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The sedimentary organic matter (SOM) assemblages and sedimentology of the Menilite Beds from the Dukla, Grybéw and
Vrancea units in the Slovakian and Romanian Outer Carpathians are described. Qualitative and quantitative analyses of the
SOM help ascertain depositional conditions, while the thermal maturity of the organic matter studied is estimated utilizing the
Spore Colour Index and UV light excitation techniques. The sedimentary organic particles were grouped into ten SOM cate-
gories: marine palynomorphs (dinoflagellate cysts), sporomorphs (saccate and non-saccate, pollen and spores), freshwater
algae (Botryococcus sp., and other freshwater microplankton), phytoclasts (cuticles, translucent wood, opaque wood), resin
and amorphous organic matter (AOM). All samples are dominated by AOM. The presence of Botryococcus sp., Pediastrum
sp., Pterospermella sp. and Campenia sp., in some samples points to deposition under hyposaline conditions. It is inter-
preted that the freshwater influx induced water column stratification in the basin, leading to the development of dysoxic to
anoxic bottom-water conditions that enhanced the preservation of AOM. Kerogen analysis in UV light and evaluation using
the Spore Colour Index demonstrated different thermal maturation patterns from the Slovakian (post-mature) and Romanian
(immature) sections. Integrated palynofacies analysis (notably, the presence of freshwater algae) and sedimentological ob-
servations (e.g., hummocky cross-stratification) lead to the conclusion that the deposition of the Menilite Beds in the Vrancea
Unit (Romania) was relatively proximal to the shoreline, above storm wave base, whereas the Slovakian units (Dukla and

=

Grybéw) were deposited in a more distal setting.
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INTRODUCTION

Organic-rich sediments deposited in the Paratethys Ocean
during the Oligocene have long been considered to be potential
hydrocarbon source rocks (Zuber, 1918; Szajnocha, 1920; De
Cizancourt, 1931; Gucik, 1980; Ziegler and Roure, 1999). The
Menilite Beds are an example of these deposits, in which total
organic carbon (TOC) can exceed 20% (Koster et al., 1998;
Kosakowski et al., 2009, 2018). Consequently, this stratigraphic
unit has been investigated primarly for its geochemical proper-
ties and potential for hydrocarbon generation (Koltun, 1992;
Koster et al., 1998; Kotarba et al., 2007; Belayouni et al., 2009;
Kosakowski et al., 2009, 2018; Sachsenhofer et al., 2015;
Wendorff et al., 2017) over many years, a particularly relevant
topic given the numerous controversies regarding the
depositional setting of the Menilite Beds (Kotlarczyk et al,,
2006; Jankowski, 2015; Dziadzio et al., 2016). However, exist-
ing studies rarely use data from sedimentary organic matter
(SOM) analyses in their environmental interpretations, relying
instead on palynomorph assemblages (Olaru, 1970; Tabara,
2010, 2017; Tabara et al., 2015).
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Biostratigraphic studies based on calcareous nanoplankton
(Belayouni et al., 2009; Garecka, 2012), foraminifers
(Olszewska, 1982, 1985), dinoflagellate cysts (Tabara, 2010,
2017; Tabara et al., 2015), and ichthyofauna (Kotlarczyk et al.,
2006) suggest that the Menilite Beds of the Outer Carpathians
were largely deposited in the Rupelian (Early Oligocene). How-
ever, in the marginal parts of the basin, deposition continued
until the Late Oligocene. In some places, deposition extended
into the late Egerian—earliest Aquitanian (Miocene, NN1 Cal-
careous Nannoplankton Zone; Andreyeva-Grigorovich and
Gruzman, 1994; Andreyeva-Grigorovich et al., 1997; Garecka,
2012; e.g., the Skole Unit). The development and deposition of
Menilite-type facies (organic-rich, fine-grained Oligocene
strata) across the entire Outer Carpathians (Czech Repubilic,
Poland, Slovakia, Ukraine, and Romania) was initially driven by
progressive extension in the Early Oligocene. Concurrent tec-
tonic motion in the Paratethys region caused the isolation of the
basin from the open ocean. Therefore, the restriction of saline
oceanic circulation and considerable freshwater influx into the
basin (Baldi, 1980) spurred water column stratification
(Bojanowski et al., 2018) and the periodic development of
dysoxic conditions at the sediment-water interface (Kotlarczyk
and Uchman, 2012). However, Miclaus et al. (2009) suggested
that anoxic conditions might have also been favoured by in-
creased biological productivity caused by the isolation of the
Parathetys, global climate changes, or relative sea-level fluctu-
ations. Oxygen-deficient conditions, combined with relatively
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Fig. 1. Schematic map of the Alpine-Carpathian-Dinaride domain, with location of the sections studied indicated
(after Kovac et al., 2007)

Slovakia: 1 — Smilno, 2 — Dara Prislop; Romania: 3 — Agapia, 4 — Piatra Neamt, 5 — Nechit

stable sedimentation, drove the deposition of organic-rich,
fine-grained sediments throughout the entire basin(s), leading
to a high degree of facies unification (Jankowski, 2004;
Kotlarczyk and Uchman, 2012). In the geological record, the
presence of anoxic events is often reflected in the enhanced
preservation of SOM. A qualitative and quantitative analysis of
SOM may allow for the determination of sedimentary conditions
and fluctuations within the anoxic event interval across
isochronous horizons and within vertical successions of macro-
scopically identical rocks (Pilskaln, 1991). Palynofacies analy-
sis has the potential to reveal hitherto hidden aspects of the
depositional setting and changes within the Menilite Basin.
Palynofacies analysis is based on the optical microscopy of
organic matter released from the mineral phases of the rock
(Combaz, 1964). This method, based on the diversity of ob-
served organic matter, allows for the determination of the petro-
leum potential (by estimation of kerogen type) of the sedimen-
tary rocks and the reconstruction of their depositional environ-

ments (Tyson, 1995; Batten, 1996). Organic sedimentary parti-
cles visible under a transmitted light microscope may show a
large diversity of colours, morphologies, opacities, and recog-
nisable structures (Tyson, 1995), which is why both quantitative
and qualitative palynofacies analysis are useful in reconstruct-
ing depositional settings.

This study focuses on Menilite Beds outcrops currently sep-
arated by great distances (~600 km) and located within different
tectonic units (Fig. 1). Palynofacies and sedimentological analy-
sis should allow for the verification of (1) sedimentary conditions
within the Oligocene Carpathian basin(s) in potentially distant
depositional zones and (2) organic matter distributions as re-
flected in the present tectonic pattern.

The aims of the present study include: (1) a palynofacies
characterisation of the Menilite Beds within the Vrancea Unit
(Romania) and the Smilno and Dara Prislop units (Slovakia); (2)
a determination of their respective sedimentary settings; and (3)
an assessment of the hydrocarbon potential of the Menilite Beds.
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GEOLOGICAL SETTING

The study area is located within the Outer Carpathians, al-
ternatively referred to as the Flysch Carpathians (e.g., Kovac et
al., 2007; Jankowski et al., 2012). The Carpathians are the
eastern prolongation of the Alpine arc and were formed after the
closure of the Tethys Ocean during the Cretaceous to the Mio-
cene, as a consequence of the collision of a series of
microplates with the European Platform (Froitzheim et al.,
2008). According to the majority of conceptual models, this pro-
cess may have terminated with the subduction of the European
Platform margin under a group of microplates, coincident with
the complete closure of the Tethys Ocean. This, in turn, re-
sulted in the deformation and imbrication of strata accumulated
within the so-called Outer Carpathian Basin (Jankowski, 2015;
Olszewska and Szydto, 2017), the Carpathian Foreland Basin
(e.g., Grasu et al., 1999; Puglisi et al., 2006; Miclaus et al.,
2009), or the Outer Carpathian Ocean (Golonka et al., 2006)
and their partial overthrusting onto the platform (Mahel and
Buday, 1968; Ksigzkiewicz, 1972; Mahel, 1974). Traditionally,
in its western extent the Carpathian Orogen is subdivided into
the Inner Carpathians and the Outer Carpathians (see Mahel
and Buday, 1968; Ksigzkiewicz, 1972).

In Romania, the Outer Carpathians are referred to as the
Moldavide Belt (Sandulescu, 1975, 1980). In some reports
(Andrusov, 1968; Plasienka et al., 1997), the term “Central
Western Carpathians” is used interchangeably with “Inner
Western Carpathians”. The boundary between the Inner and
Outer Carpathians is traditionally interpreted to occur along the
Pieniny Klippen Belt, a narrow structure presently interpreted in
two ways: (1) as a Early/Middle Miocene suture between the
European foreland and the Alcapa Block of the Inner
Carpathians (Birkenmajer, 1986; Csontos and Nagymarosy,
1998), or (2) as a tectonic melange zone (Jankowski, 2015) de-
veloped along a strike-slip fault (Birkenmajer, 1977; Jurewicz,
2005) and characterized by the presence of both older (Trias-
sic, Jurassic, Cretaceous) and younger (Paleogene) strata. In
the marginal Inner and the southern part of the Outer
Carpathians, Oligocene sediments were deposited in basins
during the extensional phase (Central Carpathian Paleogene
Basin — Janocko and Jacko, 1998; Sotak, 1998; East
Carpathian Paleogene Basin — Jarmofowicz-Szulc and Jan-
kowski, 2011). In the Romanian portion of the Carpathians,
Oligocene sediments were deposited in the hinterland of the
Outer Carpathians or in the Moldavides. Traditionally, the fol-
lowing units are distinguished in the Slovakian and Polish seg-
ments of the Outer Carpathians: from south to north, the
Magura Unit, the Dukla Unit, the Silesian Unit, a narrow belt of
the Weglowka Unit, and the Skole Unit. Some researchers (see
Kotlarczyk, 1988; Jankowski et al., 2004) also distinguish the
Boryslav—Pokuttya Unit in the vicinity of Przemysl.

The Romanian Carpathians are also subdivided into two re-
gions: an inner one, composed of crystalline basement nappes
and Mesozoic sedimentary rocks, and an outer one, primarily
composed of Cretaceous and Paleogene flysch deposits
(Sandulescu, 1975, 1980; Balla, 1986; Badescu, 1997). The in-
nermost tectonic units (i.e., the Macla and Audia nappes) and
the outermost units (the Tarcau, Vrancea and Subcarpathian
nappes) constitute the Moldavide Nappe Complex (Sandu-
lescu, 1975; Badescu, 1998; Fig. 1).

According to many studies, deposition within the Carpa-
thians took place in a series of basins or sub-basins that corre-
spond to the present-day units of the Outer Carpathians
(Ksigzkiewicz, 1972; Golonka and Krobicki, 2004; Slaczka et
al., 2006, 2012; Oszczypko-Clowes et al., 2015). The Skole,
Sub-Silesian, Silesian, Dukla, and Magura sub-basins and their

eastern prolongation formed part of the rifted European margin
(Oszczypko and Oszczypko-Clowes, 2003; Golonka et al.,
2006). Adjacent basins were locally separated by ridges: for in-
stance, the Silesian ridge separated the Silesian and Magura
basins (e.g., Golonka et al., 2006). According to Birkemajer
(1986) and Golonka et al. (2006), it is envisioned that the
Silesian and Magura basins were underlain by oceanic base-
ment. Traditionally, these basins have been interpreted as pri-
marily filled with deep-water, mostly tubiditic deposits (e.g.,
Kotlarczyk and Uchman, 2012). However, some authors have
recently suggested that deposition in these areas took place in
a single basin, subject to multi-stage rebuilding as a result of
changes in the tectonic regime (Jankowski, 2004). In this case,
the formation of the Carpathian basins was driven mainly by de-
composition of the East European Platform margin.
Contractional stages pinpoint the formation of a foreland basin
(Jankowski and Wysocka, 2019). Jankowski (2007, 2015) and
Jankowski and Wysocka (2019) have additionally distinguished
an extensional stage, during which sedimentation took place in
half-graben structures. The process of basin closure and sedi-
mentation cessation was diachronous, progressing from west
to east; in Romania, this process extended into the Pliocene
(e.g., Royden and Baldi, 1988; Linzer et al., 1998; Golonka et
al., 2006).

MENILITE BEDS

The Menilite Beds (the name is derived from a variety of opal,
known as menilite; Glocker, 1843) occur in almost all tectonic el-
ements of the Western and Romanian Carpathians (Murgeanu
et al., 1970; Lexa et al., 2000; Jankowski et al., 2004, 2007,
2012; Wagner, 2008). The unit is also referred to as the Menilite
Formation, Amphisyla, the Disodilic Beds (Cordier, 1808, derived
from disodil, a variety of menilite), and the Meletta, Czeczwin,
and Smilno beds (Glocker, 1843; Jankowski et al., 2004, 2007,
2012). In the western part of the Romanian Carpathians, the
Menilite Beds are divided into two units: (1) the Menilite Beds
(lower), which mainly consists of cherts and shales, is separated
by the Bituminous Marl from (2) the shale unit (upper) with cherts
and sandstones, here referred to as the Disodilic Beds (upper;
e.g., Jankowski et al., 2012; Tabara, 2017; Fig. 2). In the
Slovakian Carpathians, the Menilite Beds are divided into three
subunits: (1) the Cherts, (2) the Lower Menilite Beds, and (3) the
Upper Menilite Beds (Stranik and Hanzlikowa, 1963). The
Menilite Beds are variable in thickness, which is largely con-
trolled by the development of sandstone units (e.g., Gucik and
Wojcik, 1982; Gucik, 1987; Kotlarczyk and Les$niak, 1990;
Kotlarczyk et al., 2006). Jarmofowicz-Szulc and Jankowski
(2011) interpreted the occurrence of different lithologies (i.e.,
conglomerates, sandstones, diatomites, marls, carbonates, and
different types of shale) as associated with deposition in morpho-
logically diverse basin(s).

The deposition of the Menilite Beds initiated in the early
Oligocene in an isolated, marginal part of the Paratethys. The
basin was characterized by fluctuating salinity and restricted cir-
culation (Baldi, 1980; Popov et al., 2010). The Menilite Beds are
dominated by organic-rich, fine-grained strata deposited under
anoxic conditions (e.g., Pauca, 1936; Veto, 1987; Sachsenhofer
et al., 2015). The basal boundary of the Menilite Beds is consid-
ered to be isochronous (Olszewska, 1985). In contrast, their up-
per boundary is diachronous (Garecka, 2008, 2012). The
Menilite Beds are progressively overlain from the south by the
Krosno Beds. In the marginal portions of the Outer Carpathian
Basin(s), sedimentary breccias, such as the Slon Beds, the Gura
Soimului Beds, and the Vorotyshcha Beds, overlie the Menilite
Beds (Fig. 2; Grasu et al., 1988; Jankowski et al., 2012).
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Fig. 2. Correlation of regional lithostratigraphic units
(based on Jankowski et al., 2012) with the exposures
studied indicated

Units from which samples were collected are underlined; Romania,
Vrancea Unit: 1 — Doftana Beds, 2 — Brebu Conglomerate, 3 — Salt
Beds, 4 — Slon Beds, 5 — Gypsum Beds (Gura Soimului Beds, Gura
Misina Beds), 6 — Upper Dysodilic Shale, 7 — Kliva Sandstone, 8 —
Lower Dysodilic Shale, Bituminous Marl, Menilite Beds, 9 —
Globigerina Marl, Lucacesti Sandstone, 10 — Bisericani Beds, 11 —
Doamna Beds, 12 — Jgheabu Marl, 13 — Gresu Beds, 14 — Piatra
Uscata Beds, Casin Beds, 15 — Lepsa Beds; Slovakia, Dukla and
Gryboéw units: 1 — Cergowa Beds, 2 — Menilite Beds, 3 — Kliva Sand-
stone, 4 — Cergowa Sandstone, 5 — Papin Beds, 6 — Mszanka Beds,
7 — Globigerina Marl, 8 — Submenilite Beds, 9 — Bukovec Sand-
stone, 10 — Cisna Sandstone, 11 — Lupkow Beds

Thin layers of coccolithic limestone, presumably related to
phytoplankton blooms, are found in the Menilite Beds (Uhlig,
1882; Nowak, 1965; Haczewski, 1989; Ciurej and Haczewski,
2016). These layers — the Tylawa, Wujskie, and Jasto lime-
stones — are considered to be isochronous (Jucha and
Kotlarczyk, 1961; Koszarski and Zytko, 1961; Jucha, 1969;
Kotlarczyk et al., 2006). In the lower part of the Menilite Beds
succession, regional tuff horizons (Sikora et al., 1959;
Koszarski and Wieser, 1960) and diatomites (the Futoma Diat-
omite) are recognized (Krzyzanowski, 1962; Kotlarczyk, 1988;
Kotlarczyk and Le$niak, 1990).

Numerous lithostratigraphic equivalents of the Menilite
Beds have been distinguished, which are referred to as the
“Menilite facies” due to their common features (Oligocene or-
ganic-rich, primarily fine-grained strata; Jarmotowicz-Szulc and

Jankowski, 2011). The Menilite Beds are present within the suc-
cessions of the Central Carpathian Paleogene Basin (Poland,
Slovakia, and the Czech Republic), the Buda-type Paleogene
(Croatia, Slovenia and Hungary), the Transylvanian Basin (Ro-
mania), and the Black Sea region (Ukraine and Russia; Puglisi
et al., 2006; Jarmotowicz-Szulc and Jankowski, 2011; Filipek et
al.,, 2017; Mayer et al, 2018). The Menilite Beds are
stratigraphically equivalent to a portion of the fine-grained
source rocks from the eastern Paratethys called the Maikop
Group, which was deposited in similar, brackish-water condi-
tions during the “Solenovian Event” (Voronina and Popov,
1984; Popov et al., 1993; Popov and Studencka, 2015). In par-
ticular, marlstones with different regional nomenclature (the
Dynéw Marl, the Ostracoda Beds and the Romanian Bitumi-
nous Marl) are considered to be a Paratethys-wide marker hori-
zon (Mayer et al., 2018). Uniform, shallow-water faunas of small
bivalves, with the notable presence of Solenovian-type en-
demic genera, locally together with various faunal groups (e.g.,
freshwater calcareous nannofossils, marine fish), have been
identified in these marlstones in Poland, Ukraine, the Czech
Republic, Kazakhstan, Georgia and Romania (Kazakhashvili,
1984; Voronina and Popov, 1984; Rusu, 1999; Popov and
Studencka, 2015; Studencka et al., 2016).

HYDROCARBON POTENTIAL OF THE MENILITE BEDS

The Outer Carpathians are one of the oldest petroleum-pro-
ducing regions in the world: the first oil exploration in this region
was documented in 1853 (Karnkowski, 1999). Petroleum accu-
mulations have been identified in almost all sandy
lithostratigraphic members (the Istebna, Hieroglyphic and
Krosno Beds; Fig. 2) and in the Paleozoic—Mesozoic basement
of the Outer Carpathians (Kotarba and Koltun, 2006; Wiectaw
et al.,, 2011).

The bituminous Menilite Beds are considered to be the one of
the source units in the Carpathian region (see Zuber, 1918;
lonescu, 1994; Dicea, 1995; Kotarba and Koltun, 2006;
Stefanescu et al., 2006; Belayouni et al., 2009; Kosakowski,
2013). The high hydrocarbon potential of the Menilite Beds is in-
terpreted and deduced based on its high TOC values and
kerogen type. In some localities, TOC exceeds 20% (Koster et
al., 1998; Kosakowski et al., 2009, 2018; Sachsenhofer et al.,
2015; Jirman et al., 2018; Rauball et al., 2019). The kerogen con-
tent of the Menilite Beds consists mainly of oil-prone, low-sulphur
Type-ll kerogen, with the occasional occurrence of Type-lll
kerogen (Curtis et al., 2004; Lewan et al., 2006; Kosakowski et
al., 2009; Rauball et al., 2019). In the Menilite Beds, variability in
kerogen type reflects a combination of the input of different
sources of organic matter, together with variable environmental
conditions and bathymetry (Kotarba and Koltun, 2006). Within
the Outer Carpathians, the eastern part of the Silesian Unit and
the Ukrainian region are characterized by the greatest hydrocar-
bon potential, primarily due to the dominance of oil-prone Type-I
kerogen (Kotarba and Koltun, 2006). The Menilite Beds reached
a spectrum of distinct thermal maturation levels, primarily driven
by variations in organic matter type, burial history, and geother-
mal gradient (e.g., Stefanescu et al., 2006).

Geochemical analyses of the Menilite Beds in several out-
crops in the Polish, Ukrainian and Romania Carpathians indi-
cate that the stratigraphic unit is thermally immature to margin-
ally mature, reaching into the early stages of the oil window
(Curtis et al., 2004; Anastasiu, 2016; Wendorff et al., 2017;
Kosakowski et al., 2018; Rauball et al., 2019). In the Polish and
Ukrainian Carpathians, thermal maturity of the Menilite Beds in-
creases from the outer to the inner tectonic units, from imma-
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Table 1

GPS coordinates for the investigated exposures (source: ArcGIS Basemap)

Locality Sample

GPS coordinates

DP 10, DP 9B
Dara Prislop 7, DB 6

, DP 9A, DP 8B, DP 8A,
DP 7, , DP 5C, DP 5B, DP 5A,

DP 4B, DP 4A, DP 3B, DP 3A, DP 2,
DP 1A

49°2'50.644"N

22°17°25.598"E

S2

49°21°22.026"N

21°25’45.778"E

S 12

49°21°22.026"N

21°25'45.778"E

Smilno S 16

49°21°22.026"N

21°25'45.778"E

S 24

49°21°22.421"N

21°25'45.500"E

S 30

49°21°22.421"N

21°25'45.500"E

N 1008b, N 1008a

46°45'55.166"N

26°26'19.824"E

1003a

46°46°15.899"N

26°25'37.715"E

1001

46°46’14.949"N

26°25'31.904"E

1000

46°46°15.107"N

26°25'27.847"E

993b

46°46°'21.166"N

26°25'12.933"E

991

46°46°'20.298"N

26°25'8.461"E

Nechit 977

46°46’16.468"N

26°24'11.765"E

971

46°46’14.246"N

26°23'58.661"E

962

46°45’53.777"N

26°23'4.056"E

961

46°45'53.042"N

26°23'1.766"E

960

46°45'52.801"N

26°23'1.277"E

952

46°45'53.064"N

26°22'50.754"E

949

46°45°51.595"N

26°22'46.762"E

PN KG

46°56°27.840"N

26°22'10.320"E

PN SPK

46°56°13.200"N

26°22'10.320"E

Piatra Neamt
PN PM

46°56'5.220"N

26°22'4.320"E

PN PK

46°56°17.940"N

26°22'7.860"E

A 1040b, A 1040a

47°9'43.715"N

26°13'50.696"E

Agapia A 1041

47°9'44.525"N

26°13'50.308"E

A 1042, 1042c

47°9'46.019"N

26°13'54.415"E

ture in the Skole and Boryslav—Pokuttya units to overmature in
the southern parts of the Silesian and Dukla units (Kotarba et
al., 2007; Kosakowski et al., 2018). A similar relationship be-
tween thermal maturity and location within the orogen was also
noticed in Romania (Vrancea and Tarcau units) by Wendorff et
al. (2017). However, at some localities in Ukraine (the
Boryslav—Pokuttya Unit and locally the Skiba Unit), where the
unit was buried to between 3 and 6 km depth, the Menilite Beds
are in the oil or gas window (Koltun, 1992; Kosakowski et al.,
2018). The organic geochemical compounds of oils, and in par-
ticular the presence of oleanane, at these localities suggest that
they were generated from the Menilite Beds (Kotarba and
Koltun, 2006; Wiectaw et al., 2012) from an early stage to the
peak of the oil window.

The presence of sandstone and conglomerate lithosomes
in the Menilite Beds (e.g., the Kliva, Magdalena and Cergowa
Sandstones, and the Maly Vyzen Beds; Jankowski et al., 2012)
is important, as these coarse-grained siliciclastic strata serve as
potential hydrocarbon migration routes or reservoir rocks.
Coarse-grained deposits of Oligocene age have good reservoir
potential in both shallow and deep structures of the Outer
Carpathians (Dziadzio et al., 2006). In some areas, the Menilite
Beds may be source rocks as well as reservoir rocks.

MATERIAL

In the present study, samples were collected from three
geological units: the Dukla and Grybdéw units (Slovakia), and
the Vrancea Unit (Romania; Fig. 1 and Table 1). In total, 42
samples from the Menilite Beds were collected from the follow-
ing exposures: Smilno (Slovakia; 5 samples), Dara Prislop
(Slovakia; 16 samples), Piatra Neamt (Romania; 4 samples),
the Nechit River (Romania; 14 samples), and Agapia (Roma-
nia; 3 samples from the Menilite Beds and 2 samples from the
Slon Beds (equivalent of the Vorotyshcha Beds; Fig. 1). It can
be assumed, based on lithostratigraphic studies (Kotlarczyk et
al., 2006; Jankowski et al., 2012), that the Menilite Beds of Ro-
mania (Nechit, Bituminous Marl) and Slovakia (Dara Prislop,
Cergowa Beds) were deposited at approximately the same
time. To evaluate differences in organic matter distribution be-
tween the various parts of the sedimentary basin, the samples
were collected at locations originally distant from each other
during the deposition of the Menilite Beds. Furthermore, these
localities are located in different tectonic units at present, allow-
ing for an assessment of post-depositional variability in their de-
velopment (e.g., thermal maturity differentiation).
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Fig. 3. Topographic map of the Nechit River area (Vrancea Unit, Romania), with sampling sites marked

The number and distribution of samples from each section
was dependent on the accessibility and type of exposure. In
tectonically undisturbed sections of considerable thickness
(Dara Prislop, Smilno, Piatra Neamt, and Agapia), samples
were collected within the stratigraphic order of the section. At
the Nechit River site, owing to regional folding and the partly in-
accessible nature of the Menilite Beds, the samples were col-
lected from exposures located along the stream (Fig. 3). Sam-
ples were collected from various lithologies (mainly shales) at
each of these localities (Figs. 4 and 5).

METHODS

All samples collected were processed following modified
palynological techniques used at the laboratory of the Faculty of
Geology, University of Warsaw. 40.23—43.00 grams of crushed
rocks were treated with 37% hydrochloric acid to remove car-
bonates. Different times of HCl were used according to the car-
bonate content of individual samples. At least one hour of HCI
treatment was enough for shales and mudstones. In case of
samples of marl and limestone, small amounts of HCI are suc-
cessively added until acceleration of the reaction ceases. After
that samples were washed with H,O, which is removed during
decanting. Then 70% hydrofluoric acid was used to remove sil-
ica and silicates. Samples with HF were left for one week. The
organic residuum was sieved through a 15 pm mesh sieve. In
order to concentrate palynomorphs, a heavy liquid separation
was used (ZnCl; density 2.0 g/cm®) and the residuum was
sieved once again through a 15 ym mesh sieve. Slides were
made for each sample, using UV-cured glue as the mounting
medium. Microphotographs were taken in transmitted and UV
light using a Nikon Eclipse E-600 microscope equipped with a
digital camera.

In the present study, at least 300 SOM particles were
counted, and statistical analyses were conducted using various
organic components of the SOM (Tyson, 1995). The abundant
structureless AOM was studied under UV light to determine its
primary components and the degree of subsequent reworking

(e.g., Van Gijzel, 1961). The SOM recognized in this study is
grouped into ten categories (sensu Combaz, 1964), shown in
Table 2. The maturity of the Menilite Beds was also evaluated
using the Spore Colour Index Chart and this was used for the
first time in the Slovakian area (Fischer et al., 1980).

RESULTS

LITHOLOGY AND SEDIMENTOLOGICAL FEATURES
OF THE SECTIONS STUDIED

SMILNO

The section studied in Smilno is located in the Grybdw Unit
(Slovakia). In this exposed section the Menilite Beds are domi-
nated by fine-grained deposits (laminated siltstones, shales),
which are in places interbedded with sandstone layers charac-
terized by sedimentary structures including horizontal lamina-
tion, lenticular bedding, flaser bedding, ripple cross-lamination,
sole marks (Fig. 4E) and deformation structures. The shales
are mainly black and locally contain traces of oil. Samples were
collected from the shales.

DARA PRISLOP

In the Dara Prislop section (Slovakia), the Cergowa Beds
sandstones were observed. They are represented by several
repetitive sequences of clastic rocks (mostly characterized by a
fining-upwards sequence; Fig. 4B). Most packages start with
micaceous, fine-grained sandstones, which transition into grey
sandy mudstones, ultimately capped by black siltstones/shales.
Sole marks (tool marks and flute moulds), indicative of different
palaeotransport directions (from E to W, and from N to S), were
identified in the section (Fig. 4C). Convolution and load struc-
tures were also present in the sandstone layers (Fig. 4D). Sam-
ples for palynofacies analysis were collected from different
lithologies, with the intention of recognising the diversity of SOM
in various rock types.
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Fig. 4. Menilite Beds and Slon Beds in the Slovakian and Romanian sections

A — general overview of the exposure at Dara Prislop; B — packages represented by repeated clastic rock sequences
(fine-grained sandstones through sandy mudstones passing into siltstones), Dara Prislop, triangles indicate fining-up succes-
sions; C — sole marks (Dara Prislop), arrows point in the direction of transport; D — load structures (Dara Prislop); E — sole
marks (Smilno); F — general overview of the Bituminous Marl exposure at Piatra Neamt; G — general overview of the Menilite
Shale exposure at Piatra Neamt; H — strongly deformed clasts of the Menilite Shale incorporated into a yellow matrix (Slon
Beds, Agapia); photographs A-D, F-H by Anna Wysocka, photograph E by Marcin Barski
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Fig. 5. Selected photographs of the Nechit River section

A — general overview of an exposure in the Nechit River section dominated by black shales and thinly-bedded cherts (red dot marks
sample 952); B — boundary between the Menilite shales and cherts and the Bituminous Marl (red dot marks the location of sample
1003a); C — shale-sandstone bed packet with hummocky cross-stratification structures; D — sandstones with hummocky cross-strati-

fication structures, sample 993b

AGAPIA

In the Agapia section (Romania), samples were collected
from 2 exposures, which are 20 m apart. The exposures are
separated by a stream, so the contact between them is not visi-
ble. In the first exposure, the Bituminous Marl was exposed in
the lower part, overlain by bituminous siliceous shales with
some sandstone intercalations in the upper part. At the top of
the section, the proportion of thin-bedded sandstones in-
creases. Load structures are occasionally visible in the lower
parts of the sandstone beds. The Slon Beds (Oligo-
cene—Miocene) were present in the second exposure, and are
composed of sandstone-claystone breccias, primarily ce-
mented by dark grey clays and mudstones. Menilite shale
clasts have been identified within the Slon Beds (“Vorotyshcha
Beds” facies). The strongly deformed clasts of Menilite shales
are incorporated into a yellow matrix. Samples were collected
from both the matrix and clasts to perform a comparative
analysis.

PIATRA NEAMT

In the Piatra Neamt area (Romania), samples were col-
lected from 4 exposed sections. The Bituminous Marl was pres-
ent in the first (PN KG) and the second exposure (PN SPK).
Marls characterized by horizontal laminations, with fish skele-
tons and scales, are interbedded with brown carbonate-rich

shales. The third exposure (PN PM) represents mainly monoto-
nous brown siliceous shales typical of the Menilite Beds. The
last exposure (PN PK) is dominated by grey shales and
thin-bedded sandstones.

NECHIT

Fieldwork in Nechit was focused on sedimentological analy-
sis and sampling along the Nechit stream. Due to intense re-
gional folding and the partly inaccessible nature of the Menilite
Beds here it was not possisble to create a single log (Fig. 3). In
exposure 949, cherts are exposed in the lower part and overlain
by black and brown shales, which are interbedded with thin- and
medium-bedded sandstones. In the upper part of the exposure,
slumped deposits occur. The Menilite Beds, in exposures 952,
1000, 1001, 960 and 962, are represented only by brown
shales. In exposures 961 and 991 siliceous bituminous brown
marls (Bituminous Marls) were identified. In exposure 961, the
sample was taken from the upper part of a marl package.

Exposure 971 is characterized by a reversed stratigraphic
order, as shown by load structures. The lower part is domi-
nated by dark shales, which are intercalated with locally hori-
zontally laminated sandstone beds. In the upper part,
thick-bedded massive sandstones and conglomerates with
erosional boundaries occur. In one of these, chert and sand-
stone pebbles were identified.
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Classification of sedimentary organic matter (SOM; modified after Tyson, 1993, 1995; Roncaglia, 2004; McArthur et al.,

Table 2

2016)

Group Subgroup Category Characteristics/Example
Organic-walled marine : Resting cysts produced by Dmoflagellata
phytoplankton Dinoflagellate cysts sensu v@nnams et al. (1998)
Brackish-water tolerant freshwater colonial
Botryococcus green algae Botryococcus sp.
e.g., Quadriflagellate, spherical algae
Tasmanites sp., colonial freshwater algae
Other microplankton Ped/astrum sp., prasmophyta (Pterospermella
Other Land Campenla sp. (assigned to algae, but
Palynomorphs microplankton W|t unclear taxonomic affinity, due to smooth
walls and lack of morphological features, i.e.
Structured appendages, pores ?Erasla%r;linated walls Tyson,
Saccates Saccate pollen (polé%rés rains with buoyancy
Sporomorphs Other non-saccate Megasph)re.s and miosporefﬁ_nlgn-saccate
ollen and spores pollen; variable size, thickness
P and ornamentation
Cuticle Leaf and plant membranous tissue
Phytoclasts Macrophyte plant debris Translucent wood Brown, biostructured wood, cortex
Opaque wood Black, biochemically oxidised wood
Bacteraly or phytoplankion Al pariouato organic components which
derived amorphous organic AOM ITEIEFOSCO (single particle of AOM wgas
Amorphous matter; diagenetic amorphous determmec%s evgry Blece of AOM in which
Unstructured organic matter | Products of macrophyte tissues the minimum size is >15 pum)
. : Unstructured Intra-/extra-cellular resins; mainly dark orange,
Higher plant secretions lithified resin conchoidal

Exposures 977 and 1008 are dominated by black and
brown shales, which are in places interbedded with mudstone
debris-flow deposits with synsedimentary folds. Exposure 993
is dominated by sandstones with flaser bedding ripple
cross-lamination or hummocky cross-stratification and
black/brown shales. In Exposure 1000, a sharp contact be-
tween the cherts and shales (the lower part of the log) and the
Bituminous Marls (upper part) is clearly visible.

PALYNOFACIES ANALYSIS

SMILNO

In Smilno (Fig. 4C), palynofacies in five samples are char-
acterized by a very high abundance of AOM (93.2-99% of
SOM) and a relatively low abundance of opaque phytoclasts
(1.0-6.1%; Table 3 and Fig. 6C). The AOM is non-fluorescent.
The minimum AOM abundance (81.7%) is observed in one
sample (S16) with the maximum abundance of opaque wood
particles (18.3%). In general, non-fluorescent, granular, and
blocky fragments dominate the AOM in this exposure. Amor-
phous phytoclasts, characterized by having a surface 50% in-
tact, were identified in the samples: these indicate an intermedi-
ate stage in their conversion to AOM. The prasinophytae alga
Tasmanites sp., with a dark brown hue, was observed in sam-
ple S16.

DARA PRISLOP

From Dara Prislop, palynofacies in 16 samples are ana-
lysed. AOM (80.6-99.7%) constitutes a majority of the SOM,
with opaque phytoclasts as a minor component (0.3-17.8%)
(Table 3 and Fig. 6A—C). The AOM is dominated by granular,
dark brown or black fragments in all samples. AOM may reach
considerably larger sizes (reaching ~700 ym) with more vari-

able shapes relative to the samples from Smilno. The AOM is
non-fluorescent. No lithological dependence was noted in this
sample suite. Sample DR 4A differs from the other samples due
to the presence of a cuticle content (1.7%) characterized by
dark brown colours.

AGAPIA

From Agapia, palynofacies in five samples were analysed.
Samples collected from the Menilite Beds (A 1041 from the Bi-
tuminous Marls/Dynéw Marl, A 1040a and A 1040b from the
dark brown bituminous shales), are characterized by high AOM
abundances (80.5, 82.4 and 99.4%, respectively). The
palynological assemblages from the shale are more diverse
than the organic matter in the Dynéw Marl: seven SOM compo-
nents occur in the shale samples, while only two are found in
the Dyndw Marl samples. Dinocysts in sample A 1040a are lim-
ited to Caligodinium sp. and the Middle Jurassic dinoflagellate
cyst Nannoceratopsis sp., suggestive of reworking. UV light
analysis revealed variable fluorescence types (brown and dark
orange), indicating the presence of two AOM types in different
preservational states. The darker one may be reworked. Sam-
ple A 1040b is characterized by a more diverse dinoflagellate
cyst assemblage, including Glaphyrocysta sp., Rhombo-
dinium sp., Chiropteridium sp., Caligodnium sp., Wetzeliella
symmetrica, and Deflandrea phosporitica and AOM is also
more homogeneous relative to sample A 1040a. Examination
in UV light showed that the palynomorphs have dark yellow and
orange fluorescence colours. Additionally, UV fluorescence
demonstrated the presence of freshwater algae: namely,
Botryococcus sp., Pediastrum sp. and Pterospermella sp.
(Fig. 6N), which were not seen in transmitted light.

Sample A 1042cz, collected from clasts within the Slon Beds,
is dominated by dark orange AOM with weak or no UV fluores-
cence. The dinoflagellate cysts in this sample are rare and char-
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Table 3
Relative abundances of SOM recognized in this study
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DP 10 black shale 0.0 0.0 0.3 0.0 0.0 0.0 0.3 4.0 95.4 0.0
DP 9B grey mudstone 0.0 0.0 0.0 0.0 0.0 0.0 0.3 6.9 92.8 0.0
DP 9A black shale 0.0 0.0 0.0 0.0 0.0 0.0 0.3 12.8 86.9 0.0
DP 8B black mudstone 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 99.7 0.0
DP 8A grey shale 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.9 88.1 0.0
DP 7 black shale 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.9 971 0.0
DP 6 black shale 0.0 0.0 0.3 0.0 0.0 0.0 0.7 8.0 91.0 0.0
DP 5C black shale 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.4 93.6 0.0
DP 5B grey shale 0.0 0.0 0.0 0.0 0.0 0.0 0.3 7.3 92.4 0.0
DP 5A grey mudstone 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.9 93.1 0.0
DP 4B black shale 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 98.4 0.0
DP 4A grey shale 0.0 1.7 0.0 0.0 0.0 0.0 0.0 16.8 81.5 0.0
DP 3B grey shale 0.0 0.0 0.0 0.0 0.0 0.0 1.6 17.8 80.6 0.0
DP 3A black shale 0.0 0.0 0.0 0.0 0.0 0.0 0.3 4.8 94.9 0.0
DP 2 grey mudstone 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.5 82.5 0.0
DP 1A black shale 0.0 0.0 0.0 0.0 0.0 0.0 0.3 6.6 93.1 0.0
S2 black shale 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 98.7 0.0
S 12 black shale 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 99.0 0.0
S 16 black shale 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.3 81.7 0.0
S 24 black shale 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.1 96.9 0.0
S 30 black shale 0.0 0.0 0.0 0.0 0.0 0.0 0.6 6.1 93.2 0.0

0.0 97.8 0.3
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N 1008b laminated limestone 0.0

o
o
N
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w

N 1008a laminated limestone 0.0 0.0 0.9 0.3 96.7 0.0

N 1003a black shale 0.0 0.0 0.0 0.6 1.3 0.0 0.6 0.3 97.1 0.0
N 1001 black shale 0.0 0.0 0.3 0.0 0.9 0.0 3.1 0.0 90.3 5.3
N 1000 black shale 0.0 0.3 9.6 0.0 | 104 0.3 |12.8 10.1 43.5 13.0
N 993b black shale 0.0 0.0 0.3 0.0 0.0 0.0 1.7 0.0 934 4.7
N 991 bituminous marl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
N 977 black shale 0.0 0.0 0.3 0.0 1.0 0.0 0.6 6.1 88.1 3.8
N 971 brown shale 0.0 0.0 1.6 0.0 2.3 1.6 3.2 2.6 75.7 12.9
N 962 brown shale 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 99.4 0.3
N 961 bituminous marl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
N 960 brown shale 0.0 0.0 0.9 0.0 1.9 0.0 0.0 0.3 96.0 0.9
N 952 brown shale 0.0 2.0 9.3 0.0 |11.3 0.0 3.0 1.7 7.7 1.0
N 949 grey siltstone 0.0 0.0 1.0 0.0 1.3 0.3 1.6 3.5 92.3 0.0
PN KG bituminous marl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 98.7 0.0
PN SPK bituminous marl 0.0 0.0 0.0 0.0 0.0 0.0 4.8 9.6 85.5 0.0
PN PM shale 0.0 0.0 0.0 0.0 0.0 0.0 2.5 3.1 94.4 0.0
PN PK shale 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.9 97.8 0.0
A 1040b shale 0.3 0.0 6.8 0.0 1.5 0.9 7.1 0.3 80.5 2.7
A 1040a shale 1.0 0.0 4.2 0.3 8.7 0.6 1.3 1.0 82.4 0.6
A 1041 marl 0.0 0.0 0.3 0.0 0.3 0.0 0.0 0.0 99.4 0.0
A 1042j breccia matrix 0.0 0.0 0.9 0.0 0.3 0.0 7.8 27.8 29.9 334
A 1042c clast from breccia 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.7 98.7 0.3
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Fig. 6. Palynofacies, phytoclasts and palynomorphs from selected samples

A — palynofacies composed of black AOM and opaque phytoclasts, sample DP 5C; B —dark brown cuticle, DP 4A; C —or-
ganic material characterized by the dominance of black AOM, sample S 2; D — palynofacies composed mainly of pale
AOM, sample PN KG; E — palynological material characterized by dominance of yellow AOM, sample N 962; F — organic
material characterized by the dominance of yellow AOM with high pyrite concentrations, sample N 952; G — translucent
phytoclast with sharp edges, sample N 977; H — cuticle (in centre), sample N 993b; | — foraminiferal linings (blue arrow),
sample N 1000; J — organic material characterized by a great abundance of the freshwater colonial algae Botryococcus
sp., sample PN SPK; K — palynological material characterized by palynomorphs with different degrees of preservation,
white arrows indicate dinoflagellate cysts identified as Deflandrea phosporitica, with bright yellow fluorescence; grey ar-
rows indicate dinoflagellate cysts with orange fluorescence, sample N 1000; L — Pterospermella sp., sample N 1000; M —
Campenia sp., sample N 1000; N — Pediastrum sp., sample A 1040a; scale bar on all photographs — 100 pm
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acterized by a very poor state of preservation, often hampering
identification. The sample includes Enneadocysta pectiniformis,
Charlesdowniea  coleothrypta,  Deflandrea  phosporitica,
Spiniferites sp. and Cordosphaeridium sp. Examination in UV
light showed that the palynomorphs have orange fluorescence.
By contrast, in sample A 1042j collected from the sediment ma-
trix, dinoflagellate cysts are the most abundant components of
the SOM (Table 3). The sample yielded Enneadocysta
pectiniformis, Membranophoridium aspinatum, Deflandrea
phosporitica, Homotryblium tenuispinosum, Achomosphaera sp.
and Spiniferites sp. Under UV light, all cyst specimens exhibited
similar fluorescence colours (Fig. 71, J).

PIATRA NEAMT

From Piatra Neamt, palynofacies in 4 samples were ana-
lysed. The SOM from the samples collected at Piatra Neamt is
dominated by AOM (85.5-98.7%), with a secondary phytoclast
component. Translucent (max. 4.8%) and opaque (max. 9.6%)
wood was identified in all four samples. Sample PN PK differs
from other samples due to the presence of Botryococcus sp.
(1.2%), which was observed in transmitted light. In translucent
light, the AOM is characterized by yellow and orange colours.
Analysis under UV light revealed an additional freshwater algae
taxon, Pediastrum sp., in the samples. In sample PN SPK, a
relatively high abundance of Botryococcus sp. was also ob-
served (Fig. 6J).

NECHIT RIVER

From Nechit, palynofacies in 14 samples were analysed.
Most samples from the Nechit River section are characterized
by a larger degree of variability than in other sections, with AOM
as the dominant component (43.5-100%). In transmitted light,
most of the AOM shows bright colours, with pyrite present.
Samples where AOM was the only type of SOM (N 961 and
N 991) were collected from the Dynéw Marl. UV light analysis
showed that the AOM in these two samples has weak or absent
fluorescence and a structureless nature. Therefore, it is not
possible to identify primary elements present in the AOM. In
some other samples, UV analysis revealed the presence of var-
ious components hosted within the AOM: sporomorphs (sam-
ple N 952; Fig. 7A) and palynomorphs (sample N 1000). Analy-
sis of organic matter under UV light also allowed for the identifi-
cation of freshwater algae in the following samples: N 1000
(Botryococcus sp., Pterospermella sp., Campenia sp.; Fig. 6L,
M), N 1003a (Botryococcus sp.) and N 1008a (Botryoco-
ccus sp.).

Samples N 971 and N 1000 are characterized by a higher
abundance of dinoflagellate cysts (12.9 and 13%, respectively)
relative to other samples. The dinoflagellate cysts in these two
samples are poorly preserved and are possibly reworked [sam-
ple N 971: Areosphaeridium diktyoplokum (Fig. 7M) and
Cerodinium wardenense (Fig. 7D, E); sample N 1000:
Areosphaeridium diktyoplokum (Fig. 7G)]. Sample N 993b, col-
lected above a bed with typical combined flow structures, in-
cluding hummocky cross-stratification (Fig. 5C, D), contains cu-
ticle fragments (Fig. 6H). In samples N 949, N 971, N 1000
resin was also identified.

INTERPRETATION

In spite of the large present-day distance (100 km) between
the Slovakian Menilite Beds exposures (Dara Prislop and
Smilno), their organic matter has similar properties. In all sam-

ples, the AOM is dominated by granular, dark brown or black
aggregates. Opaque phytoclasts are the second most common
component of the SOM (Fig. 5). The black and brown colours of
AOM, cuticles, and Tasmanites sp. imply a high degree of ther-
mal maturation (i.e., post-mature source rock). The results from
Slovakia are probably related to the relatively high geothermal
activity in the region, known as the Carpathian Conductivity
Anomaly (Majcin et al., 2014). This high heat flux was associ-
ated with a deep-seated fault system on the margin of the Euro-
pean Platform (Kuchari¢ et al., 2013; Majcin et al., 2014). This
fault system is thought to be responsible for the formation of Ce-
nozoic volcanic rocks and active heat transfer through fluid mo-
bilization, which additionally may increase thermal maturity
(Majcin et al., 2014).

The SOM assemblages from the selected Romanian expo-
sures are characterized by high AOM abundances. In contrast
to the AOM from the Slovakian sections, their AOM is pale yel-
low to orange, with the common presence of pyrite. The sam-
ples from Romanian sections are also characterized by a larger
diversity of organic matter components (in some samples,
seven component types are present, of both marine and terres-
trial origin) than the samples from Slovakia. Together, this sug-
gests that the Slovakian Menilite Beds were deposited in the
centre of the basin, at a greater distance from the organic mat-
ter source area than the Vrancea Menilite Beds (Romania). In
contrast, the results from Nechit and Piatra Neamt suggest that
the Vrancea Menilite Beds were deposited in the marginal part
of the basin. An AOM-palynomorph-phytoclast ternary plot sug-
gests that the Menilite Beds were deposited under distal,
suboxic-anoxic conditions (Fig. 8). However, the presence of
cuticle in these samples is indicative of a relatively proximal
depositional setting (Tyson, 1993). This is due to the leaf origin
of cuticle, which cannot be transported for long distances be-
cause it is extremely prone to mechanical degradation and bac-
terial decomposition, causing it to rain out of the water column
(Spicer, 1991). As an exception, cuticle particles can occur in
deep-water environments when they are funnelled down sub-
marine canyons (Shepard, 1964; Cross et al., 1966; Schnyder,
2017). Within the Menilite Beds, the Cergowa Beds are consid-
ered to be submarine fan deposits (e.g., Pszonka and
Wendorff, 2017). This lithostratigraphic unit was analysed in the
Dara Prislop exposure, where typical turbidity current structures
were identified, including graded intervals, load structures, con-
volute bedding, tool marks, and flute marks. In sample DP 4A,
from grey sandy mudstones in the lower part of the package
characterized by normal grading, cuticle fragments were ob-
served. The preservation of these easily degraded plant re-
mains may have been due to rapid deposition and burial in
turbiditic sediments.

In the Vrancea Unit, cuticle fragments were also identified.
Moreover, typical submarine fan structures were not observed
in this region. Therefore, the deposition of the Menilite Beds in
the Nechit River area is unlikely to have occurred in a deep-wa-
ter setting, because cuticle fragments, which are prone to bac-
terial decomposition, causing them to rain out of the water col-
umn, are present in samples.This is supported by the lithology
of the Nechit River exposure: namely, the presence of
hummocky cross-stratification structures generally interpreted
as indicative of storm wave base conditions (Duke et al., 1991;
Dumas and Arnott, 2006; Fig. 5D). Moreover, storm conditions
can introduce and preserve plant fragments through rapid
transport and provide good burial conditions (Spicer, 1980).
Such conditions are probably documented in sample N 993b
(Fig. 5D), in which cuticle fragments were common. Tyson
(1993) suggests that similar organic matter assemblages, with
domination of AOM and low percentages of palynomorphs, may
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Fig. 7. Palynomorphs and sporomorphs from the Menilite (A-H, K-M) and Slon beds (I-J)

A — bisaccate pollen grains, sample N 952; B — Wetzelliela articulata, sample N 962; C — Rhombodinium freienwaldense,
sample N 960; D, E — Cerodonium wardenense, N 971; F — Hystrichosphaeridium tubiferum, sample N 1000; G —
Areosphaeridium diktyoplokum, sample N 1000; H — Glaphyrocysta sp., N 1000; I — dinoflagellate cysts from the Slon Beds in
transmitted light, sample A 1042j; J — dinoflagellate cysts from the Slon Beds in UV light, sample A 1042j; K, L —
dinoflagellate cyst with two styles of fluorescence, sample N 971; M - Reticulatosphaera actinocoronata and
Areosphaeridium diktyoplokum, sample N 971; scale bar on all photographs — 100 ym
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Fig. 8. AOM-palynomorph-phytoclast ternary plot
(after Tyson, 1989)

Palynofacies fields: | — highly proximal shelf or basin, Il — marginal
dysoxic-anoxic basin, Ill — heterolithic oxic shelf (“proximal shelf”),
IV — shelf to basin transition, V — mud-dominated oxic shelf (“distal
shelf’), VI — proximal suboxic-anoxic shelf, VII — distal
dysoxic-anoxic “shelf’, VIII — distal dysoxic-anoxic shelf, IX — distal
suboxic-anoxic basin

also be characteristic of stratified shelf seas. This interpretation
is supported by geochemical investigations (Kotarba et al.,
2013; Sachsenhofer et al., 2015; Bojanowski et al., 2018). Wa-
ter column stratification might have been induced by basin iso-
lation and subsequent freshwater influx, as in the case of the
modern Black Sea (e.g., Murray et al., 1989). As a result, zones
with reduced salinity and large-scale freshwater algae growth
might have occurred in proximal settings within the basin.

Notably, freshwater algae have been identified in the Roma-
nian sections. In the Vrancea Unit (Romania), the green algae
Botryococcus sp. and Pediastrum sp. and the prasinophytes
Pterospermella sp. and Campenia sp. are found, whereas in
Smilno (Slovakia) only the prasinophyte Tasmanites sp. occurs.
Botryococcus comprises a group of colonial green algae abun-
dant in freshwater and brackish settings (e.g., lakes, seas,
ponds; Metzger and Largeau, 2006; Mendonga Filho et al.,
2012). Mobile mats with thicknesses of up to several centimetres
and areas of hundreds of square metres may be formed during
Botryococcus blooms (Guy-Ohlson, 1992). As a typical freshwa-
ter colonial form, Botryococcus may be transported by rivers to
basins (Caratini et al., 1983; Guy-Ohlson, 1992), where it can
co-occur with marine palynomorphs. Representatives of the ex-
tant genus Pedliastrum mainly occur in freshwater environments:
they are rarely found in brackish-water basins and these sparse
appearances are related to freshwater influxes at river mouths
(Komarek and Jankovska, 2001). Pterospermella sp. is also in-
terpreted as an indicator of reduced surface salinity (Mudie,
1992; Below and Kirsch, 1997). In the framework of the Menilite
Beds, these algae have also been identified in Poland, in the
western part of the Silesian Unit.

By contrast, representatives of the genus Tasmanites are
euryhaline, eurythermal marine algae found in a broad diversity
of environments (Guy-Ohlson, 1988). Consequently, these al-
gae can be regularly recovered from widely differing sedimen-
tary facies (Guy-Ohlson, 1988). There are also reports that link
Tasmanites sp. to eutrophic waters with regular and ample nu-
trient supply (Vigran et al., 2008).

The presence of these algal genera points to the existence
of zones with significantly reduced salinity during the deposition
of the Menilite Beds. Comparatively large variability in organic
matter composition, and the presence of typical freshwater al-
gae (Pediastrum sp., Pterospermella sp.) and algae tolerant of
low-salinity settings (Botryococcus sp.), were observed in the
marginal Outer Carpathians (Vrancea Unit). In contrast, the in-
ternal Outer Carpathians (Dukla and Grybow units) are charac-
terized by low organic matter variability and the presence of
only Tasmanites sp., which has a higher tolerance to salinity
than Botryococcus sp., Pediastrum sp. and Pterospermella sp.
The presence of those diagnostic algae and sedimentological
observations suggest that the deposition of the Menilite Beds in
the Vrancea Unit occurred in a marginal zone at a relatively
short distance from the shoreline, above storm wave base.
However, the deposition of the Menilite Beds at Dara Prislop
and Smilno occurred farther from the shore in a more central
part of the basin where salinity was higher than in its marginal
zones.

Poor preservation of reworked palynomorphs (Areosphae-
ridium diktyoplokum, Cerodinium wardenense) may be a con-
sequence of physical deterioration, as the result of transport
processes during redeposition and the growth of pyrite crystals
within. Some authors have found Areosphaeridium diktyoplo-
kum in Lower Oligocene deposits (e.g., Maier, 1959; Sliwinska
et al., 2012). However, poor preservation of Areosphaeridium
diktyoplokum and co-occurrence with Cerodinium wardenense
indicate that they are probably redeposited. UV analysis of
samples from Nechit reveal differences in the fluorescence
colours of palynomorphs and sporomorphs (Fig. 6K), testifying
to the reworking of some palynomorphs and sporomorphs from
older rocks and the presence of two distinct SOM groups with
different thermal maturities (Figs. 6K and 7K, L). Additionally,
samples without reworked specimens are dominated by
peridinioid cysts (mainly Wetzelielloidae; Fig. 6B, C), whereas
samples N 971 and N 1000, in which reworked palynomorphs
were identified, are dominated by gonyaulacoid cysts (Figs. 6F,
7G, K—M). Indeed, sample N 971 contains three types of
palynomorph fluorescence (yellow, orange, dark orange;
Fig. 7). However, contrary to the general paradigm of UV fluo-
rescence interpretation (Hartkopf-Froder et al., 2015), a case
was identified where older cysts (Cerodinium werdenense) are
characterized by lighter fluorescence colours than younger
cysts (e.g., Reticulatosphaera actinocoronata) characteristic of
the Oligocene. This variability may be linked to reworking from
rocks with internally diverse thermal histories. Similar fluores-
cence variability was observed in sample N 1000, where
Eocene dinoflagellate cysts were observed; furthermore, differ-
ent UV light colours were noted among sporomorphs as well
(Fig. 6K). The reworking of organic particles from older rocks is
likely to have caused much greater variability of SOM than in
samples devoid of reworked material.

ASSESSMENT OF THE HYDROCARBON
POTENTIAL OF THE MENILITE BEDS

The high thermal maturity observed in samples from the
Dara Prislop and Smilno sections (Slovakia) suggests that hy-
drocarbons were probably generated or thermally decomposed
from these parts of the Menilite Beds. The results support
biomarker analysis, which suggests that the Menilite Beds in in-
ner tectonic units are overmature (Kotarba et al., 2007;
Kosakowski et al., 2018). The organic matter from the Vrancea
Unit Menilite Beds is between 2.5 and 6.5 (Fig. 6B) on the Spore
Colour Index Chart (Fischer et al., 1980), which indicates that it
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is either immature or in the initial oil window (Waples, 1985;
Marshall, 1990). The high hydrocarbon potential of the Menilite
Beds is reflected in the presence of abundant AOM (of ma-
rine/algal origin) and of algae (Tasmanites sp., Botryococcus
sp., Campenia sp.), especially in the Vrancea area. All these al-
gae — but in particular Botryococcus sp. and Campenia sp. —
have an ability to synthesise and accumulate lipid substances,
including hydrocarbon precursors (Metzger and Largeau,
2006). However, UV light analysis of exposures of Romanian
Menilite Beds show very bright fluorescence colours, indicative
of a low degree of thermal maturation. My interpretation agrees
with previous geochemical investigations (Wendorff et al.,
2017). This may imply that parts of the Menilite Beds with high
potential for hydrocarbon generation may exist in deep struc-
tures within the Romanian Outer Carpathians, where the top of
the Menilite Beds in the Vrancea Unit is located at an average
depth of 2.5 km (Dicea, 1995; Popescu and Anastasiu, 2017).
Kosakowski et al. (2018) envisaged a similar situation in the
Boryslav-Pokuttya Unit in Ukraine, where the organic matter
from exposures of the Menilite Beds is generally immature.
However, the Menilite Beds buried between 3 and 6 km in the
Boryslav-Pokuttya Unit are located in the oil and gas windows.
This may be a sign that hydrocarbons were also generated from
the Menilite Beds in the Vrancea area. To test this idea,
palynofacies studies and UV light analysis should be performed
on core samples collected from Menilite Beds, which exist at
depth in this region.

DEPOSITIONAL ENVIRONMENT
OF THE MENILITE BEDS

Studies of the Outer Carpathians have previously inter-
preted the flysch-like deposition of the Outer Carpathians suc-
cession as having mainly occurred in deep-marine settings
(Ksigzkiewicz, 1975; Unrug, 1979; Van Couvering et al., 1981;
Leszczynski and Uchman, 1991; Kotlarczyk et al., 2006;
Barwicz-Piszkorz and Rajchel, 2012; Oszczypko et al., 2015).
In this framework, the Menilite Formation, in particular, was
supposedly deposited in the distal parts of turbidite systems
and in a pelagic environment on a continental slope, submarine
ridges, and an abyssal plain associated with the development of
submarine fans through time (Kotlarczyk and Lesniak, 1990;
Puglisi et al., 2006; Prekopova and Janocko, 2009; Kotlarczyk
and Uchman, 2012).

In contrast to this view, Baldi (1980), Van Couvering et al.
(1981), and Rogl (1998) suggested that the deposition of the
Menilite Beds took place in a basin isolated from the open
ocean. As a consequence of this setting, periodically anoxic
conditions developed, and black bituminous shales were de-
posited in deep-marine depositional settings (Kotlarczyk et al.,
2006; Kotlarczyk and Uchman, 2012). Kotlarczyk and Uchman
(2012) related anoxia at the sea bottom primarly to water-col-
umn stratification and partially to upwelling. Ichthyological anal-
ysis of the Outer Carpatian showed that different ecological
groups of meso- and bathypelagic fish existed, indicating a
depth in the 2002000 m interval (Kotlarczyk et al., 2006;
Kotlarczyk and Uchman, 2012). However, in the Polish (Skole
Unit) and Romanian (Vrancea Unit) Outer Carpatians, several
shallow-water fish taxa (e.g., flatfish), and taxa tolerant of brack-
ish water fluxes have also been identified (Pauca, 1931;
Kotlarczyk et al., 2006; Baciu et al., 2016). Based on foramini-
feral assemblages, Olszewska (1985) interpreted the Menilite
Beds to have been deposited between the sublittoral and the
upper bathyal zones. Moreover, in the past two decades some

authors have distinguished shallow and shelf areas during the
deposition of the Menilite Beds, primarily on the basis of purely
sedimentological investigations (Miclaus et al., 2008, 2009;
Dziadzio et al., 2016; Dziadzio, 2018; Dziadzio and Matyasik,
2018) and sedimentological observations in general geological
papers (Watkinson et al., 2001; Jarmotowicz-Szulc and
Jankowski, 2011).

A few studies suggested that salinity decreased during the
deposition of the Menilite Beds (Kotlarczyk and Kaczmarska,
1987; Melinte, 2005; Garecka, 2012; Studencka et al., 2016).
Carbonate units are characterized by the presence of brackish
calcareous nannoplankton, bivalves, and the freshwater fish
Barbus sp., as well as marine fish (Melinte, 2005; Kotlarczyk et
al., 2006; Garecka, 2012; Studencka et al., 2016). Consider-
able freshwater influxes are also inferred in the present study.
Freshwater algae —i.e., Botryococcus sp., Pediastrum sp. and
Pterospermella sp. — were recognized in the Piatra Neamt,
Agapia, Nechit, and Dara Prislop sections. However, freshwa-
ter algae were not observed in the Dynéw Marl, probably be-
cause the samples were dominated by structureless AOM.
Sachsenhofer et al. (2015) suggested that the MTTC ratio
(0.32-0.85) indicates reduced and enhanced salinity during Bi-
tuminous Marls deposition.

Changes in sedimentary conditions within the Carpathian
basin(s) in the Oligocene were driven by oscillations in relative
sea level, in turn resulting from eustatic changes (Popov et al.,
2010) and/or transformation of the basin as a result of regional
tectonism (Jankowski and Probulski, 2011). According to these
hypotheses, changes in the tectonic regime and an ongoing,
multistage reconstruction of the basin resulted in a constantly
variable basin morphology. The deposition of the Menilite Beds
took place during the reorganization of the seaway and the
extensional stage of basin development, indicated by the pres-
ence of synsedimentary faults (Jankowski and Probulski,
2011). The oldest part of the Menilite Beds was deposited in the
earliest Rupelian (Olszewska, 1985). At this time, the
Paratethys experienced a eustatic sea level rise followed by
isolation of the basin (Baldi, 1980; Hag, 1981; Van Couvering et
al., 1981; Rogl, 1998; Popov et al., 2010). Substantial freshwa-
ter input and a reduced supply of saline water drove the forma-
tion of low-salinity regions in the marginal parts of the
Paratethys.

Tyson et al. (1979) suggested that stratified water columns
develop in basins with high freshwater supply, reducing the effi-
ciency of vertical mixing processes and driving the develop-
ment of anaerobic conditions at the sediment-water interface.
Limestone and marl horizons containing calcareous nanno-
plankton may represent the terminal stage in the development
of anaerobic conditions (Tyson et al., 1979). In the Menilite Ba-
sin, the equivalent limestone and marl deposits are represented
by the Tylawa Limestones and the Dyndéw Marl. Prevalent
anoxic conditions during the deposition of the Dynéw Marl
drove an elevated concentration of fine AOM, within which spe-
cific sedimentary organic partciles cannot be identified, even
under UV light. Considerable support for this notion comes from
Bojanowski et al. (2018) and focuses on the coccolith lime-
stones from the Menilite Beds: here, samples with abundant
AOM are barren with regard to palynomorphs. Tyson et al.
(1979) suggested that coccolith blooms are induced by high nu-
trient supply to the euphotic zone and shallower water depths,
leading to a cyclic lithological pattern: clay (oxygenated bottom
water conditions), to bituminous/oil shale (anaerobic/intermit-
tently anaerobic bottom water conditions), to coccolith lime-
stone (convective mixing which stimulates coccolith blooms). In
this framework, the preservation of laminations in marls and
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limestones is indicative of hemipelagic or pelagic deposition,
and large accumulations of pyrite within AOM point to deposi-
tion during the acme of anoxic conditions (Tyson et al., 1979).
Sachsenhofer et al. (2015) suggested that organic matter from
the Bituminous Marls in the Tazlau section, which is located
~8 km from Nechit, contains a large amount of chrysophyte al-
gae, probably dinoflagellatas. However, based on this
biomarker analysis (without specifying the species) it is not pos-
sible to determine depositional settings.

The palynofacies and sedimentology of the exposures se-
lected in Slovakia and Romania indicate that the Menilite Beds
were deposited in distinct sedimentary settings. Hummocky
cross-stratification structures in the Vrancea Unit (Miclaus et
al., 2009, and the present study) suggest a relatively shal-
low-water depositional environment. However, hummocky
cross-stratification can be also found in other depositional envi-
ronments, such as turbidite sequences (e.g., Mulder et al.,
2009; Tinterri and Muzzi Magalhaes, 2011), shoreface-offshore
(e.g., Handford, 1986), fan-delta (e.g., DeCelles and Cavazza,
1992; Uroza and Steel, 2008), river-delta (e.g., Leithold and
Bourgeois, 1984; Plint and Norris, 1991), fluvial (Browne and
Plint, 1994), lacustrine (Eyles and Clark, 1986), and even
pyroclastic deposits (e.g., Fisher, 1990). Moreover, a variety of
hummocky cross-stratification formation mechanisms exist:
they can be caused by oscillatory, combined, or unidirectional
flows, related to the oscillation of the wave-base location of the
surface or internal waves (e.g., Myrow et al., 2002; Pomar et al.,
2012). Therefore, interpretation of hummocky cross-stratifica-
tion type structures should be combined with other
sedimentological and/or palaeoecological records. For this rea-
son, these structures together with cuticle fragments and frag-
mented and reworked palynomorphs are interpreted here as an
indicator for relatively shallow-water environments, probably
oscillating around storm wave-base. Additionally, the presence
of cuticle fragments in samples above hummocky cross-stratifi-
cation points towards a relatively short distance from the source
area. Cuticle fragments were also identified in Tazlau section,
which is located a short distance from Nechit (Sachsenhofer et
al., 2015). At the same time, simultaneous water column stratifi-
cation and anaerobic sediment-water interfaces prevailed in
some parts of the basin (e.g., Bojanowski et al., 2018). In the
Vrancea Unit, cherts are present. The origin of these cherts
may be explained by the diagenetic transformation of
diatomites — specifically, transformation of the opal within the di-
atom frustules (Kaczmarska and Kilarski, 1979; Krhovsky,
1981b; Veto and Hetényi, 1991). Diatomites are predominantly
composed of freshwater species, such as Melosira islandica
(Krhovsky, 1981a). Itis likely that the composition of diatomites
is related to coastal blooms in regions where salinity was re-
duced. The presence of freshwater algae (Botryococcus sp.,
Pediastrum sp., Pterospermella sp.) support these conclu-
sions.

Meyers (1997) compared the conditions of marine
nearshore zones to lacustrine settings. Their common charac-
teristics include a large supply of continental organic matter
(e.g., phytoclasts, cuticle fragments, sporomorphs), relatively
high sedimentation rates, and reduced salinity. Similar condi-
tions could have potentially occurred during the deposition of
the Menilite Beds, allowing for the appearance of algae typically
characteristic of brackish environments and the development of
depositional cycles in relatively shallow parts of the basin sus-
ceptible to depth changes, with a constant supply of terrestrial
nutrients and clastic material.

In the Dara Prislop exposure, stacked fining-upwards se-
quences with load structures and sole marks were observed,
potentially indicative of deposition during turbidite activity along
horst slopes. The samples from Dara Prislop and Smilno are

characterized by a low diversity of organic matter (Table 3 and
Fig. 6A, C). This may be associated with fast depositional rates,
resulting from turbidity current sedimentation and the preferen-
tial preservation of components resistant to mechanical degra-
dation (e.g., opaque wood). In the Slovakian sections (Smilno,
Dara Prislop), only a few terrestrial organic particles were identi-
fied (cuticle particles in DP 4A and spores in DP 10). Addition-
ally, the presence of Tasmanites sp., which may occur in waters
with higher salinity than Botryococcus sp. and Pediastrum sp.,
suggests the Dara Prislop and Smilno (Slovakia) sections were
probably located farther from the source area of organic matter
influx than the Vrancea area. It should be emphasized, though,
that the source areas might be different as well. That is why
palynofacies and sedimentological analysis should be carried
out in a larger area of the Outer Carpathians. This will allow for
constraints on the sediment transport directions during deposi-
tion of the Menilite Beds.

If the presence of several sedimentary basins, as opposed
to a unitary basin, in the Outer Carpathians is assumed, the dis-
tribution of organic matter indicates the presence of Paratethys
shallow-water zones with reduced salinity during the deposition
of the Menilite Beds in the outermost basin, associated with
freshwater influxes adjacent to river mouths. In the Dara Prislop
and Smilno area, located in the inner basin (Dukla Basin), the
low diversity of organic components indicates the absence of
proximal terrestrial areas and considerable distances from the
source area. However, Cergowa Beds type deposits pinpoint
the presence of elevated areas, probably submarine highs.

The occurrence of several deep-water adjacent sub-basins,
separated by subaqueous to subaerial elevations, would be re-
flected in repetitions in the nature of organic matter distribution
(a decrease in organic matter component diversity and the dis-
appearance of terrestrially derived particles with greater dis-
tance from the source area). Gagata et al. (2012) suggested
that the minimum orogenic shortening of the Outer Carpathians
was ~507 km. In this context, the width of the Outer Carpathians
basin(s) was probably ~700 km. Therefore, the development of
several deep-water basins seems unlikely.

In the semi-isolated, multiple sub-basin model, the
Slovakian samples would expect a larger number and greater
diversity of terrestrial particles (e.g., pollen, spores, resins, cuti-
cle fragments, translucent wood) or reworked organic matter
from submarine highs/land areas. Their absence may suggest
that the deposition of the Menilite Beds took place in a large,
more or less morphologically diverse basin (with potential sub-
marine highs), with a centre in Slovakia and marginal elements
in Vrancea. To test this model, integrated analysis (including
sedimentological and palynofacies studies) should be carried
out in units to the north of Dara Prislop and Smilno and to the
west of the Vrancea Unit. This will allow a more precise recon-
struction of basinal development and of the depositional
settings of the Menilite Beds.

CONCLUSIONS

A detailed palynofacies analysis of 42 samples from the 23
exposures in the Menilite Beds of the Romanian (21 samples)
and Slovakian (21 samples) Outer Carpathians was conducted.
These samples represent various lithologies (siltstones,
mudstones, limestones, marls). Additionally, two samples from
the overlying Slon Beds (Agapia area in Romania) were investi-
gated. The SOM content of the Menilite Beds from Dara Prislop,
Smilno, and the Vrancea Unit areas provides insight into the re-
gional depositional environment during the Oligocene. The fol-
lowing observations are of particular importance:
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1. The palynofacies show great AOM abundances in all
samples studied. In samples with reworked palyno-
morphs (e.g., dinoflagellate cysts and sporomorphs), a
larger variability of organic matter components and re-
duced AOM content is noted.

2. UV-light analysis allowed for the identification of
dinoflagellate cysts, sporomorphs, and freshwater algae
(Botryococcus sp., Campenia sp., Pediastrum sp. and
Pterospermella sp.), which are generally not visible in
transmitted light. The presence of freshwater algae
points to the existence of zones with reduced salinity
during the deposition of the Menilite Beds. It is likely
these zones were associated with freshwater influxes
adjacent to river mouths.

3. Palynofacies results, organic matter observations under
UV light, and sedimentological observations (e.g.,
hummocky cross-stratification) suggest that a relatively
shallow-water (above storm wave base), brackish envi-
ronment prevailed during deposition of those Menilite
Beds presently exposed in the Vrancea Unit, which is
among the marginal units of the Outer Carpathians.

4. The Menilite Beds deposits in Slovakia (Dukla Unit — in-
ternal Carpathian Unit) were deposited farther from the
source area than those of the Vrancea Unit (external
Carpathian Unit).

5. The presence of algae (Tasmanites sp., Botryococcus
sp., Campenia sp.) characterized by the ability to syn-

thesise and accumulate lipid substances, including hy-
drocarbon precursors, points to a high hydrocarbon po-
tential. However, palynomorph colours in both transmit-
ted and UV light are indicative of thermal immaturity in
the Vrancea Unit. By contrast, the dark colours of
palynomorphs and AOM from Dara Prislop and Smilno
indicate that in the Slovakian exposures, organic matter
in the Menilite Beds is characterized by a high degree of
thermal maturity, related to the occurrence of the
Carpathian Conductivity Anomaly zone in this region.
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