990) and
Bachleda-Curus et al. (1996).

Petroleum exploration in the Mesozoic deposits of the Pol-
ish Basin was mainly developed in the years 1947-1970
(Karnkowski, 1996). At that time, the Cretaceous basins with
their Jurassic substrate were clearly recognized (Marek and
Znosko, 1972). However, positive results in the form of discov-
ered hydrocarbon deposits in Jurassic and Cretaceous reser-
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Fig. 1. Simplified sub-Cenozoic map of the Polish Basin (modified after Dadlez et al., 1995, 1998) and location of the study area

TTZ — Teisseyre-Tornquist Zone, MPT — Mid-Polish Trough

voirs were obtained only in the southern extension of the
Miechéw Trough hidden beneath Miocene strata and the Outer
Carpathians. These oil and gas fields may be charged by Pa-
leozoic source rocks (Kotarba et al., 2017a) or the Menilite
Shales of Outer Carpathians (Nemcok and Henk, 2006; Botor,
2021). Towards the south, in the Czech Republic Jurassic
source rocks (Mikulov Marls) are also recognized (Gerslova et
al., 2015). In the central part of the Polish Basin, Middle and Up-
per Jurassic strata in particular are known to have organic-rich
intervals, which contain on average ~1-7% of organic matter of
varied thermal maturity (Wilczek, 1986; Kosakowski et al.,
2015; Wiectaw, 2016; Zakrzewski et al., 2020, 2022a, b). The
oil shows found in several boreholes in this area (Mogilno 21,
Koto 3 and 4, Dobréw IG 1 and Przybytéw 1 boreholes) are evi-
dence of the possibility of generating and hydrocarbons occur-
rence in some zones of the Mesozoic strata of the Polish Basin
(Karnkowski, 1996).

This study aims to complement previous studies of Paleo-
zoic (Ediacaran up to Rotliegend) petroleum systems in the
Polish Basin and adjacent areas, summarized by Kosakowski
et al. (2010), Botor et al. (2013, 2019a, b), and Papiernik et al.

(2019), and to provide a new detailed regional overview of the
burial and maturation history of important stratigraphic intervals
of the Polish Basin. In this paper, one-dimensional (1-D) hydro-
carbon generation modeling of the (i) Zechstein Main Dolomite
and (ii) Upper Triassic potential source rocks was performed,
which allowed construction of regional maps of the develop-
ment of organic matter maturity and kerogen transformation ra-
tio into hydrocarbons across the Polish Basin. Jurassic source
rocks were discussed recently by Kosakowski et al. (2015),
Wiectaw (2016) and Zakrzewski et al. (2020, 20223, b).

GEOLOGICAL SETTING

The Polish Basin (Fig. 1), together with its axial, most deeply
subsiding part called the Mid-Polish Trough (MPT), is part of the
Permian and Mesozoic epicontinental basins of Western and
Central Europe, sometimes called the Central European Basin
System (e.g., Scheck-Wenderoth et al., 2008). Here the geo-
logical history of the studied area is briefly outlined, focusing on
the aspects particularly relevant to the present modelling study.
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Fig. 2. Cross-section through the central part of the Polish Basin (modified after Krzywiec, 2004; Scheck-Wenderoth et al., 2008;
Krzywiec et al., 2017a)

The MPT developed along the Teisseyre-Tornquist Zone
(TTZ; Kutek and Gtazek, 1972; Pozaryski and Brochwicz-
Lewinski, 1978; Dadlez et al., 1995; Kutek, 2001; Mazur et al.,
2021), one of the key tectonic lineaments in Europe located at
the transition between the East European Precambrian Craton
and the West European Paleozoic Platform (see Mazur et al.,
2021 for recent summary and further references). The sub-
strate of the Polish Basin includes a sedimentary cover, a few
kilometres thick, of Ediacaran to Carboniferous strata. The Pol-
ish Basin consists of the extensive Permian-Mesozoic succes-
sion, which is unconformably overlain by up to 350 m of Ceno-
zoic strata (Piwocki, 2004; Fig. 2). The Permian to Cenozoic
succession reaches ~8 km in total thickness along a
NW-SE-oriented depocentre in the MPT (e.g., Dadlez et al.,
1995; Scheck-Wenderoth and Lamarche, 2005; Mazur et al.,
2005, 2021). The Permian to Mesozoic of the Polish Basin dis-
plays a sedimentary succession reflecting continental to
open-shelf shelf depositional systems (Marek and Pajchlowa,
1997; Figs. 3 and 4). Towards the flanks, it thins to 2-5 km. The
sedimentary succession includes several erosional surfaces, of
which the most important formed in the Early Jurassic and Early
Cretaceous (Marek and Pajchlowa, 1997). Depocentre loca-
tions of particular stratigraphic units shifted through time but
were mostly limited to the MPT area. The Polish Basin subsi-
dence is related to crustal extension followed by lithospheric
cooling. Structural orientation was strongly dependent on the
pre-existence of the structure of the TTZ (Mazur et al., 2021). A
rifting phase occurred during the Permian—Early Triassic, and
an accelerated subsidence phase took place during the Late
Jurassic, linked to rifting of the North Atlantic system and to the
Tethyan margin. Subsidence accelerated at the beginning of
the Cenomanian and marks the beginning of compressive de-
formation, which culminated with basin inversion at the end of
the Cretaceous (Dadlez et al., 1995; Stephenson et al., 2003;
Krzywiec et al., 2018). Evolution of the MPT was strongly influ-
enced by Zechstein salt movements from the Early Triassic,
and continued throughout the entire Mesozoic (e.g., Rowan and
Krzywiec, 2014). This led to the complex system of salt struc-
tures in the central and NW parts of the MPT (for details see
Krzywiec, 2004, 2006a, b). In the axial part of the MPT, Late
Cretaceous open marine sedimentation was terminated by Late
Cretaceous/Early Paleogene tectonic inversion leading to sig-
nificant erosion. The sedimentary deposits were removed down
to the Lower Jurassic or even Upper Triassic along the axis of
the MPT and in the SW part of the Polish Basin (e.g., Botor et
al., 2013). In some areas of the MPT, exhumation began in the
latest Turonian—early Campanian and ~2 km of Mesozoic rocks
were removed (Resak et al., 2010; Krzywiec et al., 2018; Botor

etal., 2018; Luszczak et al., 2020). Late Cretaceous tectonic in-
version is widely recognized in central Europe and was summa-
rized recently by von Eynatten et al. (2021). A compilation of
several hundred published thermochronological analyses (apa-
tite fission-track analyses and apatite helium dating) indicates
generalized, km-scale exhumation over substantial parts of
Central Europe in Late Cretaceous to Paleocene time. Tectonic
inversion was caused by a combination of (i) collisional phases
in the Alpine and Carpathian orogens and (ii) development of
the Atlantic (Ziegler, 1990a, b; Dadlez et al., 1995; Mazur et al.,
2005). The Permian to Mesozoic evolution of the Polish Basin
was summarized and reviewed by Dadlez et al. (1995),
Krzywiec (2002, 2006a, b, 2009), Lamarche et al. (2003),
Mazur et al. (2005) and Dadlez (2006).

OVERVIEW OF THE PETROLEUM SYSTEM ELEMENTS
IN THE STUDY AREA

CARBONIFEROUS-PERMIAN (ROTLIEGEND)

In the Polish Basin, numerous natural gas fields occur in
Permian (Rotliegend) strata (Karnkowski, 1999a,b, 2007a, b).
Gas is accumulated mainly in aeolian sandstones and,
subordinately, in fluvial sandstones (Pletsch et al., 2010;
Kiersnowski, 2013). Additionally, in Western Pomerania, Car-
boniferous (Namurian) fluvial sandstone reservoirs also exist.
Gas fields are associated with both conventional traps and un-
conventional accumulations (tight sand; Kiersnowski et al,,
2010). The source rocks for the Rotliegend gas fields are Car-
boniferous strata that consist mainly of Lower Carboniferous
claystones and mudstones with dispersed organic matter (usu-
ally <2% total organic carbon; TOC) that were deposited in the
Variscan foreland basin (Kotarba et al., 2005; Botor et al.,
2013). These source rocks contain kerogen mostly of
gas-prone Type lll; however, subordinately, kerogen of algal
marine origin and mixed Type Il/lll occur also. The kerogen
thermal maturity progressively increased with depth, from
~0.5% mean random vitrinite reflectance (VR) in marginal parts
of the Carboniferous basin to >5.0% VR at the bottom of the
Lower Carboniferous (Pletsch et al., 2010; Botor et al., 2013).

In the Carboniferous source rocks, hydrocarbon generation
began in rapidly subsiding areas (Pletsch et al., 2010; Botor et
al., 2013) in the Late Carboniferous. These processes were
halted by Variscan tectonic inversion at the end of the Carbonif-
erous. However, hydrocarbon generation resumed in Mid-Tri-
assic to Late Jurassic and in Late Cretaceous times. The main
migration event took place during the Triassic to Jurassic, while
the Late Cretaceous migration phase was less intense (Pletsch
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Fig. 3. Simplified lithostratigraphic chart showing the dominant lithology

and thickness of the Permian to Cenozoic strata of the Polish Basin
(modified after Marek and Pajchlowa, 1997; Dadlez et al., 1998)

The sedimentary succession is punctuated by several erosional
and/or hiatus episodes, of which the most important are the Rotliegend,
Early—Middle Jurassic, Early Cretaceous and Paleogene—Neogene
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et al., 2010; Botor et al., 2013). Rotliegend hydrocarbon traps
were formed as mainly structural or geomorphological features
(Kiersnowski and Tomaszczyk, 2010). The natural gas content
varies by region. Generally, the eastern gas fields have high a
methane content (up to >80%), with the western fields having
a low methane content and a high nitrogen content. In the
deeper part of the Rotliegend Basin, significant porosity reduc-
tion and rapid reduction of sandstone permeability are ob-
served; however, tight gas fields were discovered (Kiersnow-
ski et al., 2010).

ZECHSTEIN MAIN DOLOMITE

The Zechstein Main Dolomite petroleum system is unique in
that the carbonates and evaporites of a Zechstein (PZ2) single
depositional cycle (Wagner, 1994; Peryt et al., 2010) constitute
the petroleum source rocks, the reservoir rocks and the regional
top seals (Kotarba and Wagner, 2007; Pletsch et al., 2010;

Stowakiewicz and Mikotajewski, 2011; Kosakowski and
Krajewski, 2014, 2015; Kotarba et al., 2017b, 2020; Krzywiec et
al., 2017a; Stowakiewicz et al., 2018; Mikotajewski et al., 2019).
More than 90 petroleum deposits have been discovered in the
Zechstein Main Dolomite reservoir in Poland (Karnkowski,
1999a, 20074, b). The salts and/or anhydrite are widely thought
to be a top seal of this petroleum system. The depth of hydro-
carbon migration into the evaporites is estimated at several
tens of metres in the case of undisturbed salt strata
(Kovalevych et al., 2008). However, hydrocarbon migration can
involve longer distances in the case of salt diapirs (e.g., Tobota
and Botor, 2020). The major Zechstein Main Dolomite source
rocks are the laminated carbonate mudstones and
boundstones deposited in low-energy lagoons on the marginal
Zechstein Main Dolomite platform or on isolated platforms, that
locally contain an abundant amount of organic matter
(>20 wt.% TOC; Stowakiewicz and Mikotajewski, 2011). Petro-
leum in the Zechstein Main Dolomite was mainly generated
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from microbial-algal organic matter types | and Il (Kotarba and
Wagner, 2007; Stowakiewicz and Mikotajewski, 2011;
Kosakowski and Krajewski, 2014, 2015; Stowakiewicz et al.,
2018; Mikotajewski et al., 2019; Kotarba et al., 2020). Very good
reservoir rocks occur close to the source rocks; however, reser-
voir properties are highly variable, both laterally and vertically
(Pletsch et al., 2010; Stowakiewicz and Mikotajewski, 2011;
Kosakowski and Krajewski, 2014, 2015; Stowakiewicz et al.,
2018; Mikotajewski et al., 2019).

TRIASSIC

In the Triassic Period, the Polish Basin was located at the
northern periphery of the Western Tethys Ocean, in which sedi-
mentation was strongly influenced by inherited Variscan struc-
tures which controlled the basin differentiation and subsidence
pattern (Szulc, 2007). However, the MPT was the main
depocentre. Upper Triassic sedimentary sequences are char-
acterized by a predominance of clastic, mainly terrestrial de-
posits (Szulc, 2007). Dry climatic conditions dominated during
the Late Triassic, but several humid intervals have also been
recognized during this time in the central European area
(Reinhardt and Ricken, 2000). Upper Triassic strata are domi-
nantly fluvial and lacustrine, locally comprising organic-rich
clastic deposits, including thin coal seams (Szulc, 2000).
Non-marine, lacustrine environments are widely known as very
good source rocks in many parts of the world (e.g., see sum-
mary in Katz and Lin, 2014). Lacustrine sequences are increas-
ingly being recognised as hosts for commercial hydrocarbon re-
serves. Various types of organic matter in lacustrine sequences
have organic carbon contents in the range ~1-20% (Powell,
1986; Bohacs et al., 2000; Petersen et al., 2004; Katz and Lin,
2014; Behar et al., 2020; Do Couto et al., 2021).

In the Polish Basin, no hydrocarbon accumulations have
been found in Triassic rocks so far. However, reservoir rocks
are present in the Lower Triassic of Central Europe, though the
nature of the petroleum charge and seal are uncertain
(Bachmann et al., 2010; Pletsch et al., 2010). In the Polish Ba-
sin, the porosity of Lower Triassic rocks is in the range 3-12%
(Sowizdzat et al., 2013). The source rock potential of Triassic
strata has not yet been fully constrained by geochemically. Ex-
ploration for further Triassic-hosted oil and gas could continue
across the basin, especially in relatively underexplored areas
where data can be reinterpreted in the context of new research
(e.g., Krzywiec et al., 2017a). Therefore, detailed identification
of source rocks would allow for better assessment of the petro-
leum system. So far, in the Rhaetian of offshore Denmark, NW
Germany and the Netherlands, thin coal intervals provide a lo-
cal hydrocarbon source (Nielsen, 2003; Geluk et al., 2018), that
suggests the presence of such horizons also towards the east
in the Polish Basin. In Denmark, Triassic strata are dominated
by continental to marginal marine sandstones, mudstones, car-
bonates and evaporites, and good quality source rocks are not
common. Apart from a few local occurrences of Upper Triassic
units with limited potential (e.g., the 73 m-thick mudstone-domi-
nated Gassum Formation), the Triassic does not possess pe-
troleum generation potential (Petersen et al., 2008). In the Tri-
assic succession of Germany, black claystones and coals are
suggested to have minor gas generation potential and are re-
garded as a possible source of gas shows in a number of bore-
holes penetrating Lower Triassic rocks (Lutz and Cleintuar,
1999). In the Middle Triassic, partly bituminous marls, lime-
stones and dolomites ~10 m thick have also been described
(Eisbacher and Fielitz, 2010). In the Upper Triassic (Keuper —
i.e. lower part of the Upper Triassic), only the Lettenkeuper
Member is assumed to have minor gas generation potential

due to interbedded thin coal layers. These layers are described
as partly bituminous (Schad, 1962). In the Upper Triassic, lo-
cally enrichment in TOC was observed in the range ~1-3 %
(Schobben et al., 2019).

Generally, in the Upper Triassic of the Polish Basin, few
geochemical investigations are available indicating mild hydro-
carbon generation potential with TOC values of typically
~1-2%, of mixed /Il type kerogen (Bachleda-Curus and
Semyrka, 1990; Bachleda-Curus et al., 1996; Marynowski et
al., 2006; Marynowski and Simoneit, 2009; Wojcicki et al.,
2022). In the Rhaetian strata, TOC is usually below 1%, except
for some lacustrine mudstones, where TOC content can reach
4% (Pienkowski et al., 2020). In many boreholes Upper and
Middle Triassic TOC values are up to 0.6%. The thermal matu-
rity of these claystones is in the range of ~0.8-1.1% VR (e.g.,
Pita IG 1, Objezierze IG 1 boreholes), suggesting that these
kerogens achieved the mid-oil window stage (Kiersnowski,
2017; Dyrka, 2017; Zuk, 2019). In the central part of the Polish
Basin, the Lower Keuper source rocks have an average thick-
ness of 67 m (based on 66 boreholes), usually ranging from 50
to 100 m (Bachleda-Curus and Semyrka, 1990). The average
TOC is 0.9 wt.% in these rocks. Generation of 1.6*10° Mg hy-
drocarbons per 1 km® of source rocks was calculated by
Bachleda-Curus and Semyrka (1990) applying the TTI method
(Waples, 1980).

JURASSIC

In the Polish Basin, Upper Jurassic source rocks show up to
7.5 wt.% TOC, while Middle Jurassic strata contain up to
~5 wt.% and Lower Jurassic up to ~1.1 wt.% TOC (Wilczek,
1986; Kosakowski et al., 2015; Wiectaw, 2016; Zakrzewski et
al., 2020, 20223, b). Geochemical data indicate the presence of
mixed organic matter (kerogen type IlI/1l) occurring in the Upper
Jurassic, whereas gas-prone type lll kerogen prevails in the
Middle and Lower Jurassic. However, type IV kerogen also con-
stitutes a significant part of the organic matter (Zakrzewski et
al., 2020, 2022a, b). Geochemical data indicate that the Lower
Jurassic strata contain partially reworked kerogen, which even
just after deposition had poor hydrocarbon potential
(Zakrzewski et al., 2022a). In the Lower and Upper Jurassic
succession, thermal maturity is in the range of 0.7-0.8% VR in
the deeply buried part of the Mogilno-t-6dz Synclinorium. In the
Lower Cretaceous rocks, the thermal maturity did not exceed
0.5% VR. The thermal maturity of organic matter in these
source rocks ranges from the immature phase to the early and
mid-phase of the oil window. This is indicated by the results of
VR and Rock-Eval temperature Tmax as well as by biomarkers
(Kosakowski et al., 2015; Wiectaw, 2016; Zakrzewski et al.
2020, 2022a, b). The onset of hydrocarbon generation from the
Jurassic source rocks occurred during the Cretaceous, at a
burial depth >2.5 km and temperature >80°C. The generation
was completed at the end of Cretaceous due to tectonic inver-
sion. The kerogen transformation reached up to ~40% in the
Middle Jurassic and up to ~10% in the Upper Jurassic source
rocks (Kosakowski et al., 2015).

In the Polish Basin, no oil and gas fields have been discov-
ered in Mesozoic strata. Potential reservoirs might constitute
sandstone units of the Lower Triassic, Lower and Middle Juras-
sic and Cretaceous, as similar to the North Sea area (Pletsch et
al., 2010; Tarkowski and Wdowin, 2011; Sowizdzat and
Semyrka, 2016). The most promising reservoirs are porous
Lower and Middle Jurassic sandstones forming structural and
combined structural-stratigraphic traps (Labus et al., 2014;
Labus and Tarkowski, 2022). The stratigraphic traps likely exist
in the form of bioherms within the Oxfordian limestones, as well
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as in Lower Cretaceous sandstones, and channel-filling facies
of fluvial sandstones of the Upper Triassic, where natural gas
shows have been observed in the Koto area (Wojcik et al.,
2022). Potential traps are likely related to salt tectonics and may
include anticlinal structures above salt pillows, through struc-
tures induced by inversion, and combined structural-strati-
graphic traps next to salt diapirs (Krzywiec et al., 2017a; Wojcik
etal., 2022). The traps were formed during Late Cretaceous in-
version, as well as due to movements of Zechstein evaporites
during the entire Mesozoic. Traps were mainly sealed by the
shales in the Mesozoic succession and evaporites in the
Zechstein (Krzywiec et al., 2017a; Wojcik et al., 2022).

METHODS AND DATA

BASIN MODELLING TECHNIQUE

The 1-D numerical models were constructed with the use of
PetroMod software (Schlumberger) for 90 boreholes. Numeri-
cal modelling techniques enable the simulation of the complex
set of interacting physical and chemical processes taking place
during the evolution of a sedimentary basin. The quantification
of geological evolution is based on a conceptual model, which
describes the geological evolution of the study area (Waples et
al., 1992; Hantschel and Kauerauf, 2009). The conceptual
model was constructed in a temporal framework in which
geochronologic entities called ‘events’ form the basis of the
temporal framework and the input data. Input data for each
event consist of duration, depositional or erosional thickness, li-
thology, bathymetry, sediment/water interface or surface tem-
perature, and heat flow. Petrophysical parameters such as po-
rosity, density, thermal conductivity, etc., are then defined from
the lithology. After each simulation run, the calculated results
have to be compared with measured values, in order to cali-
brate the model and check its geological reliability. The major
calibration parameter was mean random vitrinite reflectance
values (VR). The kinetic EASY % R, approach was applied,
which enables the calculation of the mean random vitrinite
reflectance up to the value of 4.6% (Sweeney and Burnham,
1990; Burnham et al., 2016). Calibration was achieved mainly
by varying heat flows or original thicknesses of now eroded sed-
imentary units within geologically reasonable limits (Wygrala,
1989; Waples et al., 1992; Hantschel and Kauerauf, 2009). Ini-
tially, heat flow assignment for the past stages of basin history is
estimated based on the tectonic setting (Hantschel and
Kauerauf, 2009). Further palaeo-heat flows values are as-
sessed by the modelling procedure in order to achieve the best
fit between the calculated model and measured calibration pa-
rameters. Heat flow values are best constrained for times of
maximum temperature which usually correspond to maximum
burial depth (Waples et al., 1992; Hantschel and Kauerauf,
2009). During modelling, different burial-uplift scenarios are
tested to find a model, which is best calibrated with VR values
measured on rock samples. More details on the principles of the
modelling technique are given elsewhere in, e.g., Waples et al.
(1992) and Hantschel and Kauerauf (2009).

MODELLING INPUT DATA

A set of stratigraphic and lithological data concerning the
boreholes studied was based on published data and interpreta-
tions concerning the geological evolution of the Permian—Ceno-
zoic in the Polish Basin. Particularly useful were palaeothickness
and palaeofacies maps of Permian and Mesozoic sequences as
well as regional cross-sections of the study area (Marek and
Pajchlowa, 1997; Dadlez, 2006). Basic stratigraphic and

lithological data were compiled from reports provided by the
Central Geological Database of the Polish Geological Institute
(PGI) in Warsaw: http://otworywiertnicze.pgi.gov.pl/Details/Infor-
mation/ and the Polish National Geological Archives https://
www.pgi.gov.pl/en/narodowe-archiwum-geologiczne-2.html
Periods of sedimentation and erosion/non-deposition, sedi-
ment types and thicknesses were identified for each borehole.
The age (in Ma) of standard chronostratigraphic units is given
after Ogg et al. (2008). Defined PetroMod lithologies (with
petrophysical properties determined for each rock type) are
given in Table 1 and were defined on the basis of detailed
lithological descriptions of core and cutting material included in
borehole documentations. Palaeo-heat flow values were se-
lected based on the quality of fit between the model predictions
and actual observations of thermal maturity-depth profiles. The
present-day heat flow values were interpolated from the surface
heat flow maps (Majorowicz and Wybraniec, 2011; Majorowicz,
2021). The values obtained range from 40 to 78 mW/mZ2. Map-
ping was based on the latest available geothermal data from
boreholes across the Polish Basin, carefully verified in order to
exclude unreliable measurements. Methodological problems
related to heat flow calculation and mapping were thoroughly
discussed by Majorowicz and Woybraniec (2011), and
Majorowicz (2021). However, present-day heat flow values do
not influence the maturation history of inverted basins (as gen-
erally in this case), which is governed mainly by a pre-inversion
period (Waples et al., 1992; Hantschel and Kauerauf, 2009).
Mean random vitrinite reflectance measurements were im-
plemented in the numerical modelling procedure as major pa-
rameters calibrating the burial and thermal history of the basin
(e.g., Hantschel and Kauerauf, 2009). Thermal maturity values
included several sources of data (Bachleda-Curus and Semyrka,
1990; Bachleda-Curus et al., 1996; Grotek 1998, 2006; Wagner,
1999; Kotarba et al., 2005, 2006; Resak et al., 2008) and the
Central Geological Database of the Polish Geological Institute in
Warsaw: http://otwory wiertnicze.pgi.gov.pl/Details/Information/
Thermal modelling was carried out at a regional scale
across the entire Polish Basin. Hence, it was necessary to sim-
plify several factors both in geological and methodological as-
pects such as: (i) Carboniferous strata were selected as the
sedimentary basement in the case of the Polish Basin, (ii) the
structural-thickness model of Permian to Mesozoic strata and
the influence of salt domes. Reconstruction of the thermal his-
tory of petroleum source rocks is essential to organic matter
maturity predictions. The reconstruction of sediment palaeo-
temperatures as a function of time and depth requires the spec-
ification of heat flow and thermal conductivity values of the rock
column. Several heat transfer assumptions were used in our
modelling: (1) heat transfer was by conduction, (2) steady-state
thermal conditions were used to model heat flow from the base
of the sedimentary section to the surface, (3) the heat was as-
sumed to come from the basement but not from radiogenic heat
sources within the rocks, (4) the basement heat source was not
differentiated between radiogenic heat from the basement and
heat from mantle convection. Due to the rifting processes of the
MPT (Dadlez et al., 1995; Karnkowski, 1999b; Stephenson et
al., 2003; Mazur et al., 2005, 2006) generally higher heat flow
values than present-day were assumed for the Permian-Trias-
sic interval, which generally decreased to present-day values. A
kerogen Type TIIB kinetic model from Pepper and Corvi (1995)
was assigned to the Upper Triassic strata (500 mg HC/gTOC;
and 1.0% TOC), whereas the Pepper and Corvi (1995) TIA ki-
netic model was selected for the Zechstein Main Dolomite hori-
zon (600 mg HC/gTOC; 2% TOC). The kinetic models of hydro-
carbon generation selected by Pepper and Corvi (1995) are
among the most widely applied in basin modelling studies.
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Table 1

A summary table with the lithology and petrophysical properties that were used in the models

) ) 3 Compressibility (1/Pa) Thermal conductivity (W/mK) Heat capacity (cal/gK)
Lithology Density (9/M") ™ jinimum | Maximum | at20 °C at 100°C at 20 °C at 100°C

DOLOMITE 2.836 10.0 250.0 3.81 3.21 0.202 0.229
EVAPORITE 2.540 1.0 10.0 4.69 3.91 0.194 0.210
EVAPshaly 2. 585 10.0 100.0 3.87 3.31 0.200 0.221
LIMEdolom 2.752 10.0 180.0 3.18 2.82 0.198 0.226
LIMEmarly 2.707 10.0 300.0 2.63 2.41 0.201 0.235
LIMEsandy 2.695 20.0 700.0 2.93 2.62 0.190 0.219
LIMEshaly 2.700 10.0 550.0 2.51 2.31 0.203 0.237
LIMESTONE 2.710 10.0 150.0 2.83 2.56 0.195 0.223
MARL 2.687 10.0 940.0 2.23 2.11 0.208 0.248
SALT 2.160 1.0 4.0 5.69 4.76 0.206 0.212
SAND&LIME 2.685 15.0 400.0 2.93 2.54 0.186 0.215
SAND&SHALE 2.669 10.0 2.8 2.65 2.38 0.197 0.236
SAND&SILT 2.665 10.0 1.9 2.59 2.31 0.192 0.229
SANDcong| 2.663 10.0 330.0 2.93 2.63 0.184 0.217
SANDshaly 2.666 10.0 1.4 2.78 2.37 0.190 0.226
SANDsilty 2.664 10.0 1.2 2.97 2.64 0.188 0.223
SANDSTONE 2.660 10.0 500.0 3.12 2.64 0.178 0.209
SHALE 2.680 10.0 60.0 1.98 1.91 0.213 0.258
SHALE&LIME 2.695 20.0 1.5 2.39 2.24 0.208 0.246
SHALE&SAND 2.669 10.0 2.8 2.65 2.38 0.197 0.236
SHALES&SILT 2.674 10.0 13.0 2.09 1.97 0.207 0.251
SHALEcalc 2.688 10.0 5.0 2.22 2.09 0.208 0.248
SHALEcarb 2.655 10.0 45.0 1.50 1.43 0.212 0.258
SHALEcoal 2474 10.0 16.5 1.80 1.60 0.202 0.244
SHALEevap 2.630 10.0 7.0 2.93 2.61 0.210 0.247
SHALEsand 2.674 10.0 9.0 2.32 2.12 0.205 0.248
SHALEsilt 2.677 10.0 25.0 2.05 1.94 0.210 0.254
SILT&SAND 2.665 10.0 1.9 2.59 2.31 0.192 0.229
SILT&SHALE 2.674 10.0 13.0 2.09 1.97 0.207 0.251
SILTsandy 2.666 10.0 3.0 2.55 2.33 0.192 0.230
SILTshaly 2.675 10.0 15.0 2.09 1.98 0.203 0.245
SILTSTONE 2.672 10.0 8.0 2.14 2.03 0.201 0.242

In lithology types the following system was applied for abbreviations: e.g., SANDcongl (first lithology in upper case and second in lower case)
— 70% sandstone and 30% of conglomerate; SAND&SHALE (both lithologies in upper case) — 50% sandstone and 50% shale

RESULTS

BURIAL AND THERMAL HISTORY

The first part of the thermal maturity modelling involved re-
construction of the Late Paleozoic to Cenozoic burial and ther-
mal history, which was necessary for further hydrocarbon gen-
eration modelling. However, the quality of the VR data in many
boreholes is varied, which means that in many cases thermal
history models are not unique and alternative models are possi-
ble (e.g., Majorowicz et al., 1984; Karnkowski, 1996, 1999b;
Poprawa et al., 2005; Zielinski et al., 2012). In this 1-D petro-
leum system modeling study, burial and thermal history models
were applied (adopted) based on the best-fit models published
by Resak et al. (2008) for Pomerania, Botor (2011) for the
Kujawy and northern Fore-Sudetic Homocline (FSH), as well as
Koztowska and Poprawa (2004) and Kuberska et al. (2021) for
the Masovia area, and Botor (2011), Botor et al. (2013), and
partially (for the eastern FSH), Poprawa et al. (2005) and
Mackowski (2005) for the FSH, as well as Botor et al. (2019a)

for the EEC area. Details of the burial and thermal history as
well as petroleum generation characteristics in the Paleozoic
(Ediacaran to Carboniferous) source rocks was given by Botor
et al. (2013) and Botor et al. (2019a, b). Detailed discussion
concerning burial and thermal history, model calibration and
sensitivity analysis has already been carried out in these pa-
pers, and is not repeated here. Herein, burial and thermal his-
tory is only summarized at a regional scale in the context of fur-
ther hydrocarbon generation modelling of the Zechstein Main
Dolomite and Upper Triassic source rocks. The most important
and typical examples of burial and thermal history are given in
Figure 5, while examples of model sensitivity analysis are given
in Figure 6. Because most boreholes were drilled to reach the
Carboniferous, models were constructed including the Carbon-
iferous. However, these models also show Permian to Ceno-
zoic geological evolution, including the Zechstein Main Dolo-
mite and Upper Triassic source rocks.

A sensitivity analysis was carried out to investigate the ef-
fects of changes in heat flow (HF) and different extents of ero-
sion during the most decisive phases of burial and subsequent
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Fig. 5. Burial and thermal history models of selected boreholes

A - Pita IG 1, B — Budziszewice IG 1, C — Wrzesnia IG 1 (modified based on Botor, 2011; Botor et al., 2013); calibration for the best-fit
models are also given with measured vitrinite reflectance and heat flow development

exhumation in the Late Cretaceous (Fig. 6). Figure 6A, B, C
shows the variation in heat flow in 10 mW/m? steps from the
best-fit scenario. The best-fit scenario assumes high heat flows
at times of extensional tectonics, decreasing during subsidence
and finally increasing after tectonic inversion to present-day val-
ues (Fig. 5). Such a HF scenario was used in previous studies
summarized by Botor (2011) and Botor et al., (2013, 2019a). To
illustrate the effect of changes in palaeo-heat flow, different heat
flow values during maximum burial were tested during the most
sensitive time of the Late Cretaceous. By increasing the heat
flow values of 10 mW/m? or higher during maximum burial in
Late Cretaceous times (Fig. 6A, B, C), calculated VR values are
too high compared to measured data. Respectively, by de-
creasing the heat flow values of 10 mW/m? or lower during the

same burial phase, calculated VR values are too low compared
to measured data. Secondly , the influence of the removed sed-
iment thickness was assessed (Fig. 6D, E, F). This was per-
formed by adjusting the thickness of eroded sediment during
the maximum burial and erosion phase in the Late Cretaceous
to Early Paleogene. The assumption of eroded sediment thick-
nesses of above or below 400 m different than the best-fit mod-
els cause significant change in the calculated VR curve. In such
cases, the calculated VR curve is unacceptable, being outside
the measured VR values. Further details of sensitivity analysis
models were published by Botor (2011).

In the area of the Polish Basin analysed, burial history was
characterised by relatively continuous subsidence from the
Permian to Late Mesozoic (Fig. 5). However, there were two
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in the Late Cretaceous was adjusted
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major intervals of uplift and erosion: (1) in the Late Carbonifer-
ous to Early Permian and (2) in the Late Creta-
ceous/Paleogene. The first interval is difficult to quantify due to
high rates of burial in the Mesozoic, while the second one re-
sulted in removing 200 m to 3 km of Mesozoic strata (Botor et
al., 2013, 2019a). The highest values occurred along the axis of
MPT, lowering towards the flanks. The Cenozoic interval did not
significantly influence burial history due to the low stratal thick-
ness, not exceeding 350 m (Piwocki, 2004). The best-fit calibra-
tion (i.e. the best fit between the measured and calculated VR
values) has been achieved by means of applying increased
heat flow values (~95 mW/m?) in the Carboniferous—Early
Permian interval, probably related to volcanic processes and
some hydrothermal activity in the study area. The Late Perm-
ian-Mesozoic and Cenozoic interval was characterized by mod-
erate heat flow in the range 50-80 m\W/m?. The lowest HF was
in the Cretaceous (40-48 mW/m?) before tectonic inversion, af-
ter which HF increased to the present-day value (Botor, 2011,
Botor et al., 2013, 2019a).

In the Polish Basin, the Permian and Triassic strata reached
maximum thermal maturity of organic matter during the Meso-
zoic. Thermal maturity of the Carboniferous organic matter was
reached before the Permian particularly in the eastern FSH i.e.,
the area between boreholes Wrzesnia IG 1 and Dankowice
IG 1, which is supported by the break in the VR profile in bore-
holes (Botor et al., 2013). This was related probably to the large
amount of eroded sediments (>3 km) and high heat flow values
(~100 mW/mz), or was caused by a fluid flow event. On the
other hand, in the MPT area, and in the zone of marginal
troughs on both sides of the MPT, much more complicated ther-
mal maturity patterns, which were developed during the Meso-
zoic burial, are found (Botor, 2011; Botor et al., 2013, 2019a). In
the southern part of the Polish Basin, a higher thermal
palaeogradient was found locally in Jurassic. This suggests the
presence of an additional thermal event in the Early—Middle Ju-
rassic, characterized by a strongly increased heat flow
(Poprawa and Grotek, 2004). This phenomenon was likely as-
sociated with a phase of extensive tectonic activity in this part of
the basin (Kutek, 1994). The calculated heat flow reaches very
high values, up to over ~100 m\W/m?, and this anomaly in indi-
vidual borehole sections expires relatively quickly (e.g., Zielinski
etal., 2012; Botor et al., 2013). Modelling does not make it pos-
sible to unequivocally state whether this anomaly is related to
perturbations of the conductive heat flow, or whether it results
from convective heat transport. Farther towards the SE, in the
southern part of the Masovian Trough and in the northern part
of the Lublin area, such a phenomenon was documented using
modelling based on both VR data and the results of illite K-Ar
dating (Koztowska and Poprawa, 2004; Kuberska et al., 2021).
This event was roughly simultaneous with a phase of extensive
or transient tectonic reactivation of the Polish Basin (Dadlez et
al., 1995). The development of the Polish Basin ended with the
Late Cretaceous—Early Paleogene tectonic inversion, which led
to intense erosion of the sedimentary infill of the basin, reaching
the Jurassic and, locally, even the Upper Triassic (e.g., Botor et
al., 2013).

The depth of maximum burial, which occurred in the Late
Cretaceous, of both Zechstein Main Dolomite and Upper Trias-
sic source rocks varies in different parts of the Polish Basin.
(Figs. 7 and 8). The highest values were calculated along the
MPT axis. These values decrease towards the basin flanks.
Maximum burial of the Zechstein Main Dolomite source rocks
was 5-7 km in the MPT area (i.e., the area between the bore-
holes Czaplinek IG 2 and Budziszewice |G 1), decreasing to
2-3 km towards NE and SW (Fig. 7). The shallowest burial
(<1.5km) was in the most eastern and NE areas (i.e.,

Bartoszyce IG 1, and Zebrak IG 1). Maximum burial of the Up-
per Triassic source rocks (>6 km) occurred in the area of bore-
holes Krosniewice IG 1 — Poddebice IG 1 — Zgierz IG 1, in the
MPT area (Fig. 8). These values decrease towards the basin's
flank similarly as in Zechstein Main Dolomite. The lowest values
(<1 km) also occurred in the NE and the easternmost areas
(Bartoszyce IG 1, and Zebrak 1G 1).

In the case of the Pomeranian segment of the Polish Basin,
the reconstruction of a coherent, regional scale thermal history
is difficult. This relates to the differences between the variants
of heat flow changes over time, optimal for the individual bore-
holes analysed, and the lack of thermal maturity data that would
fully cover the profiles of the boreholes analysed (Resak et al.,
2008; Botor et al., 2013). This applies in particular to the south-
ern part of the Pomeranian segment of the MPT, where lateral
differences in thermal history may be related to halokinetic ac-
tivity, leading to strong lateral thermal conductivity anisotropy.
In the Pomeranian Swell the burial history is mostly character-
ized by relatively rapid subsidence from the Permian to Triassic
or Jurassic followed by slower subsidence in the Cretaceous
(Fig. 5). In the Late Cretaceous/Paleogene a rapid phase of up-
lift took place. The former event marks the setting up of the
MPT depocentre and is associated with considerable crustal
extension (Dadlez et al., 1995). Between Early Triassic and
Late Cretaceous the area subsided almost continuously, and
burial was interrupted only by insignificant erosional events re-
sulting from salt doming in the Late Triassic. After the Early Tri-
assic, sedimentation rates were much lower, particularly in the
latest Triassic and Cretaceous. Finally, Late Creta-
ceous/Paleogene uplift resulted in the removal of 300—700 m of
deposits. The heat flow was ~30-50 mW/m? during this time
(Botor et al., 2013). During the latest Carboniferous to Early Tri-
assic, heat flows were assigned to be ~55-95 mW/m? (Botor et
al., 2013). These higher values are due to the assumed rifting
origin of the MPT (Dadlez et al., 1995). However, it is difficult to
assess heat flow evolution for this interval because of high Me-
sozoic burial, which caused overprinting of the Variscan VR re-
sponse. Further details of burial and thermal history are given in
Resak et al. (2008) and Botor et al. (2013).

In the central part of the MPT, burial history was also char-
acterized by very rapid subsidence in the Late Permian to Early
Triassic, followed by slower subsidence from the Late Triassic
to Cretaceous. Finally, Mesozoic subsidence was interrupted
by Late Cretaceous/Paleogene uplift, which caused erosion of
variable amounts of the Late Mesozoic succession (from a few
metres to 3 km as in the case of Budziszewice IG 1). Due to
very substantial Mesozoic burial it is difficult to assess heat flow
(~60-110 mW/m2) in the Carboniferous to Early Permian
(Botor, 2011). Further details of the burial and thermal history of
this area are given in Botor (2011) and Botor et al. (2013).

In the eastern part of the Polish Basin (Masovia), the local
burial history is characterized by more or less continuous subsi-
dence from the end of the Carboniferous to the end of the Cre-
taceous. Acceleration of subsidence rate is inferred in the Late
Permian to Early Triassic, and Late Jurassic and Late Creta-
ceous. The major period of uplift and erosion was in the Latest
Carboniferous to Early Permian, while the Late Creta-
ceous/Paleogene uplift was not significantly marked in this area
(Botor et al., 2013, 2019a). Thermal history models in the
Masovia area assume a short-lived hydrothermal (?) Jurassic
event in order to achieve the best fit between measured and
calculated VR, as was suggested by Koztowska and Poprawa
(2004), Zielinski et al. (2012) and Kuberska et al. (2021).

The area east of the TTZ on the slope of the EEC shows a
similar subsidence pattern; however, the burial depth is lesser
to the NE, because this was an area located in the marginal part
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Fig. 7. Calculated maximum burial depth pattern before Late Cretaceous inversion for the Zechstein Main Dolomite

The coordinate system used in Figures 7-12 is — Poland 19

92 that is based on the ETRS89 datum, GRS80 spheroid

and the Transverse Mercator projection with 19°E as a central meridian; extent and facies of Zechstein Main Dolomite

modified based on Wagner (1994), Da

of the Permian—Mesozoic basin of Central Poland (Botor et al.,
2019a, b). The Cenozoic deposits, due to their very small thick-
ness and variable distribution in the research area, do not sig-
nificantly affect the burial patterns of the Permian and Mesozoic
succession.

THERMAL MATURITY

Thermal maturity of organic matter was calculated as mean
random vitrinite reflectance applying the Sweeney and
Burnham (1990) algorithm, which is still valid in most cases
(Burnham et al., 2016). The vitrinite reflectance map has been
calculated for the bottom of the Zechstein Main Dolomite
(Fig. 9) and the bottom of the Upper Triassic (Fig. 10). These
maps are based on 1-D models accomplished for four develop-
ment steps: (a) Late Triassic (~200 Ma), (b) Late Jurassic
(144 Ma), (c) Late Cretaceous (65 Ma), and (d) the present-day.
The VR pattern for both the Zechstein Main Dolomite and Up-
per Triassic source rocks is generally related to the maximum
burial and development of the MPT. The highest values are
generally observed along the axial part of the Polish Basin. The
present-day VR map of the Zechstein Main Dolomite and Upper
Triassic (Figs. 9D and 10D) shows an almost identical distribu-
tion to the Late Cretaceous pattern (Figs. 9C and 10D). This al-
lows the assumption that the recent VR pattern of the Zechstein
Main Dolomite and Upper Triassic was developed in the Meso-

dlez et al. (1998), Peryt et al. (2010)

zoic, finally reaching its VR pattern in the Late Cretaceous. The
fastest thermal maturity development occurred in the central
part of the MPT, where VR reached >1.3 % in the Late Triassic
in the Zechstein Main Dolomite source rocks. Further increase
in VR was in the Late Cretaceous when the Zechstein Main Do-
lomite source rocks reached VR values of >1.3 % along the axis
of the MPT, from the Czaplinek IG 2 to the Nieswin PIG 1 bore-
holes. In the Upper Triassic source rocks, thermal maturity
reached >0.7% VR close to the Holy Cross Mountains (Nieswin
PIG 1 — Piotrkéw Trybunalski IG 1 area) in the Late Jurassic. In
the Late Cretaceous, maximum VR values were reached in the
central part of the MPT between the boreholes Kro$niewice and
Budziszewice IG 1 (Fig. 10). The VR values in the area of petro-
leum occurrence in the Zechstein Main Dolomite reservoirs is in
the range ~0.5t0 1.3 %.

HYDROCARBON GENERATION

Final results of the hydrocarbon generation modelling have
been shown as a kerogen transformation ratio (% TR), which
characterizes very well the development of these processes
(Figs. 11 and 12). TR calculated values are given at the bottom
of the Zechstein Main Dolomite and Upper Triassic strata. As
TR development is similar to VR development, only the final
stage for the Late Cretaceous was shown, which is equal to the
present-day pattern. Hydrocarbon generation development re-
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Fig. 8. Calculated maximum burial depth pattern before Late Cretaceous inversion for the bottom of the Upper Triassic strata

Extent of Upper Triassic modified based on Dadlez et al. (1998) and Feist-Burkhardt et al. (2008)

veals considerable variation among particular Zechstein Main
Dolomite and Upper Triassic basin zones. TR reached different
values in the range ~10 to 100 % (Figs. 11 and 12). The highest
TR values occur in the zones of the maximum maturity of the or-
ganic matter (Figs. 9 and 10). The Zechstein Main Dolomite
source rocks area with 90% TR includes most of the Zechstein
Main Dolomite basin. This area occurs along the axis of the
MPT and FSH. Lower TR values are calculated outside of this
area towards the east. The lowest values are on the slope of the
EEC (Fig. 11). The hydrocarbon generation processes took
place in several pulses during the Mesozoic, principally from the
Middle—Late Triassic up to the Late Jurassic and in the Creta-
ceous. In the FSH, the Zechstein Main Dolomite source rocks
entered the oil window in the Late Triassic to Early Jurassic with
burial to 2 km (Fig. 5). The end of intense generation was in the
Late Jurassic; however, generation was still active until the Late
Cretaceous. In Pomerania, the source rocks entered the oil win-
dow from the Mid-Triassic to the Cretaceous when the burial
depth was >2.5 km. Late generation took place until the Late
Cretaceous. Hydrocarbon migration was of short distance in the
FSH, because most petroleum deposits occur in the area of
high TR (40-90 %TR; Fig. 12). Whereas, in the Pomerania and
central part of the Polish Basin, hydrocarbon migration distance
seems to be longer since many petroleum deposits occur in
zones of lower TR (10-50 %TR; Fig. 12). The Upper Triassic
source rocks entered the oil window in the Jurassic, and hydro-
carbon generation was completed in the Late Cretaceous with

tectonic inversion of the Polish Basin. TR in the Upper Triassic
source rocks is generally lower than in the Zechstein Main Do-
lomite due to lesser burial. In the Upper Triassic source rocks
the highest TR values (>50 %) are calculated along the MPT
axis, in the area between boreholes Pita IG 1 and Piotrkow
Trybunalski IG 1 (Fig. 12). The most pronounced zone is in the
Krosniewice Trough (i.e., Kro$niewice IG 1 to Budziszewice
IG 1 area), where locally TR reached >90%.

DISCUSSION

BURIAL AND THERMAL HISTORY

Generally, the 1-D basin modelling performed supports ear-
lier studies dealing with the tectonic development of the Polish
Basin. The Permian and Mesozoic strata in the Polish Basin
rest on the older Paleozoic, the genesis of which is connected
with the development of rifting in the Early Permian (Dadlez et
al., 1995; Karnkowski, 1999b; Kutek, 2001). Deposition of the
Permian strata was within the period of relatively rapid subsi-
dence, continuing through the Late Permian and Early Triassic
(Dadlez et al., 1995). This event is correlated with a tectonic
phase commonly observed in the Polish Basin and interpreted
as a syn-rift phase (Dadlez et al., 1995). Then, for most of the
Triassic, Jurassic, and Early Cretaceous, subsidence related to
the rift phase of thermal subsidence was maintained (Dadlez et
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Fig. 9. Calculated thermal maturity and hydrocarbon window development of the Zechstein Main Dolomite

A —in the Late Triassic, B — in the Late Jurassic, C —in the Late Cretaceous, D — present-day; VR - vitrinite reflectance; blue — immature zone,
green — oil window, red — gas window; dotted magenta line shows platform/barriers extent versus the current extent of the Zechstein Basin
(modified based on Wagner, 1994, Dadlez et al., 1998; Perytetal., 2010); green dots represent oil and gas fields in the Zechstein Main Dolomite

al., 1995; Karnkowski, 1999b; Kutek, 2001). In the Late Creta-
ceous, in the area investigated, tectonic reactivation took place,
expressing accelerated subsidence in a compressional tectonic
regime (Dadlez et al., 1995; Krzywiec, 2002). Taking into ac-
count the evolution of the Polish Basin at this time, it can be in-
ferred that this process took place in a compressional tectonic
regime (Dadlez et al., 1995; Krzywiec, 2002), and the end of the
Cretaceous tectonic inversion took place (Dadlez et al., 1995;
Krzywiec, 2002; Resak et al., 2008, 2010).

In most 1-D models, the best-fit calibration was achieved by
applying increased heat flow values in the Permian and Early
Triassic intervals (Poprawa and Grotek 2004; Poprawa et al.,
2005; Resak et al., 2008; Botor, 2011, Botor et al., 2013), as-
sumed to be due to rifting of the MPT (Dadlez et al., 1995;
Karnkowski, 1999b; Stephenson et al., 2003; Mazur et al.,
2005, 2006). Generally, subsidence analyses show an initial
syn-rift phase of MPT development from the Permian to Early
Triassic and an increase in subsidence in the Late Jurassic as

well as in the Cenomanian (Dadlez et al., 1995; Stephenson et
al., 2003; Resak et al., 2008). The development of the Polish
Basin was completed by Late Cretaceous and/or Early
Paleogene tectonic inversion, as in the other basins of the Cen-
tral European basin system (Doornenbal and Stevenson, 2010;
von Eynatten et al., 2021). The sedimentary deposits were
eroded down to the Lower Jurassic or Upper Triassic, whereas
elongated troughs at the flanks are characterized by a thick Up-
per Cretaceous succession (e.g., Mazur et al., 2006). Gener-
ally, heat flow evolution in this study assumes higher than pres-
ent-day heat flow values in Carboniferous to Triassic time due
to rifting of the MPT (Dadlez et al., 1995), and decreasing heat
flow values to the present day. Slightly lower than present-day
heat flow was assumed for the Cretaceous in the axial part of
the MPT. Additionally, an increase in heat flow occurred in the
eastern part of the MPT in the Jurassic, as suggested by
diagenetic studies by Koztowska and Poprawa (2004), Zielinski
et al. (2012) and Kuberska et al. (2021).
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Fig. 10. Calculated thermal maturity and hydrocarbon window development for the bottom of the Upper Triassic

A — at the end of Late Triassic, B —in the Late Jurassic, C — in the Late Cretaceous, D — present-day; VR — vitrinite reflectance; blue -
immature zone, green — oil window

During the Permian and Mesozoic, the area east of the TTZ  EEC area was characterised by gradual cooling from peak tem-
was located in the marginal part of the Polish Basin that peratures (>120°C) at the transition from the Triassic to Juras-
onlapped the SW slope of the EEC (e.g., Kutek and Gtazek, sic due to decreasing heat flow (Botor et al., 2021). This resultis
1972; Pozaryski and Brochwicz-Lewinski, 1978; Dadlez et al.,  probably representative for the entire TTZ area, as comparable
1995; Kutek, 2001). A characteristic feature of the SW slope of  results were obtained by Schito et al. (2018) in the Ukrainian
the EEC is an increasing thickness of deposits towards the part of the EEC, who postulated that exhumation through the
TTZ. Up to a few kilometres of strata were deposited at that = 40-120°C temperature range took place between the Late Tri-
time, and the thickness rapidly decreases from the axis of the  assic and Early Jurassic, and that no significant burial occurred
MPT towards the interior of the EEC and towards the FSH. In  afterwards. The data of Botor et al. (2021) are consistent with
contrast to the MPT, where significant Late Cretaceous basin  decreasing heat flow during the Mesozoic (particularly within
inversion took place (Botor et al., 2018; Luszczak et al., 2020),  the Cretaceous) as suggested by Poprawa and Andrissen
the part of the Polish Basin extending NE over the TTZand ad-  (2006) along the axis of the MPT. The elevated Permian-Trias-
jacent area of the EEC experienced only mild inversion (e.g.,  sic heat flow was probably a consequence of early Permian
Krzywiec, 2009; Krzywiec et al., 20173, b). continental rifting. The decrease in post-Permian heat flow ap-

Independent premises for the occurrence of a lowered ther-  pears an important cause of Late Mesozoic cooling. The ther-
mal gradient (i.e. lower heat flow) in the Late Cretaceous zone = mal models show mostly gradual cooling with little effects of the
along the MPT were obtained from thermochronological apatite =~ Late Cretaceous basin inversion along the EEC. Apatite fis-
fission-track data (Poprawa and Andriessen, 2006). In the area  sion-track data did not record any cooling acceleration, which
of EEC east of the TTZ, a recently accomplished thermo-  can be attributed to tectonic inversion in the Late Cretaceous
chronological study of Botor et al. (2021) supplemented by ear-  (Botor et al., 2021). This is related to the fact that tectonic inver-
lier work of Kowalska et al. (2019) based on K-Ar dating and  sion was significantly weaker in the part of the Polish Basin
clay minerals and produced a more reliable thermal history of  onlapping the EEC (Krzywiec et al., 2017b).
this area. The Mesozoic thermal history of the SW slope of the
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Fig. 11. Calculated kerogen transformation ratio of the Zechstein Main Dolomite in the Late Cretaceous

TR — kerogen transformation ratio; dotted blue line shows platform/barriers extent versus the current extent
of the Zechstein Basin (modified based on Wagner, 1994, Dadlez et al., 1998; Peryt et al., 2010);
green dots represent oil and gas fields in the Zechstein Main Dolomite

HYDROCARBON GENERATION

In the Polish Basin, the results of the maturity modelling per-
formed indicates that several stages of development of hydro-
carbon generation in the Permian and Triassic strata may be
distinguished. Permian source rocks attained their maximum
thermal maturity between the Late Triassic and Cretaceous.
The Upper Triassic source rocks generated hydrocarbons in
the Jurassic to Late Cretaceous, mainly in the Krosniewice
trough and adjacent area of the MPT. This area had also been
suggested earlier, due to high burial rates, as the main hydro-
carbon generation “kitchen” (Bachleda-Curus and Semyrka,
1990; Kosakowski et al., 2015).

The Zechstein Main Dolomite source rocks generated hy-
drocarbons in several phases during the Mesozoic until Late
Cretaceous, which is also supported by the wide occurrence of
hydrocarbon fields in the Zechstein Main Dolomite rocks. The
degree of transformation of the Zechstein Main Dolomite kero-
gen corresponds with the initial and main phases of liquid hy-
drocarbon generation in the area of the EEC, particularly in the
Masovia areas and in northern Pomerania. In the axial part of
the MPT and in the FSH, the kerogen is characterized by a
transformation degree that corresponds with the main phases
of liquid hydrocarbon, the phase of gas condensate generation,
as well as the phase of thermogenic dry gas generation which is
in agreement with the findings of Karnkowski (1996, 1999b).

The modelling performed supports also the results of
Pletsch et al. (2010), suggesting that petroleum generation in
basinal deposits of the Zechstein Main Dolomite started during
the Early Triassic, at burial depth >1700 m. The Zechstein Main
Dolomite source rocks entered the oil window in the Late Trias-
sic (basinal deposits) with burial to 2000 m, and in the Early Ju-
rassic (platform deposits) with burial to 1800-2200 m. The end
of generation was in the Late Triassic (basin) and in the Middle
Jurassic (platform). In NW Poland, the Zechstein Main Dolomite
source rocks in Pomerania reached the early generation phase
during the Early Triassic (axial part of the basin) and the Late
Triassic (platform deposits). Early generation started at burial
depths of >2500 m. The source rocks entered the oil window
from Mid-Triassic to Cretaceous times when the burial depth
was >2700 m burial depth. Late generation took place from the
Early Triassic in the basin to the Late Cretaceous on the slope
and platform, when the petroleum potential of kerogen from the
Zechstein Main Dolomite source rocks became exhausted
(Pletsch et al., 2010).

UNCERTAINTY OF TRANSFORMATION RATIO

The extent of the advance of hydrocarbon generation in
source rocks in this work is presented as the kerogen transfor-
mation ratio. The TR depends essentially on the thermal matu-
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Fig. 12. Calculated kerogen transformation ratio development of Upper Triassic strata
(for the bottom of the Upper Triassic, T3) in the Late Cretaceous

TR — kerogen transformation ratio

rity of the organic matter, although a number of factors also in-
fluence it. As a result, the relation of thermal maturity and burial
depth to TR is not always simple and unambiguous (Aguilera,
2018). It seems that TR variation most likely reflects organic fa-
cies variations of the source rock, as each organic facies has a
different transformation ratio behaviour caused by its chemical
kinetics. In this work the most widely used kinetic model of Pep-
per and Corvi (1995) was applied. However, other kinetic mod-
els could give slightly different results (Hantschel and Kauerauf,
2009). Therefore, further research on this topic should start
from detailed assessment of chemical kinetics reactions. In this
work the TR pattern is based on the assumption of homoge-
neous distribution of organic matter in the source rock. How-
ever, variations in TR could be interpreted in terms of different
organofacies in the source rock, stratigraphic variations (se-
quence stratigraphy), and varying depositional and preserva-
tion conditions of the organic matter (Tyson, 2001, 2005; Katz,
2005; Hantschel and Kauerauf, 2009). The hydrocarbon poten-
tial of the source rock is mainly controlled by the total organic
carbon content, type, and maturity of the organic matter (Hunt,
1996; Bohacs et al., 2005). One of the main uncertainties in pe-
troleum system analysis is the distribution of organic matter
within the source rock, both in terms of quantity (TOC) and qual-
ity (hydrogen index, HI). Reliable assessment of the organic
matter quality is crucial for evaluating hydrocarbon genera-
tion/expulsion scenarios. Variations in source-rock richness

and quality are the least well-known variables (e.g., Tyson,
2001; 2005; Katz, 2005; Hantschel and Kauerauf, 2009). In ba-
sin modelling, a conceptual approach or simple models apply-
ing average geochemical values describing source rock prop-
erties are widely used (Hantschel and Kauerauf, 2009). How-
ever, these are often insufficient, particularly in areas with het-
erogeneous geological conditions and/or reflecting variable
depositional environments. The basic problem in hydrocarbon
potential assessment is that mostly present-day values of TOC
and HI are used, causing underestimation of initial hydrocarbon
potential, while estimates of initial source-rock distribution,
thickness, and quality are key input parameters for hydrocarbon
generation models. In basin models, these estimates are sup-
plied as maps created by interpolation between observed well
data and extrapolation of trends. Conceptual or simplified maps
of average values are often used in frontier exploration areas
where well data are sparse. In the past, much effort has been
put into improving the algorithms describing the thermal evolu-
tion of basins and also improving the kinetic schemes of trans-
formation of different assemblages of organic matter into hydro-
carbons (Hantschel and Kauerauf, 2009). However, hydrocar-
bons expelled from a source rock are not only dependent on
kerogen transformation. The spatial distribution and quality of
organic matter also play an important role in determining the
composition and volume of hydrocarbons available for migra-
tion (Mann and Zweigel, 2008; Temmeras and Mann, 2008).
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COMPARISON WITH ADJACENT AREAS OF THE SPB

The Polish Basin consists of the most eastern part of the
SPB, extending from the UK to Poland (Van Wees et al., 2000;
Maystrenko et al., 2008; Doornenbal and Stevenson, 2010).
Therefore, an obvious comparison is with the North Sea Basin
and adjacent areas. Recent summaries of the petroleum sys-
tems of the SPB area were published by Pletsch et al. (2010)
and by Kilhams et al. (2018a). Similar Zechstein-sourced oil
and gas fields are known from Poland, Germany, and from the
UK in the North Sea area (e.g., Pletsch et al., 2010; Peryt et al.,
2010; Reijers, 2012). Whereas, in the Mesozoic succession of
the North Sea Basin and adjacent areas, the amount of organic
matter deposited in the sediments is greater than in the Polish
Basin. Moreover, the Mesozoic deposits of the North Sea basin
experienced higher temperatures in many zones, which in turn
led to a greater degree of thermal maturity of the organic mat-
ter, thus a greater transformation of the kerogen towards the
generation of hydrocarbons (Cornford, 1998; Pletsch et al.,
2010; Reijers, 2012). In the North Sea area, the burial history of
the source rock, which was conditioned by significant subsi-
dence in the Cenozoic, played a fundamental role in the devel-
opment of hydrocarbon generation processes. Despite Late
Cretaceous tectonic inversion and Paleogene erosion in some
areas, the maximum palaeotemperature occurs nowadays in at
least the Late Cenozoic (Cornford, 1998; Pletsch et al., 2010).

The primary source rocks in the North Sea area are mature
Upper Jurassic—-lowermost Cretaceous marine shales of the
Farsund, Mandal, Kimmeridge Clay, Heather Formations and
equivalents (Cornford, 1998; Justwan et al., 2005; Pletsch et
al., 2010; Petersen et al., 2008, 2017). Deposition of these
source intervals was contemporaneous with Late Jurassic
synrift fault activity and their postrift subsidence, which led to
thermal maturation, and petroleum generation and migration
from the early Cenozoic to the present day. In the North Sea
area, hydrocarbon generation has been initiated in most zones
in the last several million years. It formed the developing petro-
leum system, where extensional fault blocks created traps con-
taining reservoir-seal pairs that received their petroleum charge
from neighbouring kitchen areas (Burley, 1993; Cornford,
1998). The main source rock of the Kimmeridge Clay Formation
actively generated hydrocarbons, which then underwent in-
tense expulsion in various zones of the North Sea Basin at tem-
peratures >95°C and at a burial depths of >3 km (Cornford,
1998). These hydrocarbons migrated to the nearest reservoir
rocks: in the northern and central part of the North Sea basin to
the Jurassic sandstones (Viking graben), and in the southern
part to the carbonate formations of the Upper Cretaceous. The
vast majority of oil and gas fields occur in the immediate vicinity
of the actively generating Kimmeridge Clay Formation
(Cornford, 1998). Petroleum deposits located farther from this
zone (e.g., Beatrice, Bream) show different geochemical char-
acteristics, because their source was Devonian lacustrine
mudstones and Middle Jurassic paralic coals (Peters et al.,
1989; Cornford, 1998). Mid-Jurassic coals are also the source
of the Harald natural gas field in the Danish sector (Pletsch et
al., 2010; Petersen et al., 2008, 2017). Although the most im-
portant effective source rock in the North Sea basin is undoubt-
edly the Kimmeridge Clay Formation, the hydrocarbons in sev-
eral reservoirs derive from other source rocks. High TOC char-
acterizes also parts of the Lower and Middle Jurassic,
Zechstein, Carboniferous, and the Middle Devonian sedimen-
tary sequences (Cornford, 1998; Underhill and Richardson,
2022). In addition, the Upper Triassic (Raethian) of the Dutch
part of the Viking graben is considered a moderately effective
source rock (Clark-Lowes et al., 1987). Whereas, in the Paris

Basin, the Upper Triassic carbonate-clay deposits can also be
an effective source rock (Cornford, 1998). Migration in the North
Sea Basin was relatively short, limited to drainage zones of lo-
cal structures (Cornford, 1998; Pletsch et al., 2010; Petersen
and Hertle, 2018; Schovsbo and Jakobsen, 2019).

In the North Sea basin, Triassic deposits have mild genera-
tion potential (Cornford, 1998). However, in certain zones north
of 60°N occur marine strata that show source rock characteris-
tics. Oil and gas discoveries in the southern Barents Sea were
sourced by Middle Triassic shales, which are also considered
as potential oil-prone source rocks in the northern Barents Sea.
The organic richness and petroleum generation potential of
source rocks increase upwards from the Early to Middle Trias-
sic. Good to excellent source rocks with dominantly type |l
kerogen occur in the southern Barents Sea (Steinkobbe Forma-
tion; Isaksen and Bohacs, 1995) and in east Svalbard
(Botneheia Formation; Vigran et al., 2008; Krajewski, 2013).
Mid-Triassic black shales of the Botneheia Formation
(~80-170 m-thick) contain organic matter (3.0-5.5% TOC) of
mixed oil-gas-generating type (type Il/Ill). The degree of ther-
mal maturity of these shales ranges from immature to the peak
of the oil window (Mgrk and Bjorgy 1984; Cornford, 1998;
Wesenlund et al., 2021). Lower to Middle Triassic shales, which
are proven source rocks on Svalbard, generated petroleum, but
the timing of generation and expulsion vary considerably de-
pending on the amount of burial (Lutz et al., 2021). Basin mod-
elling of the Hammerfest Basin of the Barents Sea indicates that
the Middle Triassic source rocks expelled petroleum as early as
Early Cretaceous time, with total expelled petroleum estimated
to be ~62 Gt (Rodrigues Duran et al., 2013b). Geochemical
analyses of petroleum from the Goliat field support a Triassic
source contribution to its Triassic reservoirs (Rodrigues Duran
et al., 2013a).

These findings allows to assume that also in the Polish Ba-
sin there exist some unrecognized effective source rocks. It is
impossible to distinguish a single factor that determines the lack
of discovered hydrocarbon deposits in the Mesozoic strata of
the Polish Basin. Although the amount of geochemical data is
insufficient to draw final conclusions, it seems that in the Trias-
sic strata in the deeply buried zones of the central part of the
MPT i.e., in the Kujawy, the Mogilno—.6dZ Depression and ad-
jacent areas, the processes of generating of hydrocarbons de-
veloped in the Mesozoic. In the Zechstein Main Dolomite
source rocks, hydrocarbon generation developed as (i) a sin-
gle-stage process, in which full generation of hydrocarbons oc-
curred in the Triassic; or (ii) a two-stage process, in which most
hydrocarbons were generated by the end of the Jurassic, with fi-
nal generation completed in the Late Cretaceous. In the re-
maining areas of the Polish Basin, there were not enough fa-
vourable conditions for the development of hydrocarbon gener-
ation. The main phase of hydrocarbon generation most likely
occurred in the Late Triassic to the Late Jurassic. The Creta-
ceous strata should be excluded from potential source rocks
due to insufficient thermal transformation of the organic matter.
The Kimmeridgian strata, the richest in organic matter, probably
did not enter the oil window in most parts of the Polish Basin
(Kosakowski et al., 2015; Wiectaw, 2016). The Lower-Middle
Jurassic strata, predominantly contain type Il organic matter
which is sufficiently transformed, but has a humic character -
mainly gas-forming. As a result, mainly gaseous hydrocarbons
were generated, and to a lesser extent liquid (Kosakowski et al.,
2015; Wiectaw, 2016). In the area of the Polish Basin, the de-
gree of kerogen transformation has remained unchanged since
the end of the Cretaceous. Moreover, as a result of significant
Late Cretaceous tectonic inversion, a large proportion of the hy-
drocarbons generated were probably destroyed. For further
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analysis of a possible Mesozoic petroleum system, hydrocar-
bon migration routes also need to be quantified, and it is neces-
sary to precisely define the effective source rocks that actively
generated hydrocarbons before the Late Cretaceous inversion.

CONCLUSIONS

One-dimensional thermal maturity modelling has been per-
formed assuming that heat transfer was by conduction, in
steady-state thermal conditions, and the heat came from the
basement but not from radiogenic heat sources within sedimen-
tary rocks analysed. The kinetic models of hydrocarbon genera-
tion applied (Pepper and Corvi, 1995) are among the most
widely used in basin modelling studies; other kinetic models
would give slightly different results.

The most important results of the thermal maturity model-
ling can be summarized as follows: The maximum burial depth
of Zechstein Main Dolomite and Upper Triassic strata reached
>5 km during the Late Cretaceous. The highest kerogen trans-
formation ratio occurred in zones of maximum thermal matu-
rity of the organic matter. The thermogenic generation of hy-
drocarbons from the Zechstein Main Dolomite source rocks
took place from the early Triassic throughout the Mesozoic up
to the Late Cretaceous. TR reached different values in the

range ~10 to 100%. Hydrocarbon generation followed two
stages: (i) a single-stage process, in which full generation of
hydrocarbons occurred in the Triassic; and (ii) a two-stage
process, in which most hydrocarbons were generated by the
end of the Jurassic, with generation completed in the Late
Cretaceous. The source rocks of the Upper Triassic gener-
ated hydrocarbons in the Jurassic and Cretaceous; however,
most of the transformation into hydrocarbons occurred up to
the Late Jurassic. TR in the Upper Triassic source rocks is
generally lower than in the Zechstein Main Dolomite due to
lesser burial. In the Upper Triassic source rocks, the highest
TR values (>50%) were calculated along the MPT axis, in the
area between the boreholes Pita IG 1 and Piotrkéw Trybu-
nalski 1G 1, while the most pronounced zone is in the
Krosniewice Trough (i.e., Krosniewice IG 1 to Budziszewice
IG 1 area), where TR locally reached >90%. Hydrocarbon
generation continued until the Late Cretaceous, and was com-
pleted with the tectonic inversion of the Polish Basin. Changes
in the burial depocentres in the central part of the basin were
controlled by tectonics.
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