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In order to provide a better characterization of the origin and volume of thermogenic gas generation, hydrous pyrolysis (HP)
experiments were performed on coals and carbonaceous shales of the Upper Silesian and Lublin Coal Basins at 330 and
360°C for 72 h. The maturity range of coals and shales used for HP varies from 0.57 to 0.92% R,. The maturity increase
caused by HP at 330 and 360°C ranges from 1.32 to 1.39% and from 1.71 to 1.83%, respectively. The §'°C of CH,, C;Hs,
CsHg and n-C4H4o in gases versus their reciprocal C-number have a concave relationship, and therefore do not follow a linear
trend. The §°H of CH,4, CoHg and CsHg in gases versus their reciprocal H-number show both linear and convex-concave rela-
tionships. The growth of CO, yields during HP was higher for shales than for coals. H,S yields from shales are higher than
from coals, which can be associated with the catalytic and adsorbed influence of the shale matrix. H, was also generated in
considerable quantities from water and organic matter in the coals, and in larger amounts from the shales. N, yields grow
with an increase in R, after 360°C HP and are more enriched in the "°N isotope than after 330°C.
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INTRODUCTION

In Poland, major resources of bituminous (hard) coals oc-
curring in the Serpukhovian (Mississippian) and Pennsylvanian
strata of the Upper Silesian Coal Basin (USCB) and Lublin Coal
Basin (LCB; Fig. 1) belong to the Euro-American coal province.
Methane is the dominant gas within bituminous coal seams in
the USCB and LCB (Kotarba, 2001).

Previous studies of molecular and stable carbon and hydro-
gen isotope compositions of coalbed gases accumulated in the
USCB and LCB (Kotarba, 1990a, 2001; Kotarba and Pluta,
2009; Kotarba et al., 2019a) revealed that in addition to
thermogenic methane and carbon dioxide, and smaller quanti-
ties of higher gaseous hydrocarbons, microbial methane and
carbon dioxide are also present; these gases also occur in the
abandoned Lower Silesian Coal Basin (LSCB; Kotarba, 1988,
1990b, c; Kotarba and Rice, 2001; Sechman et al., 2013). At
times great quantities of endogenic carbon dioxide migrated
from mantle and/or magmatic bodies in lithosphere through
deep-seated faults, to accumulate within the Carboniferous
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coal-bearing strata of the LSCB (Kotarba, 1990c; Kotarba and
Rice, 2001). However, because of difficult and complicated
geological, gaseous and hydrogeological conditions, all mines
in the LSCB have been closed in years 1991-2001 (Sechman
et al., 2013, 2017). The thermogenic gases were generated
from coal seams and dispersed organic matter in shale
(claystone and mudstone) successions during the coalification,
a process completed at the end of the Variscan orogeny
(around the Pennsylvanian/Permian boundary; Kotarba, 2001;
Kotarba and Pluta, 2009). In the USCB, secondary microbial
methane and insignificant amounts of carbon dioxide were gen-
erated within the Pennsylvanian coal-bearing strata as a result
of infiltration of meteoric waters together with methanogenic
bacteria and nutrients in the Paleogene and Early Miocene
(Kotarba and Pluta, 2009). The balance of methane generation
and accumulation has been evaluated by Kotarba et al. (19953,
b) and Kowalski et al. (1995).

The first qualitative and quantitative evaluation models of
thermogenic gases generated during coalification based on the
balance of changes in elemental composition and organic mat-
ter mass were published by Karweil (1966, 1969), Juntgen and
Karweil (1966), Jintgen and Klein (1975), Kotarba (1988),
Kowalski et al. (1995). However, this method is affected by con-
siderable error due to the unreliability of determining mass
losses during coalification (Jintgen and Karweil, 1966;
Kotarba, 1988). Laboratory techniques of hydrous pyrolysis
(HP) and anhydrous pyrolysis have been effectively used for
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simulating coal maturation (e.g., Geissler and Belau, 1971;
Higgs, 1986; Lu and Kaplan, 1990; Landais, 1991; Teerman
and Hwang, 1991; Hill et al., 1994; Qin et al., 1994; Andresen et
al., 1994, 1995; Behar et al., 1997; Kotarba and Lewan, 2004;
Shuai et al., 2013; Lewan and Kotarba, 2014; Gao et al., 2020).

HP has been used for simulating natural thermal maturation
of organic matter and its transformation to crude oil and natural
gas (e.g., Lewan, 1985, 1993, 1997, 2002). This method best
simulates natural petroleum formation because liquid water ex-
isting in the subsurface is an important source of hydrogen and
a facilitator of oil expulsion (Lewan, 1997). Although HP of
humic coals has been shown to generate less thermogenic gas
than other, anhydrous pyrolysis method, the quantities of gas
generated remain excessive as compared to gas accumula-
tions in the Polish coal basins (Kotarba and Lewan, 2004;
Lewan and Kotarba, 2014). Lewan and Kotarba (2014) have
conducted HP on a global set of coals representing ranks from
lignite through to bituminous coal, meta-anthracite and graphite
to determine changes in their potential for gas generation and
the rank limit to primary gas generation.

This paper describes the simulation, generation and evalu-
ation of the yields of hydrocarbon (CH4, C,He, CsHs, i-C4H1o,
n-C4Hyo, i-CsH12, n-CsH1q2, CsH14, C7H4 and unsaturated hydro-
carbons) and non-hydrocarbon (CO,, Ny, H, and H,S) compo-
nents of thermogenic gases expelled from coals and carbona-
ceous shales by HP experiments at 330 and 360°C for 72 hours
corresponding to two steps of coalification, of 1.3-1.4% and
1.7-1.8% on the vitrinite reflectance scale, respectively. More-
over, based on the results of the HP yields, the molecular com-
position and stable carbon [5*C(CHs), §'>C(C,Hg), 5"°C(C3Hs),
87°C(i-Cathro), - 8"°C(n-Cathro), 8'°C(i-CsHr2), 8"°C(n-CsHr2),
6130(0022], hydrogen [§?H(CH.), §°H(C;Hs), 52H(C3Hs)] and ni-
trogen [5'°N(N,)] isotope analyses of the expelled HP gases,
and the genetic relations of hydrocarbons, carbon dioxide, mo-
lecular nitrogen and hydrogen sulphide are explained. Interpre-
tation of the results of the HP experiments and analyses was
made in relation to the genetic type of source organic matter
(Rock-Eval data, and elemental composition and atomic H/S,
O/C, N/C and S,¢/C ratios) and maturity rank (Rock-Eval Tppay,
R,, VM®' H/C,,). The results of previously published HP experi-
ments at 360°C for 72 hours and geochemical studies of coals
(Kotarba et al., 2002; Kotarba and Clayton, 2003; Kotarba and
Lewan, 2004; Lewan and Kotarba, 2014) from the USCB and
LCB and other basins are also used for genetic interpretation.

GEOLOGICAL SETTING

UPPER SILESIAN COAL BASIN

The USCB, one of the major coal basins in the world,
formed as a foredeep of the Moravo-Silesian fold belt. It is a
deep molasse basin of polygenetic origin: the lower part of the
Upper Mississippian (Serpukhovian) coal-bearing lithostrati-
graphic succession reflects a paralic depositional system, while
the Pennsylvanian coal-bearing lithostratigraphic succession
(Bashkirian and Moscovian) is of continental origin (Fig. 2). The
Upper Silesian Variscan orogen formed in several phases. Up-
lift and compression producing the main fold structures, such as
the Jejkowice, Chwatowice and Main troughs (Fig. 1), took
place during the Asturian and Leonian orogenic phases in
end-Pennsylvanian and early Permian times (Kotas, 1982,
1994; Kotas et al., 1983; Kotas and Porzycki, 1984; Buta and
Kotas, 1994; Buta and Zaba, 2005; Jureczka et al., 2005;
Kedzior et al., 2007; Narkiewicz, 2007; Cmiel, 2012 and refer-
ences therein). After the Variscan uplift, the Serpukhovian and

Pennsylvanian coal-bearing strata were exposed across most
of the basin, and subjected to erosion and denudation. The
strongest tectonic involvement has been observed among Car-
boniferous coal-bearing strata in the western part of the USCB,
where folds and thrusts of the Moravian-Silesian belt formed.
The eastern limit of these structures is determined by the
Orlova—Boguszowice Overthrust in the USCB area (Fig. 1).
Pennsylvanian strata in the N and NE parts of the USCB also
underwent intense fold and block tectonic deformation. The ori-
gin of these structures, generally referred to as the Main Saddle
(Kotas, 1982), may be associated with strike-slip stresses, an
intense expression of which is observed in the nearby
Krakéw-Lubliniec Fault Zone dating to the Pennsylva-
nian/Permian boundary (Zaba, 1999). The central, eastern and
western parts of the USCB are characterized by horizontal de-
position of Carboniferous strata and fault tectonics that relate to
processes in the Precambrian basement of Brunovistulicum
(Kotas, 1982; Buta and Zaba, 2005). Structures generated in
these parts of the USCB are referred to as the Main Trough
(Kotas, 1982). In the southern part of the USCB (Fig. 1), the
autochthonous Miocene (Karpatian—Badenian) marine,
clayey-sandstone strata of the western part of the Carpathian
Foredeep were deposited and overlie the Carboniferous
coal-bearing strata (Peryt et al., 2005). The eroded top of the
Carboniferous strata includes occasional depressions, as well
as gorges and canyons >1100 m deep. At the end of the Mio-
cene, the Outer Carpathian nappes thrusted over the
autochthonous strata of the Carpathian Foredeep from the
south (Oszczypko et al., 2006). During the Alpine movements,
the Upper Silesian Variscan orogen behaved like a consoli-
dated basement for the Alpides.

LUBLIN COAL BASIN

The LCB is an epi-platform, molasse basin, developed as a
pericratonic depression in the transitional zone of two great
geological units (i.e., the pre-Vendian Platform and Central Eu-
ropean Paleozoic Platform) from the Upper Visean to the
Moscovian (Kotas and Porzycki, 1984; Porzycki and
Zdanowski, 1995a, b; Tomaszczyk and Jarosinski, 2017;
Krzywiec et al., 2017; Kufrasa et al., 2019). lts Mississippian
and Pennsylvanian coal-bearing lithostratigraphic succession
is of polygenetic origin: the lower part (Upper Visean and
Serpukhovian) is marine-paralic, the middle part (Bashkirian) is
paralic, and the upper part (Moscovian) is continental
(limnic-fluvial) (e.g., Porzycki, 1988a, b; Porzycki and
Zdanowski, 1995a; Waksmundzka, 1998, 2010, 2013;
Zdanowski, 1999, 2007; Narkiewicz, 2007, 2020; Kozlowska
and Waksmundzka, 2020). The total thickness of these
lithostratigraphic units changes from tens of metres in the NE to
over 2000 m in the SW. Coal seams <0.5 m in thickness occur
in the Mississippian (Visean and Serpukhovian) strata, associ-
ated with palaeosols and overlain by limestone beds, forming
good correlation horizons. Between the Mississippian and
Pennsylvanian a stratigraphic gap is documented. Pennsylva-
nian coal seams of economic thicknesses (>0.6 m) occur in the
Lower Bashkirian and Lower Moscovian strata. Lower
Bashkirian coals are exploited in the Volynian-Lviv Coal Basin
in Ukraine, and Lower Moscovian coals in the LW “Bogdanka”
coal mine in the central part of the LCB. After the Variscan uplift
the Mississippian and Pennsylvanian coal-bearing formations
were also exposed and subjected to erosion and denudation.
The overburden above Carboniferous strata in the LCB is
formed by the Permian (20—-70 m) and Triassic (20—60 m) only
in tukéw area, Jurassic (0 to >300 m), Cretaceous
(300—1000 m), Tertiary (several metres) strata and Quaternary
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Fig. 2. Section through Mississippian and Pennsylvanian coal-bearing strata and
location of coal seams in which the coals and shales analysed were collected above
and below these coal seams in the study area of the Upper Silesian Coal Basin

(<100 m) sediments. Overburden thickness varies from ~350 m
at the Polish-Ukrainian border to >1200 m west of Lublin
(Zdanowski, 1999).

The coalification and gas generation processes both in the
LCB and USCB were completed at the end of the Variscan
orogeny and were not subsequently rejuvenated.

MATERIALS

Serpukhovian, Bashkirian and Moscovian 29 channel coal
samples (c), and 57 block carbonaceous shale samples, the
shales being collected above (st) and below (sb) coal seams in
mine workings, were collected from six methane mines

(“Brzeszcze”, “Jastrzebie”, “Marcel”, “Pnidwek”, “Silesia” and
“Zofibwka”) in the USCB and one (LW “Bogdanka” mine in the
LCB (Appendix 1* and Fig. 1). The locations of all current and
previously studied samples from the USCB and LCB are shown
in Figure 1.

After Rock-Eval Il pyrolysis and vitrinite reflectance (R,)
studies (Appendix 2), we selected and prepared 6 coal samples
(five from the USCB and one from the LCB) and 6 carbona-
ceous shale samples (five from the USCB and one from the
LCB) for hydrous pyrolysis experiments and pyrolysis com-
pleted using Rock-Eval 6 apparatus: Br-20c, Br-20st, Br-23c,
Br-23sb, MI-21c, MI-21sb, Si-22c, Si-22st, Si-23c, Si-23st,
Bo-20c and Bo-20sb (Appendix 3).

* Supplementary data associated with this article can be found, in the online version, at doi: 10.7306/gq.1594
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EXPERIMENTAL AND ANALYTICAL METHODS

EXPERIMENTAL HYDROUS PYROLYSIS APPROACH

HP experiments are conducted in Hastelloy C-276 1-litre re-
actors (Parr Instrument Co.). Rock samples placed in reactors
are heated isothermally in electric heaters at 330 +0.5°C and
360 £0.4°C for 72.08 £0.04 hours in the presence of liquid wa-
ter. The water-to-rock proportion is based on calculations using
steam tables and measured bulk rock densities to ensure that
the rock samples remain in contact with liquid water throughout
the experiments (Lewan, 1993). The bituminous coals and car-
bonaceous shales were crushed to gravel size (0.5-2.0 cm)
with no prior extraction or drying before experiments. In each
experiment, 300 g of crushed bituminous coal or 500 g of shale
were loaded into the reactor. The reactor was closed and evac-
uated for several minutes before 350 g (for coals) or 380 g (for
shales) of distilled water was injected into the reactor. Detailed
descriptions of experimental procedure are published by Lewan
(1985, 1993, 1997), Kotarba and Lewan (2004) and Lewan and
Kotarba (2014).

ANALYTICAL APPROACH

The 86 original coal and carbonaceous shale samples were
homogenized and pulverized to <0.2 mm. A preliminary as-
sessment of geochemical parameters, indices and hydrocar-
bon potential of rock samples was determined by Delsi
Rock-Eval Il (R-E Il) and Vinci Technologies Rock-Eval 6
(R-E 6) with Bulk rock method — Basic cycle pyrolysis appara-
tuses. Details of the analysis are given by Espitalié et al. (1985)
and Zielinska et al. (2020).

Proximate analyses of volatile matter content (VMdaf) for
dry-and-ash-free (daf) basis as well as moisture and ash con-
tents in coals were conducted according to the procedures rec-
ommended by International Standards (ISO, 2010a, b, c).

Kerogen for stable carbon isotope analysis was obtained by
treating solvent-extracted coals with boiling 10% hydrochloric
acid for 30 minutes to remove carbonate minerals. Bitumen was
extracted from pulverized aliquots of each sample in a Soxhlet
apparatus with chloroform for 24 hours. Copper foil was placed
in the boiling flask to remove elemental sulphur extracted from
the samples. The resulting solution was filtered and the bitumen
concentrated by evaporation.

Petrological analysis was carried out on polished rock sam-
ples under oil immersion using a Carl Zeiss Axio Imager A1m
microscope equipped with a 50X oil immersion lens, integrated
with a J&M GmbH MSP 200 photometer for reflectance mea-
surements. Vitrinite reflectance (R,, %) was determined by
counting from 105 to 150 points per coal sample, and from 40 to
103 points per carbonaceous shale sample. The measure-
ments of random R, were run in accordance with the American
Society for Testing and Materials guidelines (ASTM, 2005,
2011). The elemental analysis (C, H, N and Si,) of kerogen
separated from the coals and shales was determined on a Carlo
Erba 1108 elemental analyser using sulphanilamide as a stan-
dard. The sulphur contents reported refer to organic sulphur
(Sorg), Which is determined by the difference between total sul-
phur and pyrite sulphur (Durand and Monin, 1980). The quantity
of pyrite sulphur in the coals was analysed as iron, on a
Perkin-Elmer Plasma 40 ICP-AES instrument after digesting
the ash from the burnt coals (815°C) for 30 minutes with 20%
hydrochloric acid. The oxygen content was calculated as the
difference to 100% taking into account C, H, N, Sio, moisture,
and ash contents.

The molecular composition of the HP gases (CH4, C;Hs,
C3Hg, i-C4H10, n-C4H1o, i-CsH12, n-CsH12, CeHia, C7H16, CO2, O,
H,, N2, He) was analysed in a set of columns on two Agilent
7890A GCs equipped with a gas sampling valve plumbed with a
dual sample loop. Stable carbon and nitrogen isotope analyses
were performed using a FinniganTM Delta Plus MS coupled
through a GC combustion Il interface with a HP 6890 GC. Sta-
ble hydrogen isotope analyses of methane, ethane and pro-
pane were performed in a Thermo Scientific™ Delta V™ Plus
MS connected through GC Isolink™ and Conflo 1V interfaces
with a Trace GC Ultra chromatograph. The stable carbon, hy-
drogen and nitrogen isotope data are expressed in 3-notations
(5"C, °H and 8"™N, %o) relative to VPDB, VSMOW and atmo-
spheric nitrogen, respectively (Coplen, 2011). Detailed descrip-
tions of analytical measurements of molecular and stable iso-
tope compositions are published by Kotarba et al. (2019a, b,
20203, b).

RESULTS

ORIGINAL COALS AND CARBONACEOUS SHALES

The results of analyses of the tested original (unheated)
coals and carbonaceous shales to evaluate thermal maturity
using Tnax temperature (Rock-Eval pyrolysis), vitrinite
reflectance (R,), carbon content (C*), atomic H/C ratios and
volatile matter content (VM®") are given in Appendices 2 and 4.
The Rock-Eval T,y temperature of the coals analysed varies
from 430 to 486°C and of the carbonaceous shales from 429 to
491°C (Appendix 2 and Fig. 3A, C). The R, for coals varies from
0.60 to 1.57% and for carbonaceous shales ranges from 0.57 to
0.92% (Appendix 2 and Fig. 4).

Based on these results of T and R, analyses, 6 coal and
6 carbonaceous shale samples (five from the USCB and one
from the LCB) characterized by relatively low values of these in-
dices (R-E Il Tyax 434 to 448°C and 435 to 443°C, R-E 6 Tyax
421 to 435°C and 433 to 455°C, respectively; and R, 0.60 to
0.90% and 0.57 to 0.92%, respectively; Appendices 2 and 3,
Fig. 4) were selected for HP experiments. Values of C%' content
and atomic H/C ratios varied for the coals from 76.7 to
82.0 wt.% and 0.67 to 0.79, respectively; and for the carbona-
ceous shales from 73.9 to 80.6 wt.% and 0.47 to 0.70, respec-
tively (Appendix 4 and Fig. 4A, A, B, B’). VM® of the original
coals varies from 27.8 to 33.3 wt.% (Appendix 4 and Fig. 4D).

COALS AND CARBONACEOUS SHALES AFTER HP EXPERIMENTS
AND HP GASES

The results of rank characteristics of the coals analysed af-
ter the HP experiments at 330 and 360°C for 72 hours are given
in Appendices 3 and 4, and in Figure 4. Thermal maturity indi-
ces and parameters for the coals analysed varied for HP tem-
peratures of 330 and 360°C as follows: Ty.x 454 to 504°C and
520 to 559°C, R, 1.34 to 1.39% and 1.71 to 1.83%, VM® 20.3
to 22.9 wt.% and 13.9 to 19.5 wt.%, C* 81.1 to 84.7 wt.% and
83.9 to 85.8 wt.% and atomic H/C 0.55 to 0.60 and 0.47 to 0.52;
and for the carbonaceous shales: T 450 to 539°C and 544 to
564°C, R, 1.32 to 1.37 % and 1.71 to 1.74 %, C*" 79.8 to
82.8 wt.% and 79.4 to 84.9 wt.% and atomic H/C 0.41 to 0.55
and 0.40 to 0.50, respectively.

The molecular composition of the HP gases expelled from
the coals and carbonaceous shales is given in Appendix 5, and
stable isotopic ratios 8"*C(CHs, CoHs, CsHs, i-CsHqo, n-CaHio,
i—C5H12, n-C5H12 and COz), 82H(CH4, CzHB and C3H3) and nitro-
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periment see Figure 4

gen 5"°N(N,) are shown in Appendix 6. Cyc values for gases
from the experiments conducted at 330°C on the coals and
shales varied in the following ranges: from 3.59 to 5.08 and
from 2.99 to 4.59, respectively; and at 360°C: from 4.25 to 6.07
and from 3.69 to 4.98, respectively (Appendix 6; Figs. 5A", B, C’
and 6A).

During the HP experiments conducted at 330°C, methane
was expelled in significant yields from the coals and carbona-
ceous shales and the values obtained ranged from 3.28 to 5.80
mg/g TOC, and 1.27 to 10.0 mg/g TOC,, respectively, and at
360°C from 8.47 to 14.0 mg/g TOC, and 2.55 to 19.9 mg/g
TOC,, respectively (Appendix 8, Figs. 7A, B, 8 and 9A-F). The
yields of ethane expelled from the coals and carbonaceous
shales during the 72 hours HP experiments at 330°C were large
and ranged from 0.78 to 1.54 mg/g TOC, and 0.33 to 3.83 mg/g
TOC,, respectively, and at 360°C from 2.20 to 3.42 mg/g TOC,
and 0.64 to 6.11 mg/g TOC,, respectively (Appendix 8, Figs. 8
and 9A'-F’). Notable amounts of propane and n-butane were
also expelled in the course of the HP experiments (Fig. 10). The
yields and concentrations of the sum of higher hydrocarbon
(2(C,-C,4) gases generated from the coals and shales during
the 330°C HP experiments were considerable and ranged from
1.80 to 3.51 mg/g TOC, (9.96 to 12.6 mole %) and 0.85 to
10.4 mg/g TOC, (0.62 to 7.77 mole %), respectively, and at
360°C from 4.60 to 6.93 mg/g TOC, (11.8 to 14.0 mole %) and
1.49 to 15.6 mg/g TOC, (1.15 to 9.84 mole %), respectively
(Appendices 5 and 8, Fig. 7C, D).

§'C values of methane expelled from the coals and carbo-
naceous shales at 330°C varied from —-37.9 to —35.3%0 and
—39.2 to —34.8%o, respectively, and at 360°C from -37.4 to
—35.5%0 and —-38.7 to —35.3%o, respectively (Appendix 6,
Figs. 11, 12A, A’ and 13), and 8'°C values of ethane expelled
from the coals and carbonaceous shales at 330°C varied from
—28.4 to —27.4%0 and —31.4 to —28.2%., respectively, and at
360°C from —27.4 to —26.1%0 and from —30.7 to —27.1%o, re-
spectively (Appendix 6, Figs. 11, 12B, B’ and 13). 8"°C values of
propane and n-butane expelled from the coals and carbona-
ceous shales at 330 and 360°C are shown in Appendix 6 and
Figures 11, 12C, C, D, D’ and 13.

8%H values of methane, ethane and propane expelled from
the coals at 330°C varied from —313 to —270%o, —261 to —219%s,
and —238 to —182%o, respectively, and at 360°C from —308 to
—290%o, —252 to —225%0 and —228 to —178%o, respectively (Ap-
pendix 6, Figs. 6B and 14A, C). 8°H values of methane, ethane
and propane expelled from the shales at 360°C for 72 hours
varied from =327 to —305%o, —271 to —244%., and —251 to
—217%o, respectively, and at 360°C for 72 hours from —316 to
—307%o, —268 to —244%0 and —244 to —218%., respectively (Ap-
pendix 6, Fig. 14B, D).

During our HP experiments, carbon dioxide was generated
in significant quantities from the coals and particularly from the
shales during the HP experiments at 330°C ranging from 5.0 to
18.4 mg/g TOC, and from 5.1 to 526 mg/g TOC,, respectively
(Appendix 8, Figs. 15A and 16C), and at 360°C these varied
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360°C, and (C and C’) carbonaceous shales at 330 and 360°C

For key to stratigraphy of currently analysed samples and type of HP
experiment see Figure 4

from 7.9t0 18.9 mg/g TOC, and from 7.2 to 817 mg/g TOC,, re-
spectively (Appendix 8, Figs. 15A, 16C and 17A). CDMI values
for gases from the HP experiments conducted at 330°C using
the coals and carbonaceous shales varied in the following
ranges: 29.4 to 58.5% and 42.6 to 98.3%, respectively; and at
360°C 171 to 42.9% and 321 to 96.4% (Appendix 6,
Fig. 5A—C). 8"™C values of carbon dioxide expelled from the
coals and shales at 330°C varied from —21.8 to —17.0%. and
—22.6 to 3.1%o0, respectively, and at 360°C from -21.7 to
—17.8%0 and —23.2 to 3.7%o (Appendix 6, Figs. 16A and 18).

Hydrogen sulphide was also generated in significant quanti-
ties and concentrations from the coals and shales during the
HP experiments at 330°C, from 0.03 to 0.58 mg/g TOC, and
0.06 to 0.99 mg/g TOC,, respectively, and at 360°C from 0.11
to 1.06 mg/g TOC, (0.34 to 2.43 mole %) and 0.11 to 1.16 mg/g
TOC, (0.01 to 1.98 mole %), respectively (Appendices 5 and 8,
Figs. 15B, 16E and 17B).

Molecular hydrogen was also generated in notable quanti-
ties from the coals and in considerable amounts from the carbo-
naceous shales during the HP experiments at 330°C, from 0.04
to 0.06 mg/g TOC, and from 0.46 to 0.99 mg/g TOC,, respec-
tively, and at 360°C from 0.04 to 0.06 mg/g TOC, and from 0.53
to 3.53 mg/g TOC,, respectively (Appendix 8, Figs. 15C, 16F
and 17D).

Molecular nitrogen was expelled in significant quantities
from the coals and shales during the HP experiments at 330°C,
from 0.17 to 0.41 mg/g TOC,, and from 0.63 to 3.48 mg/g TOC,,
respectively, and at 360°C from 0.14 to 0.41 mg/g TOC, and
from 0.57 to 4.52 mg/g TOC,, respectively (Appendix 8,
Figs. 15D, 16D and 17C). 8N values of molecular nitrogen ex-
pelled from the coals and carbonaceous shales at 330°C varied
from —3.4 to 0.9%o0 and from —5.6 to —0.4%., respectively, and at
360°C from —1.3 to 0.1%o and — from 4.3 to 1.7%. (Appendix 6,
Figs. 16B and 19).

DISCUSSION

COALS AND CARBONACEOUS SHALES BEFORE AND AFTER HP

The Serpukhovian, Bashkirian and Moskovian organic mat-
ter analysed from the LCB and southern part of the USCB (Ap-
pendix 1 and Fig. 1), accumulated within coal seams and dis-
persed in the carbonaceous shales, is of humic origin (type-Il|
kerogen) and was deposited in a continental environment (Ap-
pendix 2 and Fig. 3). The maturity range of the six samples of
coal and six samples of carbonaceous shale selected for the
HP experiments measured by R, varies from 0.57 to 0.92%
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(Appendix 3 and Fig. 4). The maturity increase caused by HP at
330 and 360°C ranges from 1.32 to 1.39% (HP maturity: first
stage) and from 1.71 to 1.83% (HP maturity: second stage), re-
spectively (Appendix 3 and Fig. 4). A good correlation of param-
eters and indices of rank, i.e. Rock-Eval T temperature, cof
content, atomic H/C ratio, VM®' with R, and a larger scatter of
their values for carbonaceous shales as compared to coals (Ap-
pendices 3 and 4, Fig. 4) suggests a greater heterogeneity of
dispersed organic matter and probably an insignificant admix-
ture of algal (mixed IlI/Il type) macerals. This evaluation is con-
sistent with the origin and maturity of the organic matter based
on petrographic and geochemical studies as described earlier
by Kruszewska (1983), Gabzdyl and Probierz (1987), Ptak and
Rozkowska (1995), Jurczak-Drabek (1996), Matuszewska
(2002), Kotarba et al. (2002), Kotarba and Clayton (2003),
Cmiel (2012), Fabianska et al. (2013) and Misiak (2017) in
USCB and Grotek et al. (1998), Kotarba et al. (2002), Kotarba
and Clayton (2003) and Grotek (2007) in the LCB as well as in
Carboniferous profiles of the Chetmek IG 1 (Janas, 2018;
Jureczka, 2018) and Ruptawa IG 1 boreholes (Jurczak-Drabek,
2015; Koztowska et al., 2015) in the study area of the USCB
(Fig. 1C) and Busowno IG 1 (Grotek, 2007) in the study area of
the LCB (Fig. 1B).

HP experiments simulate natural coalification during which
maturity increase in the organic matter of coals and shales was
accompanied by gas generation.

GAS GENERATED DURING HP EXPERIMENTS

HYDROCARBON GASES

The yields of methane, ethane, propane and n-butane gen-
erated from coals and carbonaceous shales almost always
show very similar trends at the same temperature conditions
(Figs. 7, 8A, B, 9 and 10). However, some distinctive patterns
were observed. For example, the carbonaceous shales showed
methane and ethane yields higher than from the coals for sam-
ple Si-23 both at 330 and 360°C (Fig. 9A, A’) and for sample
MI-21 at 360°C (Fig. 9D, D’), and also propane and n-butane
yields in the case of samples Si-22 and Br-20 at both 330 and
360°C (Fig. 10B, B’, C, C’). Moreover, the yields of methane
both from the coals and carbonaceous shales were always
higher than the sum of higher gaseous hydrocarbons (X[C,Hs to
C4H10]) (Fig. 7). Methane and higher gaseous hydrocarbon
yields (Fig. 7) and the Cyc index (Fig. 5A'-C’) of the Si-23st
shale sample were much higher in the first case and lower in the
second than in other carbonaceous shale and coal samples
(Figs. 9A, A’ and 10A, A’). However, atomic H/C ratios of both
dispersed organic matter in the original carbonaceous shales
and kerogen in the original coals do not correlate with the hy-
drocarbon yields (Fig. 8).

The §'C of CH,, CoHg, CsHg and n-Cy4Hyo versus their recip-
rocal carbon-number are plotted on Figure 11. HP thermogenic
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Fig. 12. Stable carbon isotope composition of methane (A), ethane (B), propane (C) and n-butane
(D) generated from coals, and methane (A’), ethane (B’), propane (C’) and n-butane (D’) generated
from carbonaceous shales during the HP experiments versus original vitrinite reflectance

Dotted and dashed lines for 330 and 360°C HP gases, respectively. Data for currently analysed coals
and carbonaceous shales are from Appendices 2 and 6, and coals marked by open stars are after
Kotarba and Lewan (2004) and Lewan and Kotarba (2014); for key to stratigraphy of currently analysed
samples and type of HP experiment see Figure 7
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Fig. 13. Stable carbon isotope composition of methane, ethane and propane versus original vitrinite reflectance
for HP gases generated at 330 and 360°C, respectively, from coals (A and C) and carbonaceous shales (B and D)

Data for currently analysed coals and carbonaceous shales are from Appendices 2 and 6. For comparison, onto (C) are
added data for coals from the Upper Silesian and Lublin basins after Kotarba and Lewan (2004) and Lewan and Kotarba
(2014): methane — open star, ethane — grey star, propane — black star; for key to stratigraphy of currently analysed samples

and type of HP experiment see Figure 7
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For key to stratigraphy of currently analysed samples and type of HP experiment see Figure 7
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Fig. 15. Yields of carbon dioxide (A), hydrogen sulphide (B), molecular hydrogen (C) and molecular nitrogen generated from coals
(D) and carbonaceous shales (D’) analysed by HP at 330 and 360°C in comparison with HP gases (after HP at 360°C) expelled from
different coal samples from Northern Hemisphere basins (Lewan and Kotarba, 2014) versus of vitrinite reflectance of original coals
(A, B and C) and currently analysed original carbonaceous shales (D’)

Trend lines on (A) and (C) shows the best fit for results obtained in the present study and for previously published data after Lewan and
Kotarba (2014) and on (D) based on vitrinite reflectance of original coals (Appendix 2) and N, yield from coals after HP at 360°C
(Appendix 6) and Lewan and Kotarba (2014); TOC, — total organic carbon of original organic matter

gases generated from the coals and carbonaceous shales
show a mostly convex-concave (dogleg) pattern (Fig. 11). HP
thermogenic gases do not have to follow a linear trend as previ-
ously suggested (Chung et al., 1988).

The values of stable carbon isotope composition of CHy,
C,Hs, C3Hg and n-C4Hqo generated from the carbonaceous
shales by HP at 330 and 360°C (Fig. 12A’-D’), from the coals
by HP at 360°C (Fig. 12A-D) and CH, from the coals by HP at
330°C (Fig. 12A) correlate positively with the original vitrinite
reflectance (R,) values. C,Hg, C3Hs and n-C4H1o (Fig. 12B, C,
D) generated from the coals during HP at 330°C are depleted in
the '°C isotope with increasing maturity. A similar isotope trend
was observed for HP gases of coals from Northern Hemisphere
(Germany, Poland, Ukraine and USA) basins by Lewan and
Kotarba (2014) and for coalbed gases reported or modeled by
various investigators for type-lll kerogen as compiled by
Whiticar (1994).

The 5"C values of CH,, C;Hs and CsHg generated from
coals at 360°C (Fig. 13C) and from carbonaceous shales at 330
and 360°C (Fig. 13B, D), and C,Hs and C3Hg from coals at
330°C (Fig. 13A) show insignificant changes with increasing
maturity. Higher 3C enrichment of methane during increasing
rank of coal was observed (Fig. 13A).

H-depleted methane can be explained by the H-depleted
distilled water (—66%o, Appendix 7) from water of the Krakow
pipe network used in the HP experiments, of isotopic composi-
tion typical of Krakdw-area precipitation (Dulinski et al., 2019),
which is also reflected in the recovered waters with 5°H values
varying from —72 to —52%o. (Appendix 7 and Fig. 6B). In previous
HP experiments performed for coals from the USCB and LCB at
360°C for 72 hours Denver distilled water of 8°H ratio of —108%o
was used and the recovered waters had 3°H values from —95 to
—91%o. (Kotarba and Lewan, 2004; Fig. 6B). The process of gen-
eration of ?H-depleted methane during hydrous pyrolysis of
source rocks from the Polish petroleum basins was previously
discussed by Kotarba and Lewan (2013) and Kotarba et al.
(2009). Three hydrogen atoms in CH,4 are from methyl radicals
of organic matter with one atom from water. Five hydrogen at-
oms in C,Hg are from ethyl radicals of organic matter with one
atom from water. Seven hydrogen atoms in C3;Hg are from
propyl radicals of organic matter with one atom from water. The
ability of water to be a source of hydrogen during the thermal
cracking of hydrocarbons has been shown experimentally
(Hoering, 1984; Lewan, 1997; Schimmelmann et al., 1999,
2001). Unlike the importance of kerogen influencing §'*C val-
ues for generated hydrocarbon gases, 8%H values of hydrocar-
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Fig. 16. Stable isotope compositions of carbon (A) in carbon dioxide and nitrogen (B) in molecular nitro-
gen, and yields of carbon dioxide (C), molecular nitrogen (D), hydrogen sulphide (E) and molecular hy-
drogen (F) expelled from coals and carbonaceous shales analysed by HP at 330 (grey marks) and 360°C

(black marks)

Solid and dashed lines link gases generated from the same coal and carbonaceous shale samples,
respectively; for sample keys and stratigraphy of analysed samples see Appendix 1 and Figure 15

bon gases can be influenced by the formation waters present in
a source rock during their generation in a natural environment
(e.g., Smith et al., 1982, 1985). 5°H differences between
Krakow and Denver distilled and recovered waters are 42%o
and 19-43%., respectively (Fig. 6B), therefore the difference
between the 5°H of methane generated from coals from the
USCB and LCB in Krakéw during 72 hrs HP at 360°C (-308 to
—290%o, Appendix 6), compared with the Denver laboratory re-
sults (=319 to —302%., Kotarba and Lewan, 2004), is 11-12%o,
one-fourth of these values (Fig. 6B). The 5°H values of CH,,
C,Hs and C3Hg versus their reciprocal hydrogen-number are
shown in Figure 14. The HP gases generated from the coals
and carbonaceous shales have both linear (Fig. 14A, B) and
convex-concave (dog-leg) relationships (Fig. 14C, D). Similar
trends have been observed in natural gases from petroleum
basins in China (Ni et al., 2019a, b), and Poland and Ukraine
(Kotarba et al., 2019b, 2020a, b; Bilkiewicz and Kowalski, 2020;
Wiectaw et al., 2020).

The HP thermogenic and coalbed gases from the USCB
and LCB are compared on Figures 6, 18 and 20. These com-
parisons show that the coalbed gases in the USCB and LCB

have a significant microbial component, or this isotopic fraction-
ation (shift) can be related to physicochemical sorp-
tion/desorption and diffusion processes during migration
through microporous coals (Kotarba, 2001).

NON-HYDROCARBON GASES

Carbon dioxide (CO5), hydrogen sulphide (H,S), molecular
hydrogen (H,) and molecular nitrogen (N,) are the main non-hy-
drocarbon gases generated during HP experiments. The con-
centrations of these gases, gas indices and stable isotope com-
position of carbon dioxide and molecular nitrogen are shown in
Appendices 5 and 6. The unusually large yields of CO,, H, and
H,S generated in HP (Appendix 8), as compared to a natural
system, may be partly explained by the high temperatures of
hydrous pyrolysis that result in increasing fugacities for each
gas component (Cooles et al., 1987) and additionally influences
secondary processes during migration in the geological envi-
ronment. In the natural system, highly soluble H,S and CO,,
and reactive H,, may be lost by dissolution, adsorption and mi-
gration processes (e.g., Hunt, 1996). N, practically does not un-
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Fig. 18. Stable carbon isotope composition of carbon dioxide
versus stable carbon isotope composition of methane for HP
gases expelled from coals (A) and carbonaceous shales (B)

Genetic fields after Milkov and Etiope (2018); for comparison, Upper
Silesian (shaded field) and Lublin (Bo-1 and Bo-2 open stars)
coalbed methane and carbon dioxide after Kotarba (2001) and
Kotarba and Pluta (2009), and Upper Silesian and Lublin (Bo-1 and
Bo-2) HP at 360°C gases after Kotarba and Lewan (2004) and
Lewan and Kotarba (2014) are also shown: for key to gas sample
codes and stratigraphy of currently analysed and previously pub-
lished gas samples see Figures 7 and 17, respectively
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dergo secondary processes therefore its yield (Appendix 8) re-
mains the same.

Carbon dioxide. A common feature of HP experiments is
the production of large quantities of carbon dioxide (e.g.,
Andresen et al., 1994; Lewan, 1997; Kotarba and Lewan, 2004;
Lewan and Kotarba, 2014). The intensity and dynamics of CO,
generation during HP decrease with increasing maturity of the
coals (Fig. 15A) and are higher for carbonaceous shales than
for coals (Appendix 8 and Fig. 16C). Decarboxylation is due to
the weaker C—O bond strength as compared to that of the C-C
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Fig. 20. Stable carbon isotope composition of ethane versus stable carbon isotope composition of methane (A and C)
and stable carbon isotope composition of propane (B and D) of HP gases expelled from coals (A and C) and carbonaceous
shales (C and D)

Position of reflectance curves for type-Ill kerogen after Berner and Faber (1996) shifted based on average of §"°C value (~23.8%o, 24 sam-
ples) of Serpukhovian and Pennsylvanian coals from the Upper Silesian and Lublin basins (Kotarba and Clayton, 2003); for comparison, Up-
per Silesian coalbed gases (shaded field) after Kotarba (2001) [K (2001)] and Kotarba and Pluta (2009) [K & P (2009)], and the Upper
Silesian and Lublin (Bo-1 and Bo-2) HP gases after experiments at 360°C for 72 hours from coals after Kotarba and Lewan (2004) [K & L
(2004)] and Lewan and Kotarba (2014) [L & K (2014)] are also shown

bond (Kotarba, 1988; Hunt, 1996). Moreover, during thermal  tent in samples Si-22st and Si-23st is neither higher than in
transformation of humic organic matter the thermodynamic ef-  other samples nor was greatly decreased (Appendix 3). The dif-
fect of isotope fractionation is dominant and the carbon dioxide  ferent isotopic compositions of gases generated from samples
generated is enriched in *C by 12—28%o as compared to source  Si-22st and Si-23st may be related to their lower initial maturity
humic source matter (Galimov, 1985). The volume of carbon di-  and a higher content of oxygen compounds such as organic ac-
oxide generated is proportional to the atomic O/C ratio (i.e., oxy-  ids contributing to "*C enriched CO,. In addition to decarbo-
gen content) of the initial organic matter while its quantity is  xylation, some of the oxygen in the CO, generated by hydrous
greater in shales than in coals (Fig. 17A) reaching a maximum  pyrolysis has been shown to be derived from water interacting
yield of 817 mg/g TOC, and only 18.9 mg/g TOC, for carbona-  with the carbonyl groups (Lewan, 1997; Lewan and Kotarba,
ceous shales and coals, respectively (Appendix 8). The §'°C  2014). CDMI values, showing the relation of generation of CO,
values of CO, do not show substantial variations between to CH,, decrease with increasing original vitrinite reflectance of
gases generated from the same initial samples, but remarkable  pyrolysed organic matter and also with increasing HP tempera-
differences are seen among gases generated from different ini-  ture (Appendix 6 and Fig. 5A-C), indicating that the maximum
tial samples. The isotopic differentiation observed is related to  yield for CO, occurs at lower maturity than that for CH, and that
genetic features of the source material of CO,, not to maturation ~ CO, from coals was liberated less effectively.

processes induced by HP. Negative §'°C values of most of the Hydrogen sulphide. During maturation of sedimentary or-
samples analysed indicate that the CO, was generated from  ganic matter, large amounts of hydrogen sulphide may be gen-
thermal decomposition of organic matter (Fig. 18). Extreme  erated (e.g., Orr, 1977; Anissimov, 1995; Amrani et al., 2005).
high CO, yields were obtained for two carbonaceous shale No correlations exist between H,S yields and the R, and
samples: Si-22st and Si-23st, and only in these samples does  original organic matter atomic S/C ratio of the coals analysed
the CO, show positive §"°C values (Appendices 6 and 8). High  (Figs. 15B, 16E and 17B). This may be explained by the original
yields accompanied by notably high §"°C values of CO, indicate  sulphur occurring in different organic compounds (e.g., thiols,
that the CO, in these samples was generated from a different  sulphides, and thiophenes; Chou, 1990), which have different
source material than in remaining samples, most likely contain-  thermal stabilities and yield different amounts of H,S. Thiols
ing more organic molecules with C-O functional groups or, less  and sulphides are the most likely source of H,S because their
probably, was produced from carbonate dissolution/decompo-  carbon-sulphur bonds are weaker than those in aromatic
sition, while the release of pre-existing carbon dioxide adsorbed  thiophene rings (Lewan and Kotarba, 2014). The rank of the
or entrapped in the initial samples cannot be excluded. Mineral  original coals, represented by R,, is narrow, i.e. from 0.6 to
carbon measured in the samples studied does not support the  0.9% (Appendix 3). The broad rank from lignites to anthracites,
hypothesis of the influence of carbonate minerals, since its con-  as observed by Lewan and Kotarba (2014), also does not re-
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veal such correlations. Only lignites have some of the high
yields (Fig. 15B). H,S yields from the organic matter of carbo-
naceous shales are comparable to those from coals, while the
greatest yields were observed from shale sample Si-23st (Ap-
pendix 8, Figs. 16E and 17B) which may be associated with the
composition of sulphur compounds as well as with a catalytic
and adsorbed influence of the claystone-mudstone matrix. Sim-
ilarly to CO,, significant concentrations of H,S can occur as dis-
solved aqueous species depending on solution pH (e.g.,
Lewan, 1997). Although hydrogen sulphide was generated in
large volumes from the coals and carbonaceous shales during
the HP experiments, no traces of it are found in coalbed gas ac-
cumulations within the Carboniferous coalbed strata of the Pol-
ish basins (Kotarba, 19903, b, ¢, 2001; Kotarba and Rice, 2001;
Kotarba and Pluta, 2009). This absence of hydrogen sulphide
as a free gas is attributed to its high solubility in formation wa-
ters and its high reactivity with Fe and other transition metals
(i.e., Cu, Pb and Zn) during gas migration and entrapment (e.g.,
Orr, 1977; Suleimenov and Krupp, 1994). The major removal
process of H,S in clastic and claystone—sandstone succes-
sions of the coalbed strata appears to be caused by the forma-
tion of pyrite and other metal sulphides.

Molecular hydrogen. Molecular hydrogen was also ex-
pelled in notable quantities from coals and in considerable
amounts from carbonaceous shales during the HP experiments
for 72 hours at 330 and 360°C (Appendix 8, Figs. 15C, 16F and
17D). However it may rarely occur in traces (if at all) in coalbed
gases accumulated within the Carboniferous strata of the
USCB and LCB (Kotarba, 2001; Kotarba and Pluta, 2009). H, is
very reactive, mobile and practically not subject to adsorption
on coals, so its retention in coal-bearing strata is ephemeral
(Lewan and Kotarba, 2014). The dual source of H, from water
and organic matter and its participation with H,S generation
makes its behaviour complex to interpret from the HP experi-
ments of this study.

As in the case of sulphide hydrogen (Figs. 15B and 17B), H,
yields decrease with increase in maturity (Fig. 15C) and with the
increasing atomic H/C ratio of the original kerogens of both the
coals and carbonaceous shales (Fig. 17D). These phenomena
are mainly caused by expelling hydrogen from organic matter
during maturation. H, was also generated in considerable
quantities from water and the organic matter of coals and in
larger amounts from shales (Figs. 16F and 17D). Early-gener-
ated H; is scavenged to make H,S, which forms early and in
high quantities from type-lll kerogen in HP experiments
(Figs. 15C and 16F).

Molecular nitrogen. Molecular nitrogen in natural, geologi-
cal environments is produced in large quantities in radiogenic,
atmospheric, primordial, crustal and organic processes (includ-
ing microbial processes and the thermogenic decomposition of
organic matter) (e.g., Jenden et al., 1988; Krooss et al., 1995,
2008; Gerling et al., 1997; Kotarba et al., 2014, 2019a, 2020c).
N, can be also released from NH,-rich illites that have under-
gone intensive fluid/rock interaction (Luders et al., 2005;
Mingram et al., 2005).

During our HP experiments, N, was generated from nitro-
gen compounds in the organic matter of the coals and shales,
and from NHy-rich illites of the shales. N, yields increase contin-
uously with increase in R, of the original samples, from 0.6 to
1% (Fig. 17C). This is in agreement with the observation of
Lewan and Kotarba (2014), who reported N, generation rise as
R, of original samples increased from 0.4 up to 4%, then a sud-
den drop at higher maturities (Fig. 15D). The original increase
in molecular nitrogen as opposed to the overall decrease in
CO,, H,S and H; with increasing original R, of the coals can be
explained by differences in their covalence (Fig. 15). In addition

to organically bound nitrogen, some of the nitrogen yields may
be derived from ammonium in clay minerals (Mingram et. al.,
2005) or Ny-bearing fluid inclusions (Liders et al., 2005, 2012)
in the coals and carbonaceous shales.

Isotopic fractionation depends on the primary genetic fac-
tors of the organic matter, and the secondary processes taking
place during gas migration through the gas-rock and gas-reser-
voir fluid interfaces (Littke et al., 1995; Krooss et al., 1995,
2005, 2008; Gerling et al., 1997; Zhu et al., 2000; Mingram et
al., 2005; Luders et al., 2005). Molecular nitrogen generation
from organic matter has been also documented during pyrolysis
experiments (Gerling et al., 1997; Kotarba and Lewan, 2004,
2013; Lewan and Kotarba, 2014). In most cases molecular ni-
trogen generated during our 360°C HP experiments is more en-
riched in the "°N isotope than that from the 330°C HP experi-
ments, both from coals and carbonaceous shales (Appendix 6,
Figs. 16B and 19). The NH,-fixed in claystones and mudstones
is enriched in "°N as compared with nitrogen compounds in or-
ganic matter (e.g., Gerling et al., 1997; Mingram et al., 2005;
Krooss et al., 2008) hence the observed nitrogen isotope frac-
tionation (Figs. 16B and 19) is probably connected with increas-
ing N, yields, rising coal maturity (Fig. 15D) and additional N,
generation from fixed-NH; compounds within claystones
(Fig. 15D’).

CONCLUSIONS

Hydrous pyrolysis (HP) experiments at 330 and 360°C for
72 hours were carried out on Serpukhovian, Bashkirian and
Moscovian coals and carbonaceous shales from the USCB (10
samples) and the LCB (2 samples). The samples were selected
based on the results of Rock-Eval-Il pyrolysis of 28 coal and 55
shale samples. The results and interpretations of the organic
geochemical and petrographic screening analyses with regard
to the origin and maturity of the organic matter before and after
the HP experiments, and the yields, and molecular and stable
carbon, hydrogen and nitrogen isotope compositions of the
gases generated during HP can be summarized as follows:

1. R, of the humic (type-Ill kerogen) coals and the carbo-
naceous shales selected for this study ranged from
~0.60 t0 0.90%. After 72 h HP at 330°C (first stage of ar-
tificial maturation) R, had increased to ~1.3-1.4% and
after 72 h HP at 360°C (second artificial maturation
stage) to ~1.7-1.8% (cf. Appendix 3, Figs. 4, 9 and 10);

2. The hydrocarbon gases (CHy4, CoHg, C3Hg and n-C4Hyo)
generated from the carbonaceous shales at 330 and
360°C showed an enrichment in "*C with increasing R,
of the original samples. The same trend was observed
for the C4 to C4 hydrocarbons generated from coals by
HP at 360°C. For the HP of coals at 330°C this trend
was only observed for methane while the C, to C4 hydro-
carbons showed a depletion in '>C with increasing origi-
nal maturity (cf. Appendix 6 and Fig. 11);

3. ?H-depleted methane can be explained by the ?H-de-
pleted distilled water (—66%o) in water of the Krakow pipe
network used in the HP experiments, which is also re-
flected in the recovered waters with §°H values varying
from —72 to —52% (cf. Appendices 6 and 7, Figs. 6B and
14);

4. The plots of the 5"*C values of the hydrocarbon gases
generated, CH4, CoHg, C3Hg and n-C4Hyqo, versus their
reciprocal carbon-number (Chung plots) are not linear
but have concave (dog-leg) shapes (cf. Appendix 6 and
Fig. 11);
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5. The 8°H of CH,, CoHg and C3Hg in HP gases versus their
reciprocal hydrogen-number have both linear and con-
vex-concave (dog-leg) relationships (cf. Appendix 6 and
Fig. 14);

6. The broad fractionation of '>C values of carbon dioxide
can be caused by both kinetic and thermodynamic ef-
fects related to thermal organic matter destruction. The
picture of distribution of 8"°C values of HP carbon diox-
ide is similar to the distribution of its yields, although
somewhat reversed trends with changes in vitrinite
reflectance were observed (cf. Appendices 6 and 8,
Figs. 16C and 18);

7. No correlations exist between hydrogen sulphide yields
and either vitrinite reflectance or original organic matter
atomic S/C ratio in the coals analysed. H,S yields of or-
ganic matter of shales are comparable to those from
coals, which may be associated with the composition of
sulphur compounds as well as with the catalytic and ad-
sorbed influence of the claystone-mudstone matrix (cf.
Appendix 8, Figs. 15B, 16E and 17B);

8. Molecular hydrogen was generated in significant quanti-
ties from water and the organic matter of the coals and
in considerable amounts from shales during the HP ex-
periments at 330 and 360°C. The decreasing trend in H,
yields with a decrease in maturity and the increasing

atomic H/C ratio of the original kerogens of coals and
shales hold to the value of ~0.6 (cf. Appendices 6 and 8,
Figs. 15C, 16F and 17D);

9. During our HP experiments, molecular nitrogen yields
increase with increasing vitrinite reflectance of the origi-
nal coals and carbonaceous shales. In most cases mo-
lecular nitrogen generated in the 360°C HP experiments
is more enriched in "N than in N, generated during the
330°C HP experiments both from coals and shales (cf.
Appendices 5, 6 and 8, Figs. 15D, 16D and 19).
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