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A generalized workflow of scientific process requires data to be obtained, reprocessed, integrated, optionally transformed,
modelled and finally interpreted in order to understand the underlying process. This procedure is affected by both objective
and subjective uncertainties. In parallel with the development of geostatistics, the role of uncertainty has been widely investi-
gated in geosciences. This has led to the introduction of new concepts, taken for example from thermodynamics, such as en-
tropy. Predicting the subsurface is an especially thankless effort, as data are driven from spatially highly limited direct
sources. The following paper provides an review of various applications of the Shannon entropy theorem in geoscience. In-
formation entropy, initially proposed by Shannon (1948) provides an objective measure of overall system uncertainty. Signifi-
cant concern has been focused on the application of Shannon entropy to provide an objective measure of joint system
uncertainty and visualization of its spatial distribution. The area of extensively drilled Eocene amber-bearing deposits lo-
cated in the Lubelskie voivodeship was selected as a case study to investigate the quality of prediction stochastic lithofacies
models. The importance of adding secondary variables to a stochastic model is also reviewed here. Adding new data and re-
running the simulation allows assessment of its impact on the predictability of a stochastic model. The most important con-
clusion from the study is that the deposition of amber-bearing lithofacies occurred mostly in the northern part of the area
investigated, as shown also by ongoing exploitation of the deposit.
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INTRODUCTION knowledge- and data-driven sources of information. The gen-
eral workflow involves (1) selection of a validation subset of

lithofacies borehole profiles, (2) deriving data-driven input pa-

One of the key objectives in geological exploration is to map
the most prospective areas. In many conceptual mineral sys-
tem models, the host rock presence is the key factor that con-
trols the spatial distribution of resources. Data collected during
ongoing exploration of amber-bearing deposits has shown that
the probability of finding amber raw material quadruples when a
specific lithofacies is drilled (Czurytowicz, 2013). The reliable
prediction of the spatial architecture of this lithofacies within the
depositional sequence investigated is therefore critical. This is-
sue has attracted attention (Deutsch, 1998; Wellmann and
Regenauer-Lieb, 2012) in seeking to establish a reliable mea-
sure of the prediction quality of discrete variable stochastic
models. Introduction of Shannon entropy as a joint measure of
overall model uncertainty allows assessment of the impact of
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rameters of spatial continuity, (3) providing knowledge-based
data by the construction of training images and 3D probability
cubes and (4) simulation of lithofacies models using various
stochastic algorithms supported by different sets of input knowl-
edge- and data-driven information, followed by (5) calculation of
Shannon entropy from derived probability models.

BACKGROUND

The term entropy originates from thermodynamics and de-
scribes the state of maximum disorder of energy and its distri-
bution in an equilibrium state. The term entropy in information
theory, defined by Shannon (1948), is designated to determine
the degree of uncertainty of the variable investigated (VWedro-
wska, 2010). Originally, the entropy theorem was developed to
separate a transmitted radio signal with certain statistical char-
acteristics from noise. As geologists, we also face similar prob-
lems in analytical work, when certain sediment successions that
are indicative of particular sedimentary environments must be
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extracted from a sometimes seemingly disordered profile. This
tool has the basic advantage of combining computational sim-
plicity with intuitiveness and efficiency of interpretation (Doktor
et al.,, 2010).

The first application of the information (Shannon) theorem
in sedimentological analyses aimed at the interpretation of
cyclicity type and an indication of the randomness of the individ-
ual lithologies analyzed by Markov chains (Schwarzacher,
1969; Krawczyk, 1979; Mastej, 2002). Then, for each lithology,
the pre- and post-depositional entropy was calculated, and so it
was possible to determine the possible asymmetry of the
lithological succession. The results were then plotted on Hattori
(1976) model nomograms to determine the possible sedimen-
tation environment. For example, a zero value of predepo-
sitional entropy for a particular lithofacies indicates directly that
a lithofacies investigated is always underlain by a another par-
ticular lithofacies. An increase in predepositional entropy im-
plies a situation where there is greater diversity of lithofacies
that may have underlain a particular lithofacies within the
sedimentological profile investigated (Krawczyk, 1980; Doktor
and Krawczyk, 2010).

A Shannon entropy-based measure was proposed by
Chiogna et al. (2012) to quantify the dilution of conservative sol-
utes either in a given volume (dilution index) or in a given water
flux. Bianchi and Pedretti (2017) introduced a new tool called an
entrogram, a logical extension of the Shannon entropy theo-
rem, to investigate fluid dynamics and solute transport in a po-
rous aquifer. The entrogram is a promising concept that can be
used to measure the overall persistency of patterns of spatial
association in a distributed field. This proposed measure allows
robust comparisons between different spatial structures
(Bianchi and Pedretti, 2017).

Another application of Shannon entropy is to illustrate the
uncertainty of structural interpretation, by stochastic perturba-
tion of stratigraphic boundaries and structural discontinuities
(Caers, 2011). It has been shown that an information theorem
provides not only a quantitative insight into the overall uncer-
tainty space of a structural and stratigraphic interpretation, but
also provides information about the internal connection of the
interpretive model with the input data (VWellmann and Regena-
uer-Lieb, 2012). The possibilities of using entropy go beyond
the visualization of uncertainty. For example, by interpreting
structural features on a seismic image in the so-called “optimi-
zation loop”, it is possible to evaluate the contribution of an ad-
ditional interpretation portion to the total entropy of the system
analyzed. It is then necessary to calculate the differential en-
tropy for the structural-stratigraphic models (Wellmann and
Regenauer-Lieb, 2012). Under such conditions, Shannon en-
tropy can be seen as an alternative, objective measure to de-
scribe the space of interpretation uncertainty that can be used
in parallel with interpretation restoration tools.

Shannon entropy provides an objective measure that also al-
lows visualization of the spatial distribution of uncertainty associ-
ated with the stochastic model of any discrete-type variable. The
main advantage of information entropy is the possibility of visual-
izing the spatial variability of uncertainty of all lithofacies simulta-
neously, by communicating their probability distribution.

This publication addresses the application of the Shannon
entropy theorem to assess the uncertainty of stochastic litho-
facies models constructed by variogram-based and training im-
age-based algorithms. This issue was raised first by Deutsch
(1998), in the context of comparing different cross-validation
methods and their application to specific simulation algorithms
of a discrete variable.

THEORETICAL BASICS

The variable that was used for the comparative analysis of
different realizations of the lithofacies model was the total en-
tropy of information H [1], which describes the lack of knowl-
edge in relation to the total space of the depositional system un-
der study (Shannon, 1948; Deutsch, 1998; Wellmann and
Regenauer-Lieb, 2012). It takes the following mathematical
form:

H=-Y"p, log(p,) [1]

where: py is the probability of the kth elementary event (k =1, ..., K)

The studies conducted so far has shown that it is possible to
determine whether the introduction of new (a posteriori) infor-
mation or a change in the hypothesis describing lithofacies rela-
tions affects the optimization of the model (Deutsch, 1998;
Wellmann and Regenauer-Lieb, 2012). As in thermodynamics,
adding energy into the system increases its entropy, so the set-
ting of an additional portion of information to the stochastic
model developed that incorrectly describe the nature of the spa-
tial organization of lithofacies determines similar behaviour of
Shannon entropy (Wedrowska, 2010). The concept of entropy
was developed on the assumption that knowing the probability
of each letter of the alphabet appearing in the words we speak,
it is possible to define a measure describing the missing infor-
mation in order to recreate the full text of an incomplete or en-
crypted message. At the same time, this information should not
be linked with the meaning of the message. Thus, information
entropy is a measure of missing information required for a com-
prehensive description of the system or process under study.
For a depositional system consisting of two lithofacies, the
value of entropy approaches the value of 0 when the probability
of one of them to occur approaches 100%. In the case where at
the unsampled location of the stochastic model there is an
equal probability of each lithofacies, then the entropy is maxi-
mum and reaches the value 1 (Fig. 1).
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Fig. 1. Shannon entropy for a 1 bit system (two possible
outcomes) as a function of the probability of the first
outcome (following Wellman and Regenauer-Lieb, 2012)
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The parameter Cy describing the “closeness” to the true fa-
cies should be interpreted as the average value (E) of the
probability of facies k at location u,, in the validation subset of
the profile investigated, which has not been used for the simu-
lation stage [2]. Its value should be 1 when we have a com-
plete set of data to develop a reliable lithofacies model. If the
variable takes a value <1/lithofacies number (as in the case of
the Gorka Lubartowska deposit — 0.33), it should be assumed
that the reliability of the lithofacies model obtained is minimal
and comparable to the completely random model (Deutsch,
1998).

Ce= E[p(ug; k) Itrue=k], k=1, ..., K [2]

However, in order to compare the results of the validation
analysis, the “closeness” in relation to global lithofacies propor-
tions (px) was introduced.

e =% Pe k-1 K (3]
Py

Thus, the measure of the quality of the model is a variable
which, in terms of probability, describes the closeness to reality
(Deutsch, 1998).

CASE STUDY AREA

The subject of the analysis is the Upper Eocene Siemien
Formation of the “Gorka Lubartowska” (Fig. 2) amber deposit
(Strzelczyk and Danielewicz, 1990). Deposition of these Up-
per Eocene strata was related to the transition from transgres-
sion, which determined the maximum extent of the Late
Eocene sea, to marine regression that initially took place un-
der conditions of enhanced sediment supply (Czurytowicz et
al., 2014). The “Gorka Lubartowska” deposit is located within
the prospective amber area of the northern Lublin region (Fig.
2A, B). In this area, in the Middle and Late Eocene, on the
southern shore of the epicontinental sea, favourable palaeo-
geographic and hydrodynamic conditions prevailed along the
shoreline to form significant amber resources (Kramarska and
Kasinski, 2008). The Upper Eocene Siemien Formation de-
posits were initially deposited within the prodelta zone, then
with falling sea level, deposition changed to reflect pro-
gradation of submarine distributary channels (Table 1). The
thickness of this Upper Eocene formation is 7 m on average.
The top of the deposit is at a depth of 10 to 24.5 m, and its
base at 13.4 to 29.2 m. In total, 158 boreholes were drilled,
with a total length of 4.093.1 m and 150 x 200 m borehole
spacing (Fig. 2C).

RESEARCH METHODOLOGY

The uncertainty analysis procedure was performed by
separating the borehole database into test and validation sub-
sets (including boreholes 79, 87, 104, 109, 112, 142, 144A,
166A and 169; location: see Fig. 2C). The analysis was con-
ducted on multiple equiprobable realizations of lithofacies ar-
chitecture (Table 1) generated with the use of stochastic simu-

lation algorithms based on variograms, i.e. Sequential Indica-
tor Simulation — SIS and Truncated Gaussian Simulation —
TGS (Deutsch and Journel, 1992; Deutsch, 2002; Kelkar and
Perez, 2002; Liu et al., 2005; Armstrong et al., 2011). The Mul-
tiple Point Statistics (MPS) algorithm based on reference im-
ages was also used in the comparative analysis (Caers and
Zhang, 2002; Strebelle, 2002; Harding et al., 2004; Hu and
Chugundova, 2008; Boucher, 2011). Probability models and
the final most frequent occurring lithofacies model were com-
puted from 500 realizations (Fig. 3). The simulation algorithms
of discrete variables were applied to choose the most reliable
workflow of lithofacies reconstruction, that stays in accordance
with fundamental laws of deposition processes. SIS honours
basic parameters describing the spatial structure of each indi-
vidual lithofacies, as inferred from semivariogram analysis.
However, this method does not respect the ordering of
lithofacies resulting from the nature of the deposition. TGS is
rather used for simulation of ordered sequences. The simula-
tion algorithm itself truncates single gaussian random field into
domains, that are determined by lithofacies rules. The Multi-
Point Statistics algorithm is a reflection of the intuitive actions
of a sedimentologist aimed at lithological correlation. In both
cases, the key to inferring the occurrence of a lithofacies at an
unsampled location is the spatial relationship of corresponding
lithofacies occurring in an analogous geometrical position as
in the reference image representing an analogous depo-
sitional sequence.

To guarantee comparability of results, the same seed num-
ber was used during the simulation. This ensures that the order
in which cells of the stratigraphic model are visited is constant.
This is important from the point of view of the comparability of
building local probability distributions at the stage of the simula-
tion process. Additionally, different chronostratigraphic patterns
(Mallet, 2002, 2004) within the stratigraphic model were intro-
duced (Fig. 4). The incorporation of sedimentological interpre-
tations into the stochastic model of depositional architecture
took place using 3D probability cubes (Gotway and Young,
2002; Strebelle et al., 2006; Levy et al., 2008a, b; Labourdette
et al., 2008). These are computed by integrating the lithofacies
depocentre map and vertical proportion curves (Volpi et al.,
1997; Ravenne, 2002; Ravenne et al., 2002; Falivene et al.,
2006; Purkis et al., 2012; Yarus et al., 2012) using probability
aggregation methods (Journel, 2002; Hong et al., 2007; Caers,
2011; Allard et al., 2011; Comunian et al., 2012). Construction
of lithofacies depocentre maps was supported by the matrix of
vertical proportion curves that reveal the non-stationary nature
of lithofacies occurrence and help to delineate thick zones of
lithofacies ST (Fig. 5).

Calibration of various data sources into the joint combined
conditional probability P(A/B1B;) requires good quality data
that cover the study area. In this study, partial conditional
probabilities are calculated using borehole data in the form of
a vertical proportion curve (B;) and lithofacies depocentre
maps (B) translated to probability space by simple normaliza-
tion. Both types of data serve as a source of information on the
non-stationarity of lithofacies occurrence. Combination of
these two data sources is completed using the Tau model
which takes into account data redundancy (Fig. 6). This
means that the influence of a secondary variable (B, or B) on
the state investigated (A) depends on how much is “coinci-
dence” between a priori and a posteriori knowledge. Data re-
dundancy measures the “information overlap” between the
sources of information used to predict a state (A). This ap-
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A — map of tectonic units on the sub-Cenozoic surface; B — map of physico-geographical mesoregions;
C — map of the area of the “Goérka Lubartowska” amber deposit
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Table 1

Lithofacies distinguished in the Eocene sequence of the “Goérka Lubartowska” amber deposit with their brief
description and interpretation

Lithofacies Description Sedimentary environment
FD silt and silty sand with minor amber occurrence delta plain deposits
silty to fine glauconite sand with significant amount of amber grains distributary channel deposits
FSm sandy silt and silt with significant content of glauconite and amber grains prodelta deposits
0.6 - -
Lithofacies 2 variograms
Descriptive statistics @
_'é 0.4 ‘
Defininig local and S Vertical proportion VAN !
global trends 2oal curve 7
Variograph 1 /
graphy 0 |_| : . 3 vy £ st B sane B grave 0% P pl 5

Integration of borehole
data with

Calculation of
secondary variables

vertical proportion integration into joint

Application of various

U diagram conditional
probability N probability model
aggregation metods = training images
: A
3D probability cubes
- I 3D probability cubes
Simulation of training images variograms
lithofacies models with *
various combinations / \ {
of secondary variables

as an input and
variogram based and
training image based
stochastic simulation
algorithms

Lithofacies model

Uncertainy analysis

Sequential Gaussian Simulation

Multiple-Point Statistics

Truncated Gaussian Simulation . .
calculation of facies

I probabilities
e Xm
e o ——————

< -,
=2 P il
Ai"' Shannon entropy

Fig. 3. Methodology of uncertainty analysis in order to calculate Shannon entropy

The workflow shown includes: variogram analysis, construction of secondary variables such as 3D probability cubes,
and training images
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proach assumes that the relative contribution of source B to
predict state A is the same regardless of the fact that you have
other source of information B (Caers, 2011). Computed 3D
probability cubes are the representation of probability of each
lithofacies to occur in each cell of the stratigraphic model,
based on the delineation of depositional zones and depo-
sitional trends within the sequence investigated.

_1-P(AIB) , _1-P(AIB,) . _1-P(A) [4]
" PAIB) " P(AIB,) = P(A)
P(AIBB,)=—2 5]
a+bb,

where: by quantifies how much is not known about state A knowing
the information B+, b, quantifies how much is not known about state
A knowing the information B, and a quantifies how much is not
known about state A before any data is available (Caers, 2011).

The computation of the probability of occurrence of each
lithofacies in the location where it has been empirically deter-
mined, e.g. on the basis of the borehole core description, can

lowstand systems tract, MFS — maximum flooding surface, NR — normal regression,
regressive systems tract, SU — subaerial unconformity, ST — transgressive systems tract

be carried out by adopting two strategies for the separation of
the validation subset:
— by removal of the entire lithofacies profile from the borehole,
— by removal of selected or random intervals of the lithofacies
profile from the borehole.

The first method was used in this study, as it allows the as-
sessment of the impact of additional variables introducing geo-
logical concepts (e.g., 3D probability cubes) to the stochastic
model to a much better extent, at the cost of generally underes-
timated results of the uncertainty analysis (Deutsch, 1998).

In the final stage of the analysis, the results of Shannon en-
tropy and “closeness” to true lithofacies for selected variants of
the lithofacies model were compared in a scatter plot (Fig. 7).
This diagram was used to compare the scenarios provided and
select a lithofacies model characterized by the value of entropy
closest to zero and close to one for the measure of “closeness”
to true lithofacies.

The basic premise for the selection of a stochastic model re-
taining the expected vertical ordering of lithofacies was quanti-
tative, i.e. Shannon entropy and “closeness” to the true
lithofacies (Deutsch, 1998). These studies constituted the last
stage of reconstruction of the lithofacies architecture of the Up-
per Eocene deposits. The inputs for calculating the parameters
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of the average entropy (H), and “closeness” standardized by
the global proportions tested lithofacies (were probability values
of lithofacies computed within validation subsets of borehole
profiles. These were calculated with various configurations of
borehole data and secondary variables. A particular advantage
of the application of the theory of entropy was its ability to visu-
alize total model uncertainty simultaneously for all lithofacies of
the deposit (Fig. 8).

RESULTS

Analysis of the spatial organization of lithofacies of am-
ber-bearing deposits near Gérka Lubartowska show that the
probability models obtained solely on the basis of borehole data
and variograms fitted to lithofacies profiles are characterized
generally by higher entropy compared to those which were up-
dated with secondary probability models i.e. 3D probability
cubes (Fig. 3).

Each point within Figure 7 corresponds to a single simula-
tion procedure of 500 realizations of a lithofacies stochastic
model. Each procedure uses as input different concepts de-
scribing the spatial organization of lithofacies implemented

through various types of secondary data, such as 3D probabil-
ity cubes, variograms, training images, facies depocentre
maps and vertical proportion curves. The entropy distribution
of stochastic models computed using SIS shows that the pres-
ence of zones of equal probability is limited to a maximum of
two lithofacies. In turn, lithofacies models based on the TGS
algorithm show a significant increase in entropy greater than
1, which is also reflected in geologically unrealistic models
(Fig. 7). At the same time, for each of the methods (SIS, TGS
and MPS), a clear reduction in entropy is observed as second-
ary variables are added, successively as vertical proportion
curves and 3D probability cubes (Fig. 7). The most promising
results in cross-validation analysis are obtained when using
3D probability cubes as secondary data obtained by the ag-
gregation of conditional probabilities of a vertical proportion
curve P (A/By) and depocentre maps P (A/B;) using a Tau
model (Caers , 2011; Allard et al., 2012).

The comparative studies performed with the assumption of
two chronostratigraphic reference patterns (Fig. 4) showed
much better-fitting results for the models computed using
onlap layering (Fig. 4B). The validation analysis performed il-
lustrates the contribution of the sedimentological concepts of
the non-stationary nature of spatial organization of lithofacies
towards the understanding of the depositional environment of
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Fig. 7. Scatter plot of Shannon entropy versus “closeness” to true lithofacies derived from a validation subset
of lithofacies borehole profiles

these Upper Eocene deposits. Nevertheless, when choosing
the most optimal set of input parameters, such as variograms,
vertical proportion curves and 3D probability cubes, it was not
only the realizations meeting the criteria of minimum entropy
and “closeness” to true lithofacies equal to one that were
taken (Fig. 7). Another crucial criterion that had to be met was
the vertical lithofacies ordering inferred from Markov chain
analysis (Table 2). Among all the simulation methods used,
these criteria were not met by the realizations computed using
the algorithm of SIS. The analysis also showed that the real-
izations based on theoretical models of variograms fitted only
to borehole profiles have a higher entropy compared to the re-
alizations, which were based on the variograms built on the
basis of the reference image used in the Multiple-Point Simu-
lation (Figs. 5 and 6). In this case, the key role was the rela-
tively high nugget effect compared to total variance. Its pres-
ence resulted from the short-range spatial variation of litho-
facies architecture that was not able to be inferred from explo-
ration drilling borehole spacing (Olea, 1995; Namystowska-
Wilczynska, 2006). This effect is magnified when using the
TGS algorithm, which is based on a single 3D variogram of
normalized data.

Fitted theoretical models of variograms in the vertical and
horizontal directions were complex and contained two compo-

nents — spherical and nugget (sensu Stach, 2009). The share of
the nugget effect, reaching 45% of the total normalized semi-
variance, is much higher than in the case of the indicator
variograms of individual lithofacies (Tables 3 and 4), used dur-
ing the sequential indicator simulation. This is the result of the
completely different spatial structure and geometry of the bod-
ies that build lithofacies of this Upper Eocene sequence. This
effect is also enhanced by post-depositional Neogene and Qua-
ternary erosion, which probably contributed to the blurring of the
main directions of their continuity. Modelling the spatial struc-
ture of lithofacies simultaneously using only a single and linear
combination of acceptable mathematical functions makes it im-
possible to take into account the individual features of the struc-
ture of variability of lithofacies resulting from specific hydrody-
namic conditions during their deposition (Gringarten and
Deutsch, 2001).

These considerations concerning the impact of the nugget
effect of indicator and normalized semivariograms on the simu-
lation process (Tables 3 and 4) also affect the results of Shan-
non entropy. The “granularity” visible in the realizations is the
result of the lack of reproduction of the same lithofacies in
nearby cells and in individual stochastic realizations, making
them unique and independent (Fig. 7). Consequently, the high
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Table 2

Results of Markov chain analysis

A — transition count matrix

23 - 6 29
10 50 - 60
33 55 6 -

B — transition probability matrix

0.79 - 0.21
0.16 0.83 -

C - significant facies transitions matrix

Regular facies transitions in percentage scale at degree of freedom oo = 0.5
are shown in bold (Stanova et al., 2009)

Table 3

Semivariogram parameters of fitted indicator variogram models constructed
with the assumption of an onlap chronostratigraphic framework

Partial sill Structure Maximum horizontal | Minimum range Vertical
variance (C”) type range (@max)/azimuth (@min) range (aver)
0.005 nugget (Co) - - -
0.045 spherical 384/90 300 8.71
0.025 spherical 2860/90 2444 7.7
0.023 spherical 4000/90 4000 oc
0.01 nugget (Co) - - -
0.23 spherical 622/60 395 6.7
0.23 spherical 652/45 400 7.2
Table 4

Semivariogram parameters of fitted variogram models constructed with the assumption
of a baselap chronostratigraphic framework

Partial sill Structure Maximum horizontal | Minimum range Vertical
variance (C”) type range (amax)/azimuth (amin) range (avert)
0.033 spherical 555/90 384 13.8
0.002 Gaussian 1350/90 900 oc
0.226 spherical 622/60 458 11.7
0.226 spherical 660/45 456 16.25
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Fig. 8. Cross-section showing coincidence of occurrence of maximal Shannon entropy values with zones
of lithofacies overlap and thin intercalations; most of the lithofacies geometry is characterized
by a Shannon entropy close to 0

entropy values obtained indicate an almost equal probability of
the occurrence of each lithofacies.

At the final stage of the of the uncertainty analysis of the
lithofacies model, a reconstruction was selected that met both
parametric (i.e. a mean Shannon entropy close to 0 and “close-
ness” to true lithofacies approaching to 1) and geological crite-
ria (i.e. a vertical ordering of lithofacies consistent with the re-
sults of the Markov chain analysis — Table 2). From among mul-
tiple modelling scenarios (Fig. 7), a stratigraphic model com-
puted with onlap layering was selected using the Multiple Point
Statistics algorithm (Strebelle, 2002; Strebelle et al., 2006;
Strebelle and Levy, 2008) based on the reference image (Fig.
6) and 3D probability cube (aggregated with Tau model) (Fig.
5). The spatial distribution of Shannon entropy indicates that
the presence of areas with increased entropy coincides almost
exclusively with zones of interfingering lithofacies (Fig. 8). It is
therefore assumed that addition of additional auxiliary vari-
ables, in the form of 3D probability cubes, which incorporate the
highest order of information on the spatial non-stationarity of
lithofacies, significantly reduces the overall uncertainty of the
reconstruction of depositional system architecture.

Comparing simulation algorithms based solely on vario-
grams, it can be seen that the models developed using the

Truncated Gaussian Simulation algorithm, regardless of the
auxiliary data as an input, show a relatively higher total Shan-
non entropy (Fig. 9).
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Fig. 9. Scatter plot of Shannon entropy versus
“closeness” to true lithofacies for variogram-based
stochastic simulation algorithms of discrete variables
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CONCLUSIONS

Integration of auxiliary data into a joint conditional probabil-
ity model, describing the conceptual deposition architecture
with the Tau model, gives the best results. The advantage of
this model is the ability to take into account the contribution of
the auxiliary variable information to the understanding of the
state investigated. This feature is known in the literature as re-
dundancy (Caers, 2011). This method gives much better re-
sults than the classic additive methods, which largely approach
the aggregate averaged value of conditional probability and
lose an important attribute which stands as the basis of
Bayesian inference.

The Shannon entropy theorem has found to be a useful
measure, both global and local, describing the amount of infor-
mation needed to exhaustively describe the system investi-
gated. The goal of the minimum entropy state can be achieved
by application of iteration in a simulation procedure and linking
sets of auxiliary variables introducing conceptually developed
probability models or reference images. Consequently, this ap-
proach can contribute to the reduction of investment risk as-
sessment at the stage of planning exploration fieldwork
(Wellman and Regenauer-Lieb, 2012). Adding the conceptual

ideas of lithofacies relations using 3D probability cubes signifi-
cantly improved the results of the analysis of Shannon entropy
which indicates the relatively greatest uncertainty only for the
zone of direct lithofacies contacts and thin intercalations. Appli-
cation of a looping procedure in simulation runs showed that
consecutive probability models computed from multiple realiza-
tions are characterized by reduced Shannon entropy.

The comparison of many discrete variable simulation meth-
ods, effective in the reconstruction of specific depositional sys-
tems with different inputs of secondary data, allowed for the ver-
ification of hypotheses describing the spatial organization of
lithofacies, and to some extent for the description of the depo-
sitional processes of amber accumulations. The amount of in-
formation contained in the source data depends on many fac-
tors, i.e. spatial configuration, measurement error, nature of the
process analysed, measurement methodology and the scale of
the area covered by the analysis. The influence of these ele-
ments can be quantitatively evaluated by Shannon entropy.
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