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Landslides determine increases and decreases in specific soil compounds which is affecting soil fertility. The recovery of soil
fertility is a long process and may be used as an indicator of the landslide age and can contribute to the management plan of
the affected area. In order to add to data about soil properties affected by landslides, the current study focuses on a young
and shallow landslide from the western part of the Transylvanian Depression. Soil samples were analysed from a
physico-chemical point of view (pH, organic matter — OM, total organic carbon — TOC, major cations, and iron content) in two
places, at between 0 and 60 cm depth (inside and outside the landslide). The results obtained showed lower values of pH in-
side the landslide, low values of TOC and rock fragments in both places studied (inside and outside the landslide) and no dif-
ferences in soil texture between disturbed and undisturbed soil. The ammonium, magnesium and calcium content was
higher outside the landslide, the sodium level was slightly higher outside the landslide, while the potassium concentration
was higher inside the landslide. This study offers new data regarding recovery of soil fertility and highlights the importance of
gaining knowledge on soil properties of relevance to future measures to increase the fertility of agricultural soils.
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INTRODUCTION zek et al., 2016). On the other hand, landslides contribute signif-
icantly to biophysical biodiversity (Geertsema and Pojar, 2007)
mostly in aquatic ecosystems (Butler, 2001; Montgomery et al.,

Landslides, generated by natural factors or anthropogenic ~ 2003), in stream and riparian areas (Hartman et al., 1996; May

activities, affect human society in many ways, leading to socio-
economic losses (Bajgier-Kowalska and Zietera, 2002; Popra-
wa and Raczkowski, 2003; Petley, 2012; Corominas et al.,
2014) as well as to environmental disasters and damage. Con-
sequently, studies of landslides have been carried out world-
wide, and global landslide maps of hazard and susceptibility
have been drawn (Nadim et al., 2006; Hong and Adler, 2007;
Hong et al., 2007; Komak, 2012; Bronowski et al., 2016; Mro-
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and Gresswell, 2003; Montgomery et al., 2003), and in moun-
tainous environments (Alexandrowicz and Margielewski, 2010;
Alexandrowicz et al., 2003) causing changes in the diversity of
sites, soils and habitats. A high diversity of landforms, relief, and
edaphic and hydrogeological conditions creates unique bio-
topes that are controlled by mass movements (Alexandrowicz
and Margielewski, 2010). Landslides can redistribute soils with
different textures, and will change the soil where the site condi-
tions have been radically altered. Spatial and temporal changes
in plant community structure can be observed across the land-
scape, with considerable influence on diversity (Geertsema and
Pojar, 2007).

Changes in soil properties appear due to mass movement
of earth and this process is an important one in relation to agri-
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cultural areas, in particular as regards recovery of soil fertility.
Changes in soil properties due to landslides have been re-
ported for organic carbon, nitrogen, phosphorus, major cations
and texture, with increased fertility over time (Manjusha, 1990;
Reddy and Singh, 1993; Zarin and Johnson, 1995). Recovery
of soil fertility is a lengthy process. Lundgren (1978), for exam-
ple, reported low amounts of clay and organic carbon in soils
within a landslide as compared to undisturbed soils, seven
years following the landslide. Based on Pandey and Singh
(1984), nutrient concentrations in forest soils recovered over a
period of 40 years. Zarin and Johnson (1995) showed an in-
complete recovery of organic carbon, calcium, potassium and
magnesium, in the upper part of the soil profile, over a period of
>55 years. Some other studies did not find any spatial or tempo-
ral differences in soil properties affected by landslides when
compared to undisturbed soils. The high spatial heterogeneity
of the parent material can be an important barrier for registering
some significant patterns (Cheng et al., 2016).

The changes in soil properties are influenced by landslide
type and a knowledge of this is essential to understanding how
biological properties, as well as soil fertility, are affected (Cheng
et al., 2016).

The main objective of this study was to evaluate the modifi-
cation of physicochemical properties of soil affected by land-
slides at the Calata locality, Romania. Thus, the current study fo-
cuses on the landslide effects on soil chemical content and on
the recovery of some important elements, such as total organic
carbon (TOC), the main cations (Na*, K*, NH4*, Mg®*, Ca®*) and
soil texture. Secondly, the magnetic susceptibility and physical
parameters of the soil (plasticity, bulk density and rock fragment)
were analysed in order to understand the changes in soil proper-
ties induced by the landslide and to offer practical data for sus-
tainable management of the area. In order to complete these ob-
jectives the landslide susceptibility was analysed using the GIS
method. Assessment of the susceptibility of terrain to landslides
is helpful for indicating the most vulnerable slope sectors.

STUDY AREA

In Romania, the most susceptible sectors for landslide oc-
currence are represented by the Curvature Subcarpathians fol-
lowed by the Transylvanian Depression, Moldavian Plateau,
Moldavian Subcarpathians, Getic Piemont and Eastern Carpa-
thians (Balteanu et al., 2010).

In the southern part of the Transylvanian Depression, for-
med of mudrocks containing illite and montmorillonite with
sandstone intercalations, some old and large landslides are
emplaced on homoclinal structures. The central part of the
Transylvanian Depression, formed by mud rocks of Miocene-
-Pliocene age, is affected by shallow landslides; and the mar-
ginal areas, which are affected by diapirism, are highly suscep-
tible to landslides (Balteanu et al., 2010). Evaluation of instabil-
ity factors and their influence on landslide occurrence has also
been made on the Transylvanian Plain (Rosian et al., 2016), a
large agricultural area, one of the regions most susceptible to
landslides. Another susceptible area is the Somesan Plateau,
which is part of the Transylvanian Depression, most of which
fits into the extreme and high susceptibility classes for landslide
occurrence (Bilasco et al., 2011).

The area studied is situated in the Huedin Depression, on
the north side of Calata Valley (Fig. 1). The Huedin Depression

is located in the western part of the Transylvanian Depression
at the foot of the Vladeasa Mountains (part of the Apuseni
Mountains) that form the western border of the depression. The
village of Calata lies within the Calatele locality (Cluj County).
Based on Law 575/2001 regarding the plan of development of
national territory (Section V — natural hazard risk zones) the
town of Huedin is within a natural risk zone, the susceptibility
level to landslides being medium.

The Transylvanian Basin contains a post-Cenomanian sed-
imentary succession (Upper Cretaceous to Neogene) divided in
four tectonostratigraphic megasequences, associated succes-
sively with Late Cretaceous rifting, a Paleogene sag basin, a
Early Miocene flexural basin and a Middle to Late Miocene
backarc basin (Krézsek and Bally, 2006). In the study area, the
Paleogene deposits represent the post-tectonic cover of the
Carpathian units. During Paleocene-Early Eocene times, in the
eastern and western part of the Transylvanian Basin, alluvial
fan and fluvial systems deposited coarse to fine-grained reddish
sediments with several lacustrine intercalations (Bucur et al.,
2001; Codrea and Hosu, 2001). In Middle-Late Eocene the sed-
imentary succession was composed of evaporites, shallow-ma-
rine carbonates, outer shelf marls, shallow-marine sands and
fine-grained fluvial deposits (Proust and Hosu, 1996). Begin-
ning with the Early Oligocene, the carbonates were replaced by
siliciclastics sediments (Filipescu, 2001).

Calata village is situated on bioclastic deposits with intercala-
tion of calcarenites, dolomitic micrites and siliciclastic deposits.
All these are part of the Vima Formation (Raileanu and Saulea,
1956) being Priabonian in age. This is overlain by continental de-
posits of the Valea Nadasului Formation (Popescu, 1978), this
unit representing the second Paleogene continental sedimentary
formation in Transylvania, comprising coastal plain and fluvial
terrigenous deposits (Hosu, 1999). Within it is the Floresti Mem-
ber, a marine limestone deposit up to 3.5 m thickness (Rusu,
1995). The transition to the following deposits is made via green
clays, thin white dolomicrites or brown limestones.

Geomorphologically, the Huedin Depression shows relief
typical of intermontane depressions, being fragmented by the
hydrographic network. In this process a fluvial relief comprising
an alternation of valley corridors and interfluves was formed.
One of these valley corridors is represented by the Calata Val-
ley with slopes of 7—15° declivity and a difference between the
top and the bottom of 80-130 m. These values indicate that the
hydrographic network is not significantly deepened at the sur-
face of the depression. Close to the Calata locality, the slope
where the studied landslide occurred has a declivity of 7—12°
and the difference between the top and the bottom of the slope
is 84 m. The surface of the slope studied had not been homoge-
neous before the landslide took place, agricultural terraces be-
ing observed both in the field and on the satellite images. Thus,
the slope stability was affected by the human intervention; the
agricultural terraces being later abandoned, the land being cur-
rently used as pasture.

As regards landslides, in the entire Huedin Depression,
33.7% of landslides fall within medium susceptibility areas and
all the rest (66.3%) in high and very high susceptibility areas
(Fig. 2).

The hilly areas have inclinations of 7-15°, the landslide
studied being situated on a slope with 7—12° inclination. The soil
profiles are thin, the main component being clay with blocks of
parent material, represented by the marine limestones of the
Floresti Member.
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Fig. 1. Location of study site in the Calata Depression, western part of Transylvanian Depression

MATERIALS AND METHODS

SAMPLING SITES

Three sample points were chosen for this study. The first
one (profile 1) is located on the landslide scarp, being ~140 cm
in depth. Seven samples were investigated from this profile in
order to evaluate the following soil physical parameters: humid-
ity, plasticity limits, plasticity index, bulk density, grain-size, po-
rosity, pore index, absorption capacity, and magnetic suscepti-
bility (MS). The second location (profile 2 — 60 cm in depth) is
situated inside the landslide body. Six samples were collected,
every 10 cm, in order to investigate the physico-chemical pa-
rameters [magnetic susceptibility, total organic carbon (TOC),
organic matter (OM), pH, total dissolved solids (TDS), electrical
conductivity (EC), major cations, iron content, and rock frag-
ments] from the upper part of the soil. The third location (profile
3) was placed outside the landslide body and it is 60 cm deep.
In all six samples the parameters noted were analysed.

SOIL ANALYSIS

Soil physical parameters were investigated based on na-
tional and international protocols, as follows: humidity (SR ISO
11465:1998); grain-size (STAS 1913/5-85 and SR EN 14688-

2:2005); bulk density (ISO 17892-2:2014), free swell index
(IS-2720-Part-40-1970), and plasticity limits (STAS 1913/4-86).
In order to evaluate variation in ferromagnetic minerals, the
magnetic susceptibility of the soil samples was measured with a
Bartington MS3 system with MS2E surface scanning sensor.
The MS values are expressed in Sl units and were multiplied by
10,000. The MS2 system operates by generating a low fre-
quency, low intensity, AC magnetic field around the sensor.
When sample material is placed near the sensor, the resulting
change in this field is sensed by the system and converted to
magnetic susceptibility readings for both positive and negative
values, to a resolution of 2 x 10° Sl units. The measurement
period was 5 seconds at 2 kHz operating frequency.
Physico-chemical parameters (pH, total dissolved solids,
and electrical conductivity) were analysed in an aquatic soil so-
lution at 1:4 soil:distilled water ratio, using a WTW Multi350i
multiparameter device. The major cations (Na*, K*, NH,", Mg?",
Ca?") were analysed in an aquatic soil solution (1:4 soil:distilled
water ratio), filtered through nylon membrane sterile syringe fil-
ters (0.45 um pore size). In order to protect the ion chro-
matograph column, the aquatic soil solutions were then diluted
with ultrapure water (resistivity of 18.2 MQ cm) to an electrical
conductivity of =100 uS/cm. The cation analyses were per-
formed by ion-chromatography method using a Dionex 1500 IC
system equipped with a CS12A column (4 x 250 mm), lonPac
CG12A precolumn (4 x 50 mm), self-regenerating suppressor
(CSRS ultra 1l, 4 mm) and a conductivity detector. The eluent
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Fig. 2. Landslide susceptibility map of the Calata area

used was an aquatic solution of metasulphonic acid (20 mM), at
a flow rate of 1ml/min. Iron content was measured by an atomic
absorption spectrometer system (AAS-F ZEEnit 700, Analytic
Jena), equipped with air-acetylene flame and a hollow — cath-
ode lamp. Prior to AAS analysis, the soil samples were mineral-
ized with aqua regia.

The total organic carbon and organic matter was deter-
mined through Walkley and Black’s (1934) method.

Percentages of rock fragments, determined based on the
methodology described by van Eynde et al. (2017), were ob-
tained based on grain-size determination, using the sift method.
Only the fragments between 3 and 20 mm were taken into con-
sideration. Rock fragments are particles 2 mm or larger in diam-
eter and include all sizes that have horizontal dimensions less
than the size of a pedon (Miller and Guthrie, 1984).

Mineralogical content was identified through X-ray diffrac-
tion using a Bruker D8 Advance device. Identification of the
mineral phases was performed with Diffrac. Eva 2.1 using the
PDF2 (2012) database.

We conducted a field survey within the area studied in rela-
tion to the plant community based on two drawn relevés with an
area of 12 m? (4 x 3 m) placed inside and outside of the land-
slides studied. In each relevé the recording and identification of
all species was performed.

RESULTS AND DISCUSSION

The landslide studied is a young and shallow one — affect-
ing the soil and the upper part of substrate — the triggering mo-
ment being no older than 2010. It was triggered on a 7-12° in-
clination slope; at this angle, it is well-known that an area is
susceptible to landslides (Rosian et al., 2018). The landslide’s
body is represented by small trenches, detaching one from an-
other, along with grassy vegetation. Their movement pro-
duces some bare areas on its surface, which are affected by
erosion through pluvio-denudation and torrential flow of rain-
water. The landslide studied is 55,665 m? in area, and lies at
641 m altitude (with the scarp zone at 629 m altitude and the
basal part at 602 m).

Based on the Dikau et al. (1996) classification, the landslide
studied is a translational one. There is a main scarp in the upper
part of the landslide (Fig. 3) followed by the main body which
contains transverse cracks. After 2010, one of the transverse
cracks evolved into a secondary scarp which favoured the
movement of the soil mass towards the basal part of the slope
where the infrastructure is located (the DN1R road and an elec-
trical network).
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Fig. 3. Geomorphological sketch of the landslide studied

GENERAL CHARACTERIZATION
OF THE SOIL

From the landslide scarp, a soil profile, 140 cm in thickness,
was studied and consequently the following horizons are de-
scribed: Horizon A (topsoil 0—40 cm) comprises low plasticity
clays, brownish in colour, with calcareous/dolomitic sandstones
in decimetric blocks of two types: reddish sandstones with
macro-feldspars and grayish, fine calcareous/dolomitic sand-
stone. The bulk density of the clays reaches 2.05 g/cm?® and the
porosity and pore index register the lowest values; Horizon A/C
(40-60 cm) is represented by dark clays with low plasticity and
blocks of parent material; Horizon C (parent material
60—140 cm) is formed of dark clays and sandy clays with low
plasticity. At this level, together with the blocks of parent mate-
rial, some newly formed minerals (mostly dendritic in shape)
have been observed. Mineralogical analysis of them indicated
the presence of quartz, calcite and dolomite, formed through
the weathering of mudstones and bioclastic limestones. These
two types of rocks were analysed in thin section and showed
the following characteristics: the mudstone is almost entirely
made of carbonate mud with sparse, very small grains of quartz
and flakes of mica. The bioclastic limestone consists of various
microfossil fragments set in a matrix of microcrystalline calcite.
Intraclasts are represented by quartz grains, thin flakes of mica
and very rare feldspar grains.

Generally, the clays investigated have low plasticity with a
liquid limit between 21.72 and 32.93%. Based on the plasticity
diagram, all the samples analysed fall into the low plasticity
class. The position of Atteberg limits can be related to the min-
eralogy of the clayey soils (Casagrande, 1948; Holtz and
Kovacs, 1981; Ohlmacher, 2000). Thus, the liquid limit and
plasticity index for each sample analysed was plotted on the
plasticity diagram. The plasticity diagram included the montmo-
rillonite, illite, kaolinite and chlorite fields and showed that all the
samples came from areas situated outside the main mineralogi-
cal fields. Underwood (1967) demonstrated that soils with clay
fractions composed of illite and montmorillonite have a higher
absorption capacity, and are more susceptible to produce land-
slides, than those composed of kaolinite and chlorite.

The colloidal activity of clays, calculated as a ratio between
the plasticity index and the clay content (Skempton, 1948) is
low, with a minimum value of 0.09 and a maximum value of
0.54. Based on this parameter, the clays investigated fall into
the inactive clays category (Skempton, 1953). The colloidal
activity values can be correlated with the mineralogical content
(Moos, 1938) indicating that values <0.33 suggest the pres-
ence of quartz, calcite and muscovite. The colloidal activity of
these minerals is low due to the simple crystalline structure.
Moreover, colloidal activity with values <0.75 indicates that the
clays have the following characteristics: the clayey fraction
contains mainly kaolinite or low percentages of clay minerals;
were deposited in the freshwater; were deposited in brackish
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waters but subsequently percolated by freshwaters. Thus,
based on the index obtained of colloidal activity as well as the
results obtained from the plasticity diagram, the analysed soil
samples have a low susceptibility to produce landslides. The
main causes for the landslide investigated therefore relate to
external factors rather than to the geological background char-
acteristics.

MAGNETIC SUSCEPTIBILITY

The magnetic properties of the soil relate to the presence of
iron compounds, mostly iron oxides and iron sulphides. The
level of iron oxides in the soil depends on the age and nature of
the soil, biological and pedological activity, and soil temperature
(Boadi et al., 2014). The main sources of iron are primary min-
erals in the parent material due to its low solubility under oxida-
tive conditions at a neutral pH. The soil particles differ in their
degree of magnetism due to differences in ferrous compound
concentrations, controlling the magnetism value within the soil
(Parker, 1983). In stable soils the MS increases gradually from
the deeper layers to the surface but in degraded soils this pat-
tern is absent and the MS is low (Boadi et al., 2014). In this
study, the MS in profile 1 has higher values in the upper part (to
60 cm in depth) and this can be related to the secondary forma-
tion of ferromagnetic minerals (Dearing et al., 1986). The MS
has values between 2 and 4 in the upper part of the profile, de-
creasing to 0.11 into the basal part. In the second profile (inside
the landslide body) the lower values (<5) of MS were registered
in the upper part and higher values (>6) in the deeper layers,
suggesting movement of the soil mass with the secondary for-
mation of ferromagnetic minerals and/or their transport into
deeper layers during movement. For profile 3 (outside the land-
slide body) the MS values are higher (4-5) in the upper part de-
creasing with depth to 3.35.

Thus, based on MS values, degradation of the soil inside
the landslide body can be observed.

Some studies (Le Borgne, 1955) showed that the MS is
higher in the upper part of the slope and lower in the basal part.
In the current study the MS is higher in the basal part of the
slope and this can be related to the movement of the soil mass
and deposition in the basal part, or due to the presence of car-
bonates. The MS can be “diluted” by water, humus, and car-
bonates (Mullins, 1977).

Regarding the iron content, measured inside and outside
the landslide, the values are similar, with a slight increase out-
side the landslide (Fig. 4). Inside the landslide, the iron concen-
tration has an average value of 14,321.1 mg/kg while outside
the landslide the mean value of iron concentration is
14,971.1 mg/kg. In the soil, iron is frequently present in ferrous
(Fe*") form in primary minerals and a few phyllosilicates while
its oxidation to the ferric form (Fe3+) shows significant pedo-
genetic variation (Adriano, 2001; Stucki et al., 2002). In well-
drained soils the most abundant minerals as a source of crystal-
line Fe oxides are goethite and hematite. Other Fe oxides can
be seen in poorly drained soils as crystalline minerals (magne-
tite, lepidocrocite and maghemite) or short-range ordered crys-
talline minerals (ferroxite and ferrihydrite) or non-crystalline pre-
cipitates (Cornell and Schwertmann, 2003). Redox potential
and pH are the two factors that govern the behaviour of Fe in
soil. Precipitation of poorly ordered Fe minerals (ferrihydrite) is
promoted by neutral pH, while acidic and reduced conditions fa-
cilitate the mobilization of Fe minerals (Schwertmann, 1988). A
positive correlation was observed in our samples between pH
and Fe concentration, the lowest values of Fe being identified in
the samples with a slightly acidic pH and higher ones in those

Fe [mg/kg]
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14400
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Fig. 4. Iron concentration of the soil from inside
and outside the landslide

with a neutral pH. The oxidation-reduction potential (Eh) shows
a negative correlation with the Fe values but only in the samples
from inside the landslide body. Generally, the pH and Eh values
of the samples inside the landslide body indicate conditions for
the occurrence of metastable minerals such as lepidocrocite
and, possibly, in small amounts, of pyrite. In addition, these min-
erals characterize a non-equilibrium state in the pedo-environ-
ment (Schwertmann, 1988).

PHYSICO-CHEMICAL PARAMETERS OF THE SOIL INSIDE
AND OUTSIDE THE LANDSLIDE

As depicted in Figure 5, the pH value for the soil analysed,
inside the landslide, is slightly acidic, increasing from surface
(6.24) to depth (7.01) and neutral for the soil outside the land-
slide, varying between 7.01 and 7.40. The same pattern was
registered for TDS and EC (Fig. 5) with values between
48-69 mg/l inside the landslide and 63-77 mg/l outside the
landslide, and 74.4-108.2 uS/cm inside the landslide and
98.1-119.4 uS/cm outside the landslide respectively.

The values of physico-chemical parameters of disturbed
soil are lower than those observed in stable soils (Cheng et al.,
2016) and tend to increase with the deposition of the slipped
material. Some other studies show that there is not a clear pat-
tern for these values between disturbed and undisturbed soils
(van Eynde et al., 2017). The results obtained showed lower
values of these parameters for the soil situated inside the land-
slide, probably due to the fact that the landslide is still active, the
soil mass being transported towards the base of the slope.

TOTAL ORGANIC CARBON AND ORGANIC MATTER

The TOC maximum value inside the landslide is 0.68% with
a mean value of 0.54%. Outside the landslide, the TOC content
has a maximum value of 0.86% with a mean value of 0.53%
(Fig. 6). For the organic matter the maximum value is 2.0%, with
a mean value of 1.61% for the soil situated inside the landslide,
and 2.5%, with a mean value of 1.59% for the undisturbed soil
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(Fig. 6). The content of TOC differs according to the age of the
landslide, being higher in the older landslides (van Eynde et al.,
2017). Younger landslides have a lower content of TOC
(~0.07%) the difference between these landslides and the un-
disturbed soils being up to 1.5% (Lundgren, 1978; van Eynde et
al., 2017). The increasing trend of TOC content over time in the
soils from landslides suggest that this parameter can be used
as an index for the age of the landslides or for the frequency of
their production. Thus, this type of study is essential in the con-
struction of risk maps for landslides (van Eynde et al., 2017).

Organic matter was used as an indicator of soil quality due
to the many important interactions within the soil system
(Blonska et al., 2018). Changes in the amount of organic soil
matter, nutrients and physical properties have different intensifi-
cation degrees within landslides, and strongly influence the pro-
cesses of soil cover and vegetation restoration (Pickett et al.,
1999; Shiels et al., 2006). The stabilization of organic matter
seems to be in direct relation with the texture of the soil in terms
of a higher content of organic matter and its stabilization being
caused by the low percentage of fine silt fraction and clay
(Blonska et al., 2018).

ROCK FRAGMENT

Rock fragment content is low in both cases (1.06% in P2
and 2.77% in P3) but with higher values in the soil from outside
the landslide (Fig. 7).

Other studies indicated higher rock fragment contents in-
side a landslide compared to those situated outside the land-
slide, especially in young landslides. Decreasing values of this
parameter, over time, can be caused by fine colluvial material
deposition (Cheng et al., 2016; van Eynde et al., 2017). The
presence of rock fragments can be used, in the field, as an indi-
cator of landslide disturbances.

MAJOR CATIONS

Comparing the cations content of the soil analysed outside
and inside the landslide, higher concentrations of ammonium,
magnesium and calcium were recorded in the soil outside the
landslide. In the case of potassium, the higher values were
registered within the landslide. For sodium, on the other hand,
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Fig. 7. Rock fragment content of the soil from inside
and outside the landslide

the values were almost equal, slightly higher outside the land-
slide (Fig. 8).

The results obtained indicate that the landslide has an im-
pact on the physico-chemical characteristics of the soil. The
younger landslides, as in this case, register lower values of
TOC and K" content, and may reach the total exhaustion of
these elements. However, this scenario is not visible in the case
of old landslides. The TOC and potassium content inside land-

slides tend to increase over time due to vegetable residues, or-
ganic and inorganic fertilizers, and alteration of primary miner-
als and deposition of colluvial deposits (van Eynde et al., 2017).
Some studies (Gottardi and Galli, 1985; van Eynde et al., 2017)
indicate higher values of sodium both in younger and older
landslides. In this study, the sodium concentrations are similar
in both types of soil analysed.

Some studies have shown no differences for calcium and
magnesium content between stable and disturbed soils (van
Eynde et al., 2017). In this study, the concentrations of these
cations are higher in the undisturbed soil than in the disturbed
one. Similar results were obtained in some other studies
(Guariguata, 1990; Manjusha, 1990; Reddy and Singh, 1993).
Their results suggest that landslides have a significant impact
on bivalent cations. On the other hand, other authors (Adams
and Sidle, 1987; Manjusha, 1990; Shrumpf et al., 2001) have
argued that landslides bring up, from the deepest layers, a less
altered and nutrient-rich material which leads to the improve-
ment of soil fertility.

TEXTURE

No difference was observed in the textural characteristic of
the soil, despite other studies, like the one performed by Zarin
and Johnson (1995) who found a lower clay content in land-
slides located in a mountain forest in Puerto Rico. A similar soil
texture, namely clay texture, was determined for most of the
samples analysed, except for the sample from 60-80 cm in
depth from inside the landslide, where a sandy clay texture was
identified. A possible explanation for this small difference is that
the profiles analysed are strongly affected by alteration pro-
cesses and with no clear limits between horizons (Knapen et al.,
2006). In conclusion, the disruption process of soil is not very
deep in comparison to the entire soil profile, thus the textural dif-
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Fig. 8. Cations content of the soil inside and outside the landslide
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ferences between disturbed and undisturbed soils are difficult
to observe.

Increasing fertility of soils affected by landslides is a long
process, covering many years, one of the most important fac-
tors in this case being represented by the spatial heterogeneity
of the parent material (Walker and Shiels, 2013).

VEGETATION ASSEMBLAGES

The vegetation proved to be an important measure for the
mitigation of land degradation due to the fact that it increases
the shear strength of the soil through a series of mechanical
and hydrological effects (Norris et al., 2008). While the mechan-
ical effect of vegetation on slope stabilization has been exten-
sively studied (\Wu, 1979; Mickovski et al., 2009; Bordoni et al.,
2016) the hydrological effect, although known, has been rarely
reported in the scientific literature (Stokes et al., 2014; Gonza-
lez-Ollauri and Mickovski, 2017).

Information regarding the behaviour of vegetation from a
hydrological point of view may contribute to the efficient and
sustainable selection of plant species (McVicar et al., 2010;
Duan et al., 2016) in order to reduce slope instability and asso-
ciated risks (Fell et al., 2005; Lu and Godt, 2013; Gonza-
lez-Ollauri and Mickovski, 2017).

In our study the vegetation assemblages contain 27 spe-
cies, 16 of them outside the landslide and 11 inside the land-
slide. Outside the landslide studied, the plant species form part
of two assemblages: Polygalo majori-Brachypodietum pinnati
and Poo—Festucetum pratensis. Brachypodietum pinnati is
widespread, especially on steep and unfertilized slopes (Luth et
al., 2011), in areas affected by landslides or in abandoned and
unmanaged grassland patches (Sojnekova and Chytry, 2015;
Magura, 2017). In the area studied this species was observed
outside the landslide and a possible explanation may be that, in
the past, the part that is now outside the landslide was affected
by another landslide, and this specific vegetation developed in
that area.

CONCLUSIONS

The results obtained in the present study emphasize the
variation in the topsoil physico-chemical characteristics inside
and outside of the landslide areas, demonstrating the landslide
impact on the topsoil fertility. Taking into the consideration the
contrasting results in topsoil properties between the two studied
cases (areas), the small difference can be explained in terms of
the young age of the landslide.

The landslide caused a decrease in pH, total dissolved sol-
ids and electrical conductivity; total organic carbon and organic
matter; calcium, magnesium and ammonium content and an in-
crease in potassium content. There were no other specific dif-
ferences in the parameters analysed. The low amount of or-
ganic matter and organic carbon can affect agricultural produc-
tion and water quality, and at a larger scale, can contribute to
global climate change. After agricultural abandonment, the soil
was affected by landslides, which led to a decrease in soil ca-
pacity to store carbon.

Further investigations will be performed on other landslides,
of different ages, in order to establish landslide impact on top-
soil properties and to build more precise patterns regarding the
level and the distribution of the soil physico-chemical parame-
ters in such areas.

Concerning the main goal of our investigation, namely
pointing out the difference between disturbed and undisturbed
topsoil, our results show that at least in the case of some pa-
rameters, the landslide represents an issue for soil quality and
influences the fertility recovery process. Furthermore, the as-
sessment of physico-chemical properties of topsoil is also im-
portant in choosing the right strategy for a management plan.
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