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A diverse Late Oligocene to Early Miocene calcareous nannofossil assemblage was examined from the Qom Formation in
the Central Iran Basin, and the Oligocene-Miocene boundary was identified based on the quantitative analysis of the assem-
blages in 303 smear slides. Eleven well-established calcareous nannofossil bio-events are delineated in the Upper
Oligocene through Lower Miocene. The results clearly show that the Highest Occurrence (HO) of Sphenolithus delphix is the
closest bio-event to the boundary as traditionally delineated on the lithostratigraphic criteria, and provides a distinct
biohorizon below it. The Lowest Occurrence (LO) of the species Discoaster druggiiis the oldest Miocene bio-event that is ob-
served shortly after the HO of S. delphix, showing that calcareous nannofossils are well suited for approximating the
Oligocene-Miocene boundary in the Qom Formation. The Oligocene-Miocene boundary is placed in the upper part of
Sub-member “c1” in all three sections studied here and it is traceable throughout the Central Iran Basin, which makes a po-
tentially reliable marker horizon for sequence stratigraphic and hydrocarbon studies in the area.

=

Key words: Oligocene-Miocene boundary, calcareous nannofossils, biohorizons, Central Iran Basin, Qom Formation, “c1”

Sub-member.

INTRODUCTION

Identification of the boundary between the Oligocene and
Miocene has been often difficult in geological records (Shackle-
ton etal., 2000). Berggren (1969) defined an age of 22.5 Ma for
the Oligocene-Miocene boundary and demonstrated that it
could be correlated approximately to the magnetochrone C6AnN.
Then, Berggren et al. (1985) reviewed the boundary criteria and
determined an age of 23.8 Ma for it based on the last appear-
ance of the nannofossil species of Reticulofenestra bisecta,
Reticulofenestra scrippsae and Cyclicargolithus abisectus.
Steininger et al. (1997) assigned an age of 23.8 Ma to the
boundary placed at the base of the C6Cn.2n magnetozone to
define the GSSP for the base of the Neogene. Lourens et al.
(2004), Palike et al. (2006) and Gradstein et al. (2012) in their
new synthesis have proposed an age of 23.03 Ma for the base
of the C6Cn.2n magnetozone.

Several climatic changes have been reported at the
Oligocene-Miocene transition from various locations in the
Tethyan and equatorial realms (Zachos et al., 2001; Allen and
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Armstrong, 2008; Beddow et al., 2016). The main cause for such
environmental changes is massive tectonic displacements which
led to reduction in atmospheric pCO2 (Pagani et al., 1999;
Pearson and Palmer, 2000), and changes in palaeoclimate and
palaeoenvironmental conditions (Zachos et al., 2001).

The Arabia-Eurasia collision and the closure of the Tethys
ocean gateway is one of the global tectonic events that span
from the Late Eocene to Miocene (Allen and Armstrong, 2008;
Sadr, 2017). Previous studies based on the palaeoecology and
palaeoclimatology of the Oligocene to Miocene transition sug-
gested that fluctuations in global ice volume and eustatic sea
level, and temperature variations during glacial or interglacial
periods have resulted in the biological-environmental crises
(Miller et al., 1991; Zachos et al., 2001; Billups et al., 2002).
Moreover, multiple shifts in the value of '®0 and *C isotopes
were reported during this interval from various sites (Zachos et
al., 2001; Pekar et al., 2002; Wade and Palike, 2004; Beddow et
al., 2016). They are referred to as Oi- and Mi-events. These
changes and the global cooling trends have led to the biological
crisis in the biota assemblages of the Late Oligocene to Mio-
cene (as shown for instance in the Oligocene-Early Miocene
range charts in Perch-Nielsen, 1985). Differences in the occur-
rences of these biological events (recorded or not at different
sites), and more specifically differences in their chronostrati-
graphic position from one site to another, have resulted in prob-
lems in precise delineation of the Oligocene-Miocene bound-
ary. Because of these problems, identification and introduction
of major bio-events, and chronostratigraphic dating of the
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Oligocene-Miocene boundary have often been considered as a
challenge.

An accurate interpretation of stage boundaries is very im-
portance for stratigraphy (including sequence stratigraphy)
which is the main tool for hydrocarbon exploration studies (e.g.,
Catuneanu, 2013). This, however, can only be facilitated by
having detailed and valid biostratigraphic information in the
area targeted for hydrocarbon exploration. Therefore, this study
attempts to contribute to determining the Oligocene-Miocene
(Chattian/Aquitanian) boundary through a detailed study of cal-
careous nannofossil biohorizons at three outcrop sections in
the Central Iran Basin.

STRATIGRAPHIC SETTING

The Qom Basin in the Central Iran Zone (CIZ) (Fig. 1A)
formed during middle Alpine orogenic time (Paleogene to Early
Miocene; Berberian and King, 1981). During the Eocene orog-
eny, extensive volcanism occurred in the CIZ in a NW-SE-
-trending area known in the literature of Iranian geology as the
Orumia-Dokhtar Magmatic Arc (e.g., Berberian and King, 1981;
Aghanabati, 2004; Shahabpour, 2007). The subsequent Oligo-
cene-Miocene marine transgression resulted in the spreading
of marine carbonate sequences along the NW margin of the
Arabian plate (Zagros Basin; Asmari Formation) and the SSW
margin of the Iranian plate (Qom Basin; Qom Formation) (Dozy,
1944, 1955; Bozorgnia, 1966; Berberian and King, 1981;
Aghanabati, 2004; Fig. 1B).

Following petroleum discovery in the Serajeh and Alborz
fields (Central Iran Basin) in 1934 (Mostofi and Gansser, 1957;

Abaie et al., 1964; Rosenberg, 1975), the Qom Formation be-
came a focus of biostratigraphic, palaeogeographic, palaeoeco-
logic, sequence stratigraphic, microfacies, and tectonic studies
(e.g., Reuter et al., 2007; Daneshian and Ramezani Dana, 2007,
Hadavi et al., 2010; Yazdi-Moghadam, 2011; Mohammadi et al.,
2013; Daneshian and Ghanbari, 2017; Daneshian and Rame-
zani Dana, 2017; Parandavar and Hadavi, 2017).

The Qom Formation is widely distributed in the Qom back-
arc, arc, and fore-arc basins (Reuter et al., 2007; Fig. 2A). The
first marine transgression of the Qom Sea can be traced back to
the Early Oligocene in the fore-arc basin and to the Late
Oligocene in the back-arc basin (Reuter et al., 2007; Yazdi-
-Moghadam, 2011). Because of the various facies present in
the Qom Formation, no type section has been introduced for it
yet, although the Qom area is defined as its “type area”
(Stocklin and Setudehnia, 1991; Aghanabati, 2004). In the type
area, the Qom Formation in ascending stratigraphic order is di-
vided into six members. They are: a — sandy limestones, b —
silty limestones with alternations of silty marlstone, ¢ — alternat-
ing marlstones and limestones, d — evaporites, e — green
marlstones, f — reefal limestones (Furrer and Soder, 1955;
Soder, 1956; Abaie et al., 1964; Stocklin and Setudehnia, 1991)
(Fig. 3). The c-Member is subdivided into four sub-members by
Soder (1959), including: ¢1 — marlstones with intercalations of
limestones, c2 — evaporites, c3 — shallow-water limestones, c4
— green marlstones. Reuter et al. (2007) have not subdivided
the c-Member and used the term “c-Member” as a thickened in-
terval of the Qom Formation. Outside of the type area (Qom),
most of the mentioned members and sub-members are not
present in the CIZ (Stocklin and Setudehnia, 1991; Aghanabati,
2004). Therefore, this study was focused on the Qom, Kashan
and Garmsar areas where a complete Oligocene-Miocene suc-
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B — distribution of the Oligocene-Miocene marine carbonates of the Qom and Asmari formations in Central Iran Zone (CIZ)
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Fig. 2A — sedimentary basins of the Qom Formation: back-arc and fore-arc basins (modified after Reuter et al., 2007); red stars indi-
cate location of the studied sections in the Qom Basin (back-arc basin) of Central Iran; B, C D — geological maps of the Shurab,
Navab Anticline, and Siah-Kuh areas, showing location of the sections (modified after Emami, 1992; Khalatbari and Alavi, 1996)

cession of the Qom Formation was reported (Rahaghi, 1973,
1976, 1980; Reuter et al., 2007; Mohammadi et al., 2011, 2013;
Parandavar, 2018). Previous biostratigraphic studies of the
Qom Formation reached no comprehensive agreement on the
chronostratigraphy of the Formation, in particular with regard to
the placement of the Oligocene-Miocene boundary (Reuter et
al., 2007; Yazdi-Moghadam, 2011).

STUDY AREA

The best outcrops of the Qom Formation are exposed in the
type area, south-east of the Kashan, south of the Garmsar and
around Qom. In the present study, three stratigraphic sections
located at the Shurab (south of Qom), Navab Anticline (south-

-east of Kashan) and Siah-Kuh (south of Garmsar) were mea-
sured and sampled in detail. In all three sections, the Oligocene
to Miocene interval occurs below the red gypsiferous marlsto-
nes and/or gypsum successions of Sub-member “c2” and posi-
tioned within the green to grey marlstones of Sub-member “c1”.
Therefore, the Oligocene-Miocene interval does not show a
clear change in lithology or sedimentological characteristics.

SHURAB SECTION

The Shurab section is the best outcrop of the Qom Forma-
tion in the type area, including all members of the Qom Forma-
tion, cropping out south of the city of Qom (Stoecklin, 1959),
~35 km to the south of Qom within the Qom back-arc basin
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(34°25'N, 51°08’E; Fig. 2A, B). The total thickness of this-sec-
tion is 543 m and it exposes the “a” to “f” members of the Qom
Formation. Detailed analysis of calcareous nannofossils was
performed on Sub-member “c1” of the section (from sample
No. 140 to sample No. 250). Lithologically, Sub-member “c1”
consists of alternating green to grey marlstones and marly
limestones which overly the dark brown silty limestones of the
Member “b”, and is overlain by the red gypsiferous marlstones

and gypsum beds of Sub-member “c2” (see Fig. 4).

NAVAB ANTICLINE SECTION

The section (411 m thick) is located 25 km to the south-east
of Kashan city (Qom back-arc basin) with the coordinates of
33°51'N, 51°38'E (Fig. 2C). The Qom Formation includes
members “a@” to “f” in this section (Fig. 3). As in the Shurab sec-
tion, this study focusses on Sub-member “c1” with a thickness
of 63 m (from sample No. 85 to sample No. 225). The member
consists of green to grey marlstones with alternation of argilla-
ceous limestones; it overlies the thick-bedded silty-argillaceous
limestones of Member “b” and underlies the red gypsiferous
marlstones of Sub-member “c2” (see Fig. 5).

SIAH-KUH SECTION

The Qom Formation is cropping out ~40 km to the south of
Garmsar city in the Siah-Kuh within the Qom back-arc basin
(34°43'N, 52°15’E; Fig. 2D). The total thickness of the Siah-Kuh
section is 493 m and it exposes sub-members “c1” to “f” of the
Qom Formation. The 48 m thick Sub-member “c1” (from sam-
ple No. 1 to sample No. 38) is studied here for calcareous
nannofossil biostratigraphy. It consists of argillaceous lime-
stones and green to grey marlstones. Sub-member “c1” rests
unconformably on the red sandstones of the Lower Red Forma-
tion (LRF) and is conformably overlain by the red gypsiferous
marlstones of Sub-member “c2” (Fig. 6).

MATERIALS AND METHODS

Throughout the studied outcrops, samples were collected
with an average spacing of 50 cm, although the sample resolu-
tion decreased to 20-30 cm in some intervals. A total of 303
samples were thus obtained from the marlstone and marly lime-
stone succession of Sub-member “c1”. They were prepared us-
ing the smear slide technique (Bown and Young, 1998). For
each sample, 5 mg of rock was weighed, dispersed in 0.5 ml
(~10 drops) of distilled water, disaggregated with the sodium
hexa-metaphosphate powder, and a few drops of the suspen-
sion were finally transferred on a glass slide. After drying the
suspension on a heating plate, the slides and coverslips were
mounted using Entellan glue. Slides were examined using a
light microscope (Olympus BX53) at 1250X magnification. Im-
ages of coccoliths were taken using an Olympus DP73 camera.

Various calcareous nannofossil zonal schemes were estab-
lished by Martini (1971), Okada and Bukry (1980), Varol (1998),
Young (1998), Backman et al. (2012) and Agnini et al. (2014)
for the Upper Oligocene to Lower Miocene at low and middle
latitudes. The standard zonal scheme of Martini (1971; NP and
NN zones) is used here. However, the zonal markers of
Backman et al. (2012; CNM zones) and Agnini et al. (2014;
CNO zones) were also considered. For the determination of
calcareous nannofossil species, we adopted the taxonomy pro-

posed by Aubry (1984, 1988, 1989, 1990), Perch-Nielsen
(1985), Farinacci (1989), Varol (1998), Young (1998) and Howe
(2016). The Highest Occurrences (HO) of Sphenolithus cipero-
ensis, Reticulofenestra bisecta, R. stavensis, Cyclicargolithus
abisectus, Helicosphaera recta and Zygrhablithus bijugatus,
the Lowest Occurrences (LO) of Triquetrorhabdulus carinatus,
LO and HO of Sphenolithus delphix, and LO of Discoaster
druggii, have been useful for a biozonal subdivision in the pres-
ent study. The biohorizons used in this research are as follows:
the Lowest Occurrence (LO), the Highest Occurrence (HO) and
the Highest Common Occurrence (HCO) (Aubry, 2016).

Quantitative analysis was utilized to establish distribution pat-
terns of selected calcareous nannofossil taxa. The abundance of
selected species was determined by counting the number of
specimens in a prefixed area of smear slides (N/mm?) following
Backman and Shackleton (1983). The prefix area (total area of
fields of view) was related to 50 Fields Of View (FOV). The re-
sults of counting analyses performed on Sub-member “c1" of the
Qom Formation in Shurab, Navab Anticline and Siah-Kuh sur-
face sections are shown in Figures 4-6.

TAXONOMIC NOTES

Reticulofenestra bisecta
(Hay, Mohler and Wade, 1966) Roth, 1970

Basionym: Syracosphaera bisecta Hay, Mohler and Wade,
1966

Variants: R. stavensis (Levin and Joerger, 1967) Varol,
1989; Dictyococcites scrippsae Bukry and Percival, 1971.

Two different taxonomic subdivisions have been used for R.
bisecta according to nannotax database:

1. Specimens <10 ym = D. scrippsae, specimens >10 ym =
D. bisectus;

2. Specimens <10 um = R. bisecta, specimens >10 ym =
R. stavensis.

The latter division is followed here. In the studied materials,
the size of R. bisecta ranges from 7.6 to 8.4 ym, and of R.
stavensis from 13.6 to 15.4 uym (see Fig. 9).

RESULTS

APPLICATION OF MARTINI (1971) BIOSTRATIGRAPHIC
SCHEME AND ADDITIONAL BIO-EVENTS

This study shows that the Zone NN1 of Martini (1971) is
present in Sub-member “c1” of the Qom Formation. Following
the literature (Martini, 1971; Perch-Nielsen, 1985), this biozone
is defined as the HO of H. recta and/or S. ciperoensis to the LO
of D. druggii. As this zone includes several bio-events which
have been reported by various authors (Okada and Bukry,
1980; Perch-Nielsen, 1985; Backman et al., 2012; Agnini et al.,
2014), Sub-member “c1” can be subdivided into smaller inter-
vals by specific events (Figs. 4-6). Herein, in order to determine
the Oligocene-Miocene boundary, we described the identified
bio-events in our study area and compared them with the
known bio-events from various sites. In the following, these are
listed in the ascending stratigraphic order (see also Figs. 4-7).
Microscopic photos of index calcareous nannofossil as well as
of several synchronic taxa are provided in Figures 8 and 9.

A: HO of Sphenolithus ciperoensis. HO of S. ciperoensis
is used to define the base of zones NN1, CN1a and CNO6
(Martini, 1971; Okada and Bukry, 1980; Agnini et al., 2014) and
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Fig. 4. Lithological characteristics of the Oligocene/Miocene interval of the Shurab section

Abundance patterns of selected species useful for the Upper Oligocene-Lower Miocene standard biozonation are shown (NP and NN — Mar-
tini, 1971; CNO — Agnini et al., 2014; CNM — Backman et al., 2012); the X-axis values represent the number of specimens in a prefixed area
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it has been used to delineate the Oligocene-Miocene boundary  corded at 198 m (Fig. 4). Itis placed at 114 m of Navab Anticline
in the past (Perch-Nielsen, 1985). Recent studies (e.g., Rio et outcrops of Sub-member “c1” (Fig. 5). The event has not been
al., 1990; Raffi et al., 2006; Backman et al., 2012; Agnini et al.,  observed in the Siah-Kuh section (Table 1). Therefore, the base
2014) have confirmed earlier ones that showed it to be an  of the zone cannot be correlated with other sections in the Qom
Oligocene bio-event. In the Shurab section, the bio-eventisre-  Basin.
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B: HO of Reticulofenestra bisecta. Okada and Bukry  can be seen in the calcareous nannofossil assemblages after

(1980) employed this biohorizon to define the lower boundary of ~ the record of this bio-event (Figs. 4-6). Based on its distinct
Subzone CN1a. Agnini et al. (2014) assume that the LO of R.  abundance patterns in Rio et al. (1990) and Olafsson (1992),
bisecta occurred at a level which is slightly younger than S.  the large form of C. abisectus (>10 ym) is very rare in the Mio-
ciperoensis. In this study, sporadic occurrence of R. bisecta  cene and the HO of the taxon occurs in Zone NN7 of Martini
(<10 ym) is observed above the HO of S. ciperoensis and within ~ (1971), but its highest abundant occurrence lies above of the

Zone NN1 of Martini (1971) (Figs. 4-7 and Table 1).
C: HO of Reticulofenestra stavensis. The HO of R.

LO of the S. ciperoensis bio-event in Zone NN1.
F: LO of Triquetrorhabdulus challengeri. \/arol (2017)

stavensis is observed in all studied sections. The biohorizon oc-  reported the bio-event within the Oligocene calcareous nanno-
curs within Zone NN1 of Martini (1971) and above of the HO of  fossil assemblages and used the LO of T. challengeri to define
S. ciperoensis (Figs. 4-7) in all sections. Varol (2017) em-  Subzone NN1c. In this study, we were not able to determine
ployed this bio-event to define Subzone NN1a. The sample  confidently this form in the studied sections. However, we iden-
numbers and stratigraphic position of the bio-event are pre- tified the Triquetrorhabdulus cf. challengeri taxon and intro-
sented in Table 1 for all sections. Herein, this event has been  duced it as a bio-event. The LO of T. cf challengeri lies in the

recorded above the HO of R. bisecta (Figs. 4-6).
D: HO of Zygrhablithus bijugatus. This HO is similar to  The species is rare and sporadic in Zone NN1 and becomes

lower part of Zone NN1 in all sections (Figs. 4-6 and Table 1).

the bio-event reported by Varol (2017), which is used to define  more abundant in the Miocene succession.

Subzone NN1b. In the present study, this biohorizon is re- G: HO of Helicosphaera recta. This is an important bio-
corded in the lower part of Zone NN1 of Martini (1971) and in  -event observed in the middle part of Zone NN1 and it has been
the middle part of Sub-member “c1” (Figs. 4-6 and Table 1). used to define the Oligocene-Miocene boundary by some scien-

E: HCO of Cyclicargolithus abisectus. The species is tists (Martnini, 1971; Perch-Nielsen, 1985), while other research-

common and abundant in the calcareous nannofossil assem-  ers (e.g., Rioetal., 1990; Raffi et al., 2006; Backman et al., 2012)
blages of the studied sections. The HCO of large specimens of  reported its LO already within the Oligocene. We also consis-
C. abisectus lies within Zone NN1 in all sections (Figs. 4-7 and  tently observed the HO of H. recta within the Oligocene assem-
Table 1), while, as yet, the Oligocene species (such as H. recta)  blages in our material. The abundance patterns of this taxon in
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cies; the light grey rectangles show unstudied intervals

our sections are shown in Figures 4—6 and the stratigraphic posi-
tions of its HO are recorded in Table 1 for each section.

H: LO of Sphenolithus delphix. Literature data places the
LO of S. delphix below magnetozone C6Cn.2n (Rio et al., 1990;
Fornaciari and Rio, 1996; Steininger et al., 1997; Shackleton et
al., 2000; Raffi et al., 2006; Backman et al., 2012; Agnini et al.,
2014; Albasrawi, 2016). In the studied sections and in agree-
ment with previous results, this bio-event is observed in the up-
per part of Zone NN1 and before the first appearance of Mio-
cene species (Figs. 4—7 and Table 1).

I: LO of Sphenolithus capricornutus. The LO of S.
capricornutus was reported in the GSSP of the Paleogene-
-Neogene boundary by Steininger et al. (1997). According to
the phylogenic chart by Perch-Nielsen (1985), S. capricornutus
is the youngest of all Paleogene species. Herein, the LO of S.
capricornutus occurs in the Upper Oligocene nannofossil as-
semblages and within the upper part of Zone NN1. The distribu-
tion patterns and the position of the LO in the three sections are
shown in Figures 4-6 and Table 1.

J: HO of Sphenolithus delphix and S. capricornutus.
These bio-events (HOs of S. delphix and S. capricornutus) are
recorded in the upper part of the Sub-member “c1”, at the top of
the Oligocene calcareous nannofossil assemblages and/or
strata (Figs. 4—7 and Table 1). Just above these events, the in-
dex calcareous nannofossil assemblages of the Miocene are
present, including S. tintinnabulum, Reticulofenestra haqii,
Hughesius gizoensis, H. youngii and H. carteri. Previously, the
HO of S. delphix was used to define the zonal boundary of Zone
CNOG6 by Agnini et al. (2014), and Zone CNM1 by Backman et

al. (2012) in the Paleogene and Neogene strata, respectively.
According to these studies, the HO of S. delphix is recorded
close to the Oligocene-Miocene boundary.

K: LO of Discoaster druggii. The LO of D. druggii occurs
above the HOs of the Late Oligocene index species in the stud-
ied sections (Figs. 4-6 and Table 1), which is in agreement with
other studies. Martini (1971), Okada and Bukry (1980) and
Perch-Nielsen (1985) used this bio-event to define Zones NN1
and CN1b/c. Backman et al. (2012) used the LO of Spheno-
lithus disbelemnos to determine the CNM1/CNM2 zonal bound-
ary which lies at a stratigraphic level younger than the LO of D.
druggii. Backman et al. (2012) reported the D. druggii bio-
horizon in the upper part of Zone CNM1 and at the base of the
Agquitanian succession at low to middle latitude sites (Fig. 7). In
the present study, the LO of D. druggii is recorded from the up-
per part of Zone NN1 (Fig. 7). The S. disbelemnos was not re-
corded among the calcareous nannofossil assemblages in
Sub-member “c1” (Figs. 4-6).

DISCUSSION

The calcareous nannofossil markers used for the identifica-
tion of the Oligocene-Miocene boundary have changed over
time. According to the standard zonation of Martini (1971) and
definition of Zone NN1, the boundary has been placed at the
HO of either Helicosphaera recta or Sphenolithus ciperoensis
(Fig. 7). Okada and Bukry (1980) have used the HOs of S.



Mohammad Parandavar and Fatemeh Hadavi

222

3x3} 8y} ui paulejdxa ale suoneiraiqge (Z10zZ) ‘|e 3@ uid)speis uo
paseq si ajeas |eaifojouoiyd ayj ‘suoie|allod 11dy} pue ‘(1.0z) °|e 12 1uuby pue (z1L0z) ‘e 12 uewnjoeq ‘(210zZ) |0ieA JO SJUBAS |ISSOjoUURU
leqo|b ayy ‘(0861) Anjng pue epeyO ‘(L261) Iulliely Jo suonjeuoz ayj} jJsuiebe umoys uoljisuel} auadolp-auadohbi|Q 3y} ul suozuoyoiq pue sauozoig */ "bi4

sfeAso)ul paIpNIS JON _H_

[——— 0

/\ 064
00

] Isisusosadio 'S OH w w w w 3 [ ‘n
T e om SONO w M L|8rdd| vz, [N SISUB0IBUY 'S 40 OH , Ponpeenl: ol
: ° — AL RE eroart 100 L
vz — O - sisuane}s ‘g OH|BLNN S W mmﬂ 3 w .m s
] J|Q || 4] snjossiqe 49 25 2888 o SISUONEIS 00K, o
. D | Q | [™eBnia Z OHAJAINN] 1o aune oH & [*egz |s smebnliq 7 40 OH i
3 = m Hol ozt ‘ 5 snpasiqe £0 40 0OHA-| () w
] w g PINN| xudep s 01 2 | 59 g Z w
] ) P 7| g m g o uebuslje4o 401 J0 O % z|®
B ) BJoal | 58
Fee] pobusteyo 1 Ol 1981 H OH | m o |88 S £J98. 1 J0 OH 4 z|® i
3@ [
1090 K ot m T
E xiydiep s 01 z [} N X14djapS J0 017 Fw
] xiydjep 'S OH| = Ee 3 a
] smewooudeo s on| P | XIUdIOP 'S OH e 8 . - B
] 1 A N = sninuiooudes S g Xiydjep 'S 10 OH 4 F o |05
€z B snyjasquin s OH [BLNN m z I
N =
1 ¥ vl v v 10
E > 166np " 01 wbnp g of| S ~ [y wBbrp @40 01 | Z Z mww
- 2|2 — {EZNN v olg 5 2|z
N HE "1 Ble @ g
1 =0 » [¢) 3|33 N -V [
] ] S =& z #
522 0 % S s | 2 §1%| 3§z -
] 2|5 g g 8| %3 g"®
{a90 oo E 2 - - k
- 9 3 g w ?
] ’ 8
] 1Z]

0o , w23
ew | fweos | & | O (ONO ‘7102) o [3]3|2
onaubeWoss) > ‘e 18 iub 3

Qo _ PIOTEY | (ogel) | () S 1233
® | ¢ | |(pousiandun z102) Aning g e 3 |o|d m
o.e, . B
Z10Z S19 Uo paseq wnjep o (WNO zlog) | EPEI0 % z|3|¢
onsubewosb pue syun awi| €19 Ueuoeq O (w\

uoIjo8s gelnys

o [

Lo q
08
% 1

06
%

00

=00
0k

)
=
]
054

—0
51

0
0
@ —

oN 9|dweg
(w) ssauxdIyl]
si1aquwia|N

uoljoss
aulonuy qereN

0 Echl
Fs
Fo
Lol
oz
I, O
14 2
i 0
R
0 <
Ge
I Om[
o -
(Rl
o) WM 0
3 |x 3 w
T 13T |®
) @ Q| =
Z|2a|°
o3 S
uolnoes
yny-yels



Identification of the Oligocene-Miocene boundary in the Central Iran Basin (Qom Formation): calcareous nannofossil evidences 223

Fig. 8. Index and commonly recorded calcareous nannofossils from the studied sections

A-D — Sphenolithus ciperoensis Bramlette and Wilcoxon, 1967 (A, C — XPL; B, D — GP; A, B—0°; C, D — 45°); E-H — Sphenolithus delphix
Bukry, 1973 (E, G—XPL; F,H-GP; E, F-0°; G, H—45°); I-L — Sphenolithus delphix Bukry 1973 (I, K- XPL; J, L—-GP;|,J - 0°; K, L — 45°);
M-P — Sphenolithus capricornutus Bukry and Percival, 1971 (M, O — XPL; N, P — GP; M, N - 0°; O, P — 45°); Q-T — Sphenolithus conicus
Bukry, 1971 (Q, S - XPL; R, T—-GP; Q, R-0°; S, T — 45°); scale bar is 2 ym in all images
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Fig. 9. Index and common calcareous nannofossils from the studied sections

A, B — Reticulofenestra bisecta (Hay, Mohler and Wade, 1966) Roth, 1970 (A, B — XPL); C, D — Triquetrorhabdulus cf. challenger Perch-Niel-
sen, 1977 (C — XPL; D — QP); E, F — Triquetrorhabdulus cf. challengeri Perch-Nielsen, 1977 (E — XPL; F — GP; E, F — 45°); G, H —
Zygrhablithus bijugatus Deflandre, 1959 (G, H— XPL; G—-0°; H—45°); I, J — Reticulofenestra stavensis (Levin and Joerger, 1967) Varol, 1989
(I, J—XPL); K, L — Cyclicargolithus abisectus (Muller, 1970) Wise, 1973 (K- XPL; L — QP); M, N — Helicosphaera recta (Haq, 1966) Jafar and
Martini, 1975 (M — XPL; N - GP); O, P — Helicosphaera recta (Haq, 1966) Jafar and Martini, 1975 (O — XPL; P — GP); Q, R — Discoaster druggii
Bramlette and Wilcoxon, 1967 (Q, R— QP); S, T — Discoaster deflandrei Bramlette and Riedel, 1954 (S, T — QP); scale baris 2 ym in images
of AtoH,and3uyminltoT
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Table 1
Biohorizons identified in the Oligocene-Miocene transition
Sections Shurab A’:?i\élz?:e Siah-Kuh
Bio-Events Thickness [m
FO of Discoaster druggii 259.6 168 42
LO of Sphenolithus delphix and S. capricornutus 252 158 38
FO of Sphenolithus capricornutus 245 149 34
FO of Sphenolithus delphix 238.6 145.3 34
LO of Helicosphaera recta 234 141 31
FO of Triquetrorhabdulus cf. challengeri 227 135.9 27
LCO of Cyclicargolithus abisectus 217 133 26
LO of Zygrhablithus bijugatus 213 126 20
LO of Reticulofenestra stavensis 209 119 15
LO of Reticulofenestra bisecta 203 117 -
LO of Sphenolithus ciperoensis 198 114 -

The stratigraphic position of the bio-events is reported from the base of the sections

ciperoensis and Reticulofenestra bisecta, and the end of the
acme interval of Cyclicargolithus abisectus to define subzone
CN1a, with the latter event and the first occurrence of Disco-
aster druggii to define subzone CN1b (Fig. 7). Rio et al. (1990),
Backman et al. (2012) and Agnini et al. (2014) have postulated
that the S. ciperoensis, H. recta, D. druggii, T. carinatus, R.
bisecta and C. abisectus events exhibit uncertain distribution
patterns (see Fig. 10). Therefore, biohorizons and defined
biozones across the Oligocene-Miocene boundary are consid-
ered to be of limited value (Rio et al., 1990; Backman et al,,
2012; Agnini et al., 2014). The oldest event is the HO of S.
ciperoensis at the lower boundary of Zone NN1 (or CN1a), fol-
lowed by the HO of R. bisecta, the top of the acme zone of C.
abisectus, the LO of S. delphix, the HO of H. recta, and finally
the HO of S. delphix, all within Zone NN1 (Agnini et al., 2014)
(Fig. 7).

Martini (1971) and Perch-Nielsen (1985) thought that the
NP25/NN1 zonal boundary was correlative to the Paleogene
and Neogene system boundary and defined to the HO of S.
ciperoensis and/or the HO of H. recta species. Rio et al. (1990)
confirmed the earlier finding that, in fact, these events occur be-
low the base of the Neogene in its type area. They have re-
ported the bio-events younger than the HOs of S. ciperoensis
and H. recta, which include the LOs and then the LOs of S.
delphix and S. capricornutus. Steininger et al. (1997) have pub-
lished the position of the aforementioned bio-events (FOs and
LOs of S. delphix and S. capricornutus) in the GSSP study of
the base of the Neogene (Aquitanian stage). In addition, Ogg et
al. (2016) have applied these biohorizons to define the
Chattian/Aquitanian stage boundary (corresponding to the
base of magnetic polarity chron C6Cn.2n). Lourens et al. (2004)
and Palike et al. (2006) have determined an age of 23.03 Ma for
the base of this magnetochrone (C6Cn.2n) at the base of the
Aquitanian. Therefore, the LO of S. delphix is the nearest
bio-event to the Oligocene-Miocene boundary and provides a
distinct horizon occurring prior to the boundary (see Agnini et
al., 2014; Fig. 7). Furthermore, there are many publications
from the various sites, which uniformly show that the FO of D.
druggii is in the Early Miocene (e.g., Martini, 1971; Perch-Niel-

sen, 1985; Rio et al., 1990; Fornaciari et al., 1990; Raffi et al.,
2006; Backman et al., 2012). In the high latitude areas, the
mentioned bio-events are different from those of low to middle
latitudes (Perch-Nielsen, 1985).

A review of current literature clearly shows that the bio-
events used for the definition of biozonal boundaries in low lati-
tude areas of the Tethys region can hardly be recognized in the
central Paratethys, and/or when present they are recorded in
the younger horizons (Fig. 10; see Holcova, 2005; Ozdinova
and Sotak, 2014; Grunert et al., 2015). Generally, the Para-
tethys domain, as a chain-restricted basin, is marked by poor to
moderate preservation of nannofossils, rare or scant occur-
rences of their assemblages, and inappropriate environmental
conditions (Holcova, 2005; Grunert et al., 2015). Due to these
restrictions, comparison of the Paratethys and Tethys regions is
complicated and imposes many uncertainties.

As shown in Figure 10, some bio-events (e.g., H. recta and
R. bisecta) are recorded in different biostratigraphic ranges
within the Paratethys realm, and/or absent (such as S. delphix,
S. capricornutus, T. challengeri). Therefore, the bio-events of
the Paratethys are not exactly correlatable with the bio-events
in the Tethyan region (Fig. 10).

Eleven biohorizons have been determined between the LO
of S. ciperoensis and the FO of D. druggii, providing a bio-
stratigraphic framework and improving resolution for defining
the Oligocene-Miocene boundary. The distinguished bio-
events are in agreement with other studied sites in the low and
middle latitudes, and consist of the above-described LOs and
FOs within Zone NN1 of Martini (1971). The HO of S. delphix is
the latest recorded bio-event within the Oligocene calcareous
nannofossil assemblage in the studied sections of the Qom For-
mation (Figs. 4-6). Following this bio-event, the first appear-
ance of D. druggii is the lowest determinable biohorizon within
the Neogene nannofossil assemblages which is observed in the
thickness of 259.6 m Shurab, 168 m in the Navab Anticline and
42 m in the Siah-Kuh sections.

Reuter et al. (2007) previously placed the Oligocene-Mio-
cene boundary within the C-Member of the Qom Formation.
This member includes a thickened interval of strata (Qom For-
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mation) and it is not exactly suitable for regional correlation. The
definition of the boundary based on calcareous nannofossil
events within the upper part of Sub-member “c1” in this study
provides a better and more detailed litho-biostratigraphic
framework for correlation.

CONCLUSIONS

Detailed analysis of calcareous nannofossil assemblages
led for the first time to the identification of useful calcareous
nannofossil biohorizons around the Oligocene-Miocene bound-
ary in the Qom Basin. The determined bio-events located in the
standard biozone NN1 of Martini (1971), which spans the Up-
per Oligocene-Lower Miocene. The zone/bio-events are corre-
lative with the occurrences reported from low to middle latitude
sites by Backman et al. (2012), Agnini et al. (2014) and Varol
(2017). Among the described biohorizons, the HO of S. delphix
is a useful marker for the identification and tracking of the Oligo-
cene-Miocene boundary that is placed in the upper part of Sub-

-member “c1” of the Qom Formation. Considering the large re-
gional extent of Sub-member “c1” in the Qom Basin, the bound-
ary is traceable over a wide geographical area in the Tethyan
realm. Therefore, the HO of S. delphix can be regarded as a
trusted biostratigraphic marker for sequence stratigraphic and
hydrocarbon exploration studies.
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