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The succession of bioevents in planktonic foraminifer and calcareous nannoplankton communities is reviewed and summa-
rized for the Carpathian Foredeep and northern Pannonian Basin in the time interval between ~16 and 13.5 Ma. This succes-
sion can be subdivided into three principal intervals: (1) an interval with rare Praeorbulina sicana and P. glomerosa. It was
characterized by a limited immigration of index taxa linked to the lack of a warm surface water layer in the Central Paratethys.
This interval can be correlated with the first Badenian transgression near the Burdigalian/Langhian boundary. The rare oc-
currence of biostratigraphical markers does not allow its precise dating and interregional correlation; (2) a brief interval of the
first occurrences of Praeorbulina circularis, Orbulina suturalis and Helicosphaera waltrans. This can be related to the forma-
tion of a warm surface water layer suitable for the survival of orbulinas and praeorbulinas and a change from estuarine to
anti-estuarine circulation. This interval can be correlated with the second Badenian transgression, which, however, was not
isochronous over the area as inferred from different successions of these first occurrences; (3) a limited appearance of new
index taxa in the Central Paratethys prior to the Wielician Salinity Crisis. This time interval was characterized by increased
seasonality and salinity oscillations followed by climate cooling. A “reverse” migration of the stress-tolerant species
Helicosphaera walbersdorfensis from the Central Paratethys to the Mediterranean is suggested. Several local bioevents
with limited stratigraphic correlation potential have been recognized in this interval.
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INTRODUCTION The Badenian marine biostratigraphy based on local
(eco)zones of Grill (1943) and Cicha et al. (1975) has been gen-
erally accepted since the 1970s (Papp et al., 1978). However,
complementary stratigraphic data such as magnetostratigraphy
(Hohenegger et al., 2009a; Selmeczi et al., 2012; de Leeuw et

al., 2013) and new radiometric and Sr-ages (Radocz, 2004,

The correlation of the Langhian Stage with the local Central
Paratethys stratigraphy has been recently widely discussed.
Piller et al. (2007) correlated its base with the

Karpatian/Badenian boundary. This boundary, defined by the
first occurrence of Praeorbulina (Papp et al., 1978), was subse-
quently redefined by Hohenegger et al. (2014) to a level corre-
sponding to the uppermost Burdigalian. This correlation was
based on dating of the first occurrence of Praeorbulina in the
world oceans. The top of the Langhian is correlated with the
Moravian/Wielician local substage boundary (i.e., Early/Middle
Badenian sensu Papp et al., 1978). Hohenegger et al. (2014)
proposed correlation of the Moravian substage with the Early
and Middle Badenian. However, this new subdivision is not gen-
erally accepted and causes confusion in terminology and strati-
graphic correlations.
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Handler et al., 2006; de Leeuw et al., 2010; Fordinal et al.,
2014) showed that the concept of such a seemingly distinct sys-
tem no longer applies even for the local stratigraphy
(Hohenegger et al., 2014).

Despite emerging new stratigraphical methods and data,
biostratigraphy remains the most widely used correlation
method. The occurrence of common index taxa that migrated in
the system of interconnected basins enable interregional corre-
lations of the Lower Badenian deposits in the Central
Paratethys (Rogl, 1998; Popov et al., 2004). However, the tim-
ing of such bioevents was not entirely synchronous in the indi-
vidual basins with many factors, such as local tectonics and cli-
mate, water chemistry and circulation regime, playing a role in
their distribution.

In this paper we discuss the timing of the Langhian Central
Paratethys bioevents based on a case study of the northern
Pannonian Basin and the Moravian part of the Carpathian
Foredeep. Our results are compared to the world oceans
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and/or the Mediterranean region and the recorded differences
are related to climatic, oceanographic and tectonic factors that
may have affected the spatial and temporal distribution of index
microorganisms.

GEOLOGICAL SETTING

Our study area includes the Pannonian Basin System
(South Slovak Basin) and the Carpathian Foredeep (Senes,
1961; Fig. 1).

The South Slovak Basin (SSB) belongs to the northeastern
part of the Pannonian Basin System. The area was inundated
from the Oligocene to the Ottnangian (Middle Burdigalian) and
then again during the Karpatian (Late Burdigalian). After the
late Early Miocene upheaval event, the subsidence was rejuve-
nated around the Karpatian/Badenian (Burdigalian/Langhian)
boundary but only for a short time. Sedimentation was con-
trolled by NNW-SSE faults and was accompanied by the
Badenian marine transgression. Depocentres were situated in
the west where the SSB continued to the Danube Basin. Subsi-
dence was followed by a volcanic paroxysm and extensive vol-
canism in adjacent terrestrial and marine areas. Volcanic bulg-
ing caused rapid uplift and marine regression in the area (Vass,
1995; Vass et al., 2007).

Sedimentation in South Slovakia started with the tide-influ-
enced Pribelce Member overlain by the Vinica Formation de-
posited in littoral to neritic environments. Tuffaceous sand-
stones and siltstones with common bioturbation dominated by
domichnia overlie the basal coarse volcaniclastic deposits. Al-
gal bioherms locally occur within the sandstones and siltstones
(Vass et al., 2007).

The formation and basin evolution of the Carpathian
Foredeep (CF) — as a peripheral foreland basin — was related to
the subsurface loading of the Alpine-Carpathian orogenic belt
on the Bohemian Massif margin during the Early to Middle Mio-
cene (Nehyba and Sikula, 2007; Nehyba et al., 2008). The ba-
sin continues south into the Alpine Molasse Zone and north into
the Polish segment of the CF Basin (Oszczypko et al., 2006).
The infill and basin architecture varies throughout the CF Basin,
local and regional unconformities are developed due to the
varying intensity and orientation of flexural loading and different
geological and tectonic histories of the basement, along with a
polyphase nature of the active basin margin and gradual
change of its position (Brzobohaty and Cicha, 1993; Nehyba,
2000; Kovac et al., 2004; Oszczypko et al., 2006).

The stratigraphic range of the sedimentary infill of the stud-
ied CF Basin segment is Eggerian to Lower Badenian
(Brzobohaty and Cicha, 1993). The Lower Badenian deposits
reveal a distinctive basin infill geometry because they are al-
most symmetrically located in the central parts of the basin. The
Lower Badenian sedimentary sequence is dominated by a
lithologically uniform package of pelitic sedimentary strata
(known as “Tegel”) with a thickness reaching several hundreds
of metres. These pelites are interpreted as deposits of the mid-
dle to outer shelf or even hemipelagites (Papp et al., 1978;
Cicha, 2001; Nehyba et al., 2008). Coarse-grained sandstones
and conglomerates represent the second dominant lithofacies
being generally described as “basal or marginal coarse clastics”
(Krystek, 1974; Nehyba et al., 2008). Bioherms of red-algal
limestones (Dolakova et al., 2008) form laterally and volumetri-
cally restricted bodies within the mudstones. Thin
volcanoclastic beds (acidic tuffs and tuffites) interpreted as dis-
tal tephra fallout are rare (Nehyba et al., 1999).

MATERIALS AND METHODS

We synthesize multiproxy data from boreholes from the CF:
LOM-1 (Holcova et al., 2015a), ZIDL-1 and ZIDL-2 (Dolakova et
al., 2014), RY-1 (Kopecka, 2012), OV-1 and OV-2 (Nehyba et
al., 2016); from the SSB (boreholes N-45, N-48, N-68, N-80,
N-83, N-95, N-91; Holcova et al., 1996; for location of all bore-
holes see Fig. 1). In addition, palynological data from the follow-
ing boreholes from the CF were used: IK-1 (Basistova and
Dolakova, 2011; Dolakova et al., 2011), HJ-1, HJ-2, HJ-103
(Hladilova et al., 1999, 2001).

Foraminifera were analysed in the fraction between 0.063
and 2 mm, calcareous nannoplankton was studied from smear
slides. Assemblage quantitative evaluation was based on
200-300 specimens for foraminifera and 300-500 specimens
for calcareous nannoplankton. The method of Zagorsek et al.
(2007) was used for our purposes.

Standard maceration in HCI (20%), HF, KOH and HCI
(10%) and ZnCl, (density = 2 g/lcm®) was used for palynological
samples. Pollen diagrams were processed using POLPAL soft-
ware (Walanus and Nalepka, 1999) with a minimum of 150 de-
termined pollen grains and spores, excluding Pinus and unde-
termined conifers. The terminology of Stuchlik et al. (1994),
Kvacek et al. (2006) and Kovar-Eder et al. (2008) was em-
ployed for the classification of vegetation units.

We have used published 3'®0 data from foraminiferal tests
for further palaeoenvironmental interpretations (Holcova and
Demeny, 2012; Dolakova et al., 2014; Scheiner, 2015). Four
different datasets have been distinguished , each characteriz-
ing specific levels in the water column: (1) data from
Globigerinoides bulloides characterize surface waters during
periods of enhanced productivity (probably spring bloom;
Schiebel et al., 1997); (2) data from Globigerinoides character-
ize surface summer stratified waters (Reynolds and Thunell,
1985; Hemleben et al, 1989), (3) data from epifaunal
Cibicidoides spp. reflect the quality of the bottom water (Kaiho,
1994; Murray, 2006); (4) pore water chemistry in the sediment
was documented by isotopic values from shallow infaunal
Melonis spp. and Gyroidina spp. and deep infaunal Uvigerina
spp. (Caralp, 1989; Hermelin, 1992; Sjoerdsma and Van der
Zwaan, 1992; Sen Gupta and Machain-Castillo, 1993; Miao and
Thunell, 1993; Rathburn and Corliss, 1994).

PALYNOLOGICAL ANALYSIS

Two principal zonal forest assemblages have been recog-
nized from the study of palynoflora: (1) subtropical
broad-leaved forests characterized by a high abundance of ev-
ergreen elements (relative abundance up to 38%), such as
Sapotaceae, palms, Engelhardia, Platycarya, evergreen
Fagaceae, Reevesia, Cornus-Mastixia, and Rutaceae; (2) a
warm to temperate mixed mesophytic and broad-leaved decid-
uous forest type with broad-leaved elements (relative abun-
dance 12-21%), i.e., Quercus, Celtis, Juglans, Tilia, Betula,
and Acer. Increased diversity and quantity of “deciduous oak
type” pollen grains have been recorded here by contrast with
the Lower Miocene. Occurrences of mountain forest compo-
nents (Cedrus, Tsuga and Picea; Dolakova et al., 1999, 2011,
2014; Kovacova et al., 2011), coastal swamp (Taxodiaceae,
Cyrillaceae, Myricaceae, Decodon) and riparian elements
(Alnus, Salix, Ulmus, Fraxinus, Liquidambar, Carya) indicate
the complex nature of zonal biotopes in the adjacent areas.

The highest proportion of thermophilous floral ele-
ments/lowest percentage of arctotertiary elements were de-
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Fig. 1A — schematic map of the areas under study and their positions within the Carpatho-Pannonian region
with location of the sections studied (map modified from Kovac et al., 2007);
B - chrono-, bio- and magnetostratigraphy of the interval studied
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tected in palynospectra from the interval with Praeorbulina
sicana and P. glomerosa. A relatively lower abundance of
xerophilous elements such as Engelhardia and Olea has been
observed here (Fig. 2A).

An increase in abundance of arctotertiary elements that co-
incides with increased abundances of xerophilous markers
(such as dry herbs and heliophytes Olea, Poaceae,
Asteraceae, Caryophyllaceae, Chenopodiaceae, Ericaceae)
can be seen in the short interval between the FOs of
Praeorbulina circularis and Orbulina (Fig. 2B, C). The disap-
pearance of Sapotaceae and decrease in Cornoideae—Mas-
tixioideae and evergreen Fagaceae and increase in
arctotertiary elements were recorded around the LCO of
Helicosphaera waltrans.

The interval with Orbulina suturalis and common H.
walbersdorfensis is characterized by a dominance of conifers
and marine dinoflagellates (sometimes referred to as the Pinus
event; Fig. 2D). Pollen and spores completely disappear higher
in the section in many of the boreholes studied.

BIOEVENTS SUCCESSION AND RELIABILITY
OF THEIR USE IN STRATIGRAPHY

Several prominent bioevents have been recognized in the
boreholes and sections studied. Their potential for local and in-
terregional biostratigraphy is discussed below.

The first occurrences of Praeorbulina sicana and P.
glomerosa and the last occurrence of Helicosphaera
ampliaperta. The interval below the first occurrences (=FOs) of
Helicosphaera waltrans, Praeorbulina circularis and Orbulina
suturalis is characterized by scattered occurrences of
Praeorbulina sicana and P. glomerosa (Appendix 1A*) that can-
not be used for any reliable stratigraphic correlations.
Helicosphaera ampliaperta rarely occurred in this interval; how-
ever, the position of its last occurrence (=LO) is inaccurate due
to its scarcity along the sections (Appendix 1D). Its possible
redeposition must also be taken into consideration.

The first occurrences of Praeorbulina circularis and
Orbulina suturalis. The FOs of Praeorbulina circularis and
Orbulina suturalis represent a very distinct bioevent. Besides
the appearance of new index taxa, the abundance of plankton
from the Orbulina—Praeorbulina group is considerably higher by
contrast with the previous interval (Appendix 1A).

The FO of Praeorbulina circularis slightly preceded the FO
of Orbulina suturalis. Before this event, the Coccolithus
pelagicus/Reticulofenestra minuta ratio changed (Appen-
dix 1B).

The last common occurrence of Helicosphaera
waltrans and the last occurrence of Sphenolithus
heteromorphus. Quantitative analyses of calcareous
nannoplankton assemblages showed increased relative abun-
dance of H. walbersdorfensis (Appendix 1C). The last common
occurrence (=LCO) of H. waltrans coincides with increased
abundances of H. walbersdorfensis and can be used as a reli-
able stratigraphical marker (Appendix 1C). This event occurred
after the FO of Orbulina. Above the LCO, H. waltrans has been
recorded only discontinuously in several samples.

The LO of S. heteromorphus is not a reliable marker in the
sections studied because of its scarce occurrences (Appen-
dix 1D). Marunteanu (1999) and Bartol (2009) recommended
using the decreased abundance of Cyclicargolithus floridanus
as an auxiliary indicator in the Central Paratethys. However,

this has not been recognized in our study material (Appen-
dix 1E) nor have other synchronous bioevents described (the
LOs of discoasters, the FCO of Reticulofenestra
pseudoumbilica >7 pum; Bartol, 2009).

Local bioevents: acme of Reticulofenestra minuta,
Spiroplectinella carinata and Globorotalia transylvanica.
The high abundance of Reticulofenestra minuta is characteris-
tic of the studied sections above the FO of Helicosphaera
waltrans (Appendix 1B). An increase in R. minuta abundance
coincides with increasing numbers of H. walbersdorfensis (r =
0.74; p <0.001) and decrease in C. pelagicus. A negative corre-
lation of relative abundances of H. walbersdorfensis and C.
pelagicus species can also be detected (r = —0.56; p <0.001).
The levels above the LCO of H. waltrans are characterized by
higher variations in R. minuta frequency compared to the under-
lying interval (Appendix 1B).

An increase in abundance of biserial agglutinated
foraminifera (primarily Spiroplectinella carinata) may be used
for definition of a local (eco)zone Spiroplectinella carinata (Grill,
1943) that corresponds to the Middle Badenian sensu Papp et
al. (1978). The stratigraphic distribution of this morphogroup,
summarized in Appendix 1F, showed that the increase in abun-
dance occurred above the LCO of Helicosphaera waltrans.
However, this event has been recognized only locally (LOM-1,
RY-1 and ZIDL-2 boreholes).

A G. transylvanica acme was recorded in the Polish and Ro-
manian part of the CF prior to the Wieliczka salinity crisis. The
generally positive trend in relative abundance of these endemic
taxa with several cyclic oscillations detected in our samples
(Appendix 1G) may indicate that a single G. transylvanica acme
may be only a locally restricted event.

INTERREGIONAL CORRELATIONS
AND BIOEVENTS TIMING

The first occurrences of Praeorbulina sicana and P.
glomerosa. In accordance with our observations, Praeorbulina
sicana and P. glomerosa have been recorded only discontinu-
ously throughout the Central Paratethys in the time interval be-
fore the FO of Orbulina. Both species have been rarely found in
the Styrian Basin (Spezzaferri et al., 2009; Hohenegger et al.,
2009a), the Alpine Foredeep Basin (Austrian Mollase Basin;
Cori¢etal., 2004), the Danube Basin (Rybar et al., 2015, 2016),
the South Slovak Basin (Vass et al., 2007) and the Polish part of
the CF (Oszczypko and Oszczypko-Clowes, 2012). This inter-
val corresponds to local biozone of Globigerinoides sicanus
(Cicha et al., 1975).

Bioevent numerical dating in this lineage for the Central
Paratethys is not generally accepted due to the absence of reli-
able radiometric dating control. The timing of the praeorbulinas’
first occurrences in the Mediterranean region markedly differs
from those in the world oceans (Abdul Azis et al., 2008; Turco et
al., 2011; Wade et al., 2011; Gradstein et al., 2012; Fig. 3). The
use of bioevents for correlation between the global
magnetostratigraphical chart and detected chrons in our study
area may be misleading. A presumed pathway between the At-
lantic/Indo-Pacific and the Central Paratethys in this period
passed through the Mediterranean (Rogl, 1999; Popov et al.,
2004; Kovacetal., 2007, 2017a, b) to present-day Slovenia and
Croatia (this interval was reported from this region by Cicha et
al., 1975; Bartol, 2009). A strongly hypothesized direct connec-
tion between the Paratethys and the Indo-Pacific realm may

* Supplementary data associated with this article can be found, in the online version, at doi: 10.7306/gq.1399
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have led via the Central Paratethys and the Transylvanian and
Pannonian basins further eastwards to the southern margin of
the Black Sea plate and the Pontids (Rdgl, 1998; Fig. 4). How-
ever, possible evidence for this marine pathway was destroyed
during subduction of oceanic crust in the Alpine-Himalayan
orogenic belt.

For the reasons described above, we prefer use of the Med-
iterranean bioevent dating for calibration of magneto-
stratigraphical chrons detected by Hohenegger et al. (2009a).
The FO of P. glomerosa in the world ocean dated at
16.4-16.1 Ma (Wade et al., 2011) corresponds to C5Cn.1n
chron (16.29-15.97 Ma; Gradstein et al., 2012). If the normal
polarity chron with the FO of P. glomerosa in the Styrian Basin
(Hohenegger et al., 2009a) is correlated with the Mediterranean
datum of the FO of the same taxon (15.2—15.1 Ma; di Stefano et
al., 2008, laccarino et al, 2011), chron C5Bn.2n
(15.15-15.04 Ma; Gradstein et al., 2012) may be inferred
(Figs. 3 and 4). Similarly, the reverse polarity chron with the FO
of P. sicana can be interpreted ambiguously based on a
heterochronous timing of the FO of P. sicana in the world
oceans (16.97 Ma based on Gradstein et al., 2012 or 16.4 Ma
from Wade et al., 2011) and in the Mediterranean (16.177 Ma;
laccarino et al., 2011; Turco et al., 2011). If the Mediterranean
age is accepted, the species would appear in the Central
Paratethys in the earliest Langhian C5Br Chron

(15.974-15.16 Ma) rather than in the latest Burdigalian Chron
C5Cn.1r (16.3 Ma; Gradstein et al., 2012; Figs. 3 and 4). More-
over, praeorbulinas occurred only discontinuously in the sec-
tions studied, in which case, determination of their exact FOs
may be misleading and their occurrence can be used only for
approximate dating of strata with P. sicana at ~15.9-15.1 Ma
and with P. glomerosa from 15.1 to 14.6 Ma.

Deposits with rare Praerbulina sicana and P. glomerosa ap-
pear to be restricted to the Central Paratethys. However, it is not
exactly known to what extent they represent the original marine
transgression. The occurrence of redeposited mudstone
intraclasts with the Langhian microfossils in deposits of the sec-
ond Badenian cycle indicates that it may have been reduced by
subsequent erosion. On the other hand, they may have not
been recognized in some areas due to a lack of rare
praeorbulinas. Additional numerical dating would certainly help
to resolve these questions.

The first occurrences of Helicosphaera waltrans,
Praeorbulina circularis and Orbulina suturalis. The FOs of
Praeorbulina circularis, Orbulina suturalis and Helicosphaera
waltrans represent important bioevents recognized over the
Central Paratethys. However, their succession may spatially
and temporally vary or be absent in individual Central
Paratethys basins (Fig. 5): O. suturalis with H. waltrans fre-
quently appear simultaneously in the CF in Ukraine and in the
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Fig. 4. Magnetostratigraphically calibrated FOs of Orbulina in the Central Paratethys (based on data of Cori¢
et al., 2004; Hohenegger et al., 2009a; de Leeuw, 2011; Selmeczi et al., 2012) with possible immigration
pathways (palaeogeographic reconstruction modified from Rogl, 1998 and Kovac et al., 2017a)

North Croatian Basin, while praeorbulinas do not occur here
(Coric’: et al., 2009; Gozhyk et al., 2015). A H. waltrans occur-
rence without orbulinas has been reported from the Eastern
Paratethys (Gozhyk et al., 2015). Orbulinas without H. walfrans
were described from the northern part of the Danube Basin
(Rybar et al., 2015).

The FO of Orbulina suturalis often coincides with the FOs of
other praeorbulinas, primarily P. circularis. However, in the
Styrian Basin, the Alpine Foredeep Basin and the CF, the FO of
P. circularis slightly preceded the FO of O. suturalis (Cicha et

al., 1975; Cori¢ et al., 2004; Spezzaferri et al., 2009; Dolakova
et al., 2014; Fig. 5).

Orbulinas are the most widely distributed index microfossils
in this time interval, which occur in all Central Paratethys basins
(e.g., Cori¢ et al., 2004, 2009; Tomanova-Petrova and
Svabenicka, 2007; Spezzaferri et al., 2009; Selmeczi et al.,
2012; de Leeuw et al., 2013; Peryt, 2013; Dolakova et al., 2014;
Holcova et al., 2015a, b; Gozhyk et al., 2015; Rybar et al,,
2015). The FO of Orbulina represents the base of the local
biozone of Praeorbulina-Orbulina suturalis (Cicha et al., 1975).
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The magnetostratigraphical timing of the O. suturalis FO dif-
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(Fig. 5). In the world oceans and the Central Paratethys this %@gﬁ
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was recorded in a radiometrically dated horizon (14.39 Ma;
Hohenegger et al., 2009a). This dating indicates that the event
occurred at ~14.39-14.38 Ma, in accordance with the Mediter-
ranean dating of this event (14.357 Ma, Abdul-Azis et al., 2008;
14.414 Ma, Husing et al., 2010).

The last occurrence of Sphenolithus heteromorphus.
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Fig. 5. Succession of planktonic foraminifera and calcareous nannoplankton bioevents in selected Central Paratethys basins during the Langhian
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CLIMATOSTRATIGRAPHIC AND SEQUENCE
STRATIGRAPHIC CORRELATION

Climatostratigraphy. The very low abundance of
arctotertiary markers and high number of thermophylous ele-
ments in the interval with the first praeorbulinas can be corre-
lated with the peak of the Middle Miocene Climatic Optimum
(MMCO; 15 Ma; Gradstein et al., 2012). Increased abundances
of xerophytic markers in the same interval correspond with the
first Mediterranean aridification event dated at 15.074 Ma
(Husing et al., 2010). These ages fit well to the calibration of
magnetostratigraphical chrons using the Mediterranean bio-
event dating.

Subsequent increase in abundance of arctotertiary markers
indicates climate cooling around the FO of Orbulina; increased
humidity can be inferred from a decrease in xerophytic markers.
This change is followed by gradual cooling (increased abun-
dance of arctotertiary markers) and aridification (increased xe-
rophytic markers), which corresponds to the Mi-3a cooling
event (14.3 Ma; Gradstein et al., 2012) and more distinctive
Mi-3b event (13.8 Ma; Gradstein et al., 2012).

Sequence stratigraphy. Two depositional cycles have
been identified within the Moravian sequence of the CF. The
first cycle, correlated with TB2.3 of Haq et al. (1987), dates to
the pre-Middle Badenian (Hohenegger et al., 2014). The sec-
ond one, widely recognizable in the Paratethys Province
(TB2.4; Haq et al., 1987), corresponds to the Middle Badenian
(Hohenegger et al., 2014). Deposits of the first depositional cy-
cle have been penetrated in boreholes in the Alpine-Carpathian
Foredeep (Cori¢ and Rogl, 2004). Although they have not been
recognized in the outcrops and shallow boreholes we studied,
their regional occurrence can be supported by the common
presence of mudstone intraclasts (Eggenburgian to Early
Badenian in age; Nehyba et al., 2006) redeposited in “the
coarse-grained basal Badenian clastics” (Nehyba et al., 2008).
They are interpreted as coarse-grained deltaic system deposits
(Nehyba et al., 2008).

The second Badenian depositional cycle is mostly repre-
sented by outer shelf deposits or hemipelagites. These depos-
its volumetrically predominate in the part of the CF studied.
They can also be found further westwards as scattered ero-
sional relicts documenting the original extent of these deposits
(Hladilova et al., 1999; Holcova et al., 2015a; Nehyba et al.,
2016).

EARLY BADENIAN PALAEOENVIRONMENT
AND ITS INFLUENCE ON BIOEVENT TIMING

Several key factors influenced the distribution of index taxa
in the Central Paratethys: (1) the quality of the Central
Paratethys water-masses (i.e., temperature, salinity, nutrient
and oxygen content) played a role in the successful survival and
reproduction of index taxa; (2) the circulation regime primarily in
the Mediterranean—Paratethys system (estuarine vs anti-
estuarine, see Fig. 6). The anti-estuarine regime may have trig-
gered plankton immigration, while predominantly estuarine cir-
culation may have had the opposite effect; (3) the existence,
character (mainly depth) and water quality of communication
corridors. Generally, the greater the depths of the communica-
tion pathway, the lesser the effect of climate, presence of other
corridors or current regime on plankton exchange (this princi-
pally applies for depths >1,000 m). In shallower corridors
(<200 m), exchange with the adjacent oceans may be highly
sensitive to the above-mentioned factors (VVara, 2015). Since

the latter arrangement is expected in our study area, the previ-
ously described factors must be taken into consideration.

For interpretation of circulation regime, sea-water stratifica-
tion may be significant. The stratification was reconstructed
from stable oxygen isotope data for the interval above the FO of
Orbulina. The foraminifera tests from the interval below the FO
of Orbulina were poorly preserved. The interval between the FO
of Orbulina and the LCO of Helicosphaera waltrans is charac-
terized by significant differences in surface and bottom water
oxygen isotope values (Fig. 2E, F), which may indicate the
presence of a well-stratified water column. Seasonal variations
in isotope values between spring and summer can also be seen
(Fig. 2E, F). This variation is less pronounced above the LCO of
Helicosphaera waltrans, and can be interpreted as a result of
mixing of surface and bottom waters during the spring plankton
bloom and increased salinity/temperature variability in summer.

In the following chapter we discuss migration pathways and
restrictions of new organisms in the three stratigraphic intervals
distinguished.

Interval with Praeorbulina sicana and P. glomerosa
dominated by estuarine circulation (15.9-14.3 Ma). The corri-
dor between the Atlantic and the Mediterranean remained rela-
tively deep during the Early Langhian, which enabled entry of
cold Atlantic water as shown by the occurrence of
psychrospheric ostracods (Benson, 1978). The palaeobiological
evidence can be supported by carbon isotope data (Vergnaud-
Grazzini, 1983, 1985), which demonstrates identical isotope
composition in the Atlantic and western Mediterranean bottom
waters. Central Mediterranean estuarine circulation is suggested
for the Early Langhian up to the FO of Orbulina (upper part of the
P. sicana Subzone, i.e. middle part of the MNN5a Subzone;
Dall’Antonia et al., 2001). The Indo-Pacific connection remained
open with the Circumequatorial Current in place (von der Heydt
and Dijkstra, 2005) in the time interval prior to the FO of Orbulina
(Gebhardt, 1999). The presence of diatoms, high-nutrient
Globigerina and Coccolithus pelagicus and high-nutrient benthic
foraminiferal taxa may also indicate an estuarine circulation in
the Central Paratethys (Tomanova-Petrova and Svabenicka,
2007).

The rare occurrence of Praeorbulina sicana and P.
glomerosa in the Central Paratethys may be related to prevail-
ing estuarine circulation and restricted plankton immigration
(Fig. 6). Another factor that limited Praeorbulina occurrence in
the Central Paratethys may be the lack of a suitable palaeo-
environment for this plankton group. Both Orbulina, and
Praeorbulina thrived in stratified oceans with a summer warm
water layer in place (Chapman and Davis, 2010). This can be
evidenced by the identical isotopic composition of both groups
in our study material (Scheiner, 2015). This warm surface water
layer was probably absent in the Central Paratethys during the
Early Badenian, which can also be documented by the rare oc-
currence of other warm-water elements as Globigerinoides or
Globigerinella. Helicosphaera ampliaperta and H. waltrans
co-occurrence in the Central Paratethys in contrast to the Medi-
terranean also indicates a different quality of surface waters in
both regions. The earlier disappearance of H. ampliaperta in
the Mediterranean at ~15.5 Ma (laccarino et al., 2011) may
have accelerated the evolution of Helicosphaera waltrans in a
Mediterranean vacant niche.

The MMCO at ~15 Ma can be correlated with this interval
(Zachos et al., 2001; Gradstein et al., 2012). However, studies
on microflora and macroflora from the Pannonian and Vienna
basins showed some differences to the global trends over the
Early and Middle Miocene. The Early Langhian temperature
peak does not represent the Miocene temperature maximum in
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Interval with rare Praeorbulina sicana and P. glomerosa: estuarine circulation (14.3-15.9 Ma)

Central Paratethys
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Interval with Praeorbulina circularis, Orbulina suturalis and Helicosphaera waltrans:
transition from estuarine to anti-estuarine circulation (14.6—14.3 Ma)
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Fig. 6. Models of immigration of biostratigraphical index planktonic foraminifera
and calcareous nannoplankton to the Central Paratethys during the Early Badenian (Langhian)

the study area. The warmest climate was recorded in the
Eggenburgian—Ottnangian transition (~17—16 Ma; Knobloch et
al., 1975; Planderova, 1990; Jiménez-Moreno et al., 2005,
2006; Kvacek et al., 2006; Dolakova et al., 2011a, b; Kovacova
et al., 2011; Dolakova et al., 2014). This corresponds to the
conclusions of Bohme et al. (2007), who described the succes-
sion from paratropical evergreen forest between 17.5-17.3 Ma,
followed by subtropical semi-deciduous and oak-laurel subtrop-
ical forest (17-15.3 Ma) from the North Alpine Foredeep
xyloflora. This probably reflects mesoclimatic changes caused
by northerly plate tectonic shift and/or uplift of the Carpathian
mountain chain.

Transition from estuarine to anti-estuarine circulation
in the interval with Praeorbulina circularis, Orbulina
suturalis and Helicosphaera waltrans (14.6—14.3 Ma). Clo-
sure of the Indian Gateway in the Middle Langhian caused a
transition from estuarine to anti-estuarine circulation in the
proto-Mediterranean (Kouwenhoven, 2000). This can be dated
to the time interval between the FO of O. suturalis and the FO of

O. universa (Russo et al., 2007) at 14.56—-14.36 Ma (di Stefano
et al., 2008). Change in the Mediterranean circulation regime
also influenced circulation changes along the Mediterra-
nean—Central Paratethys communication gateway and trig-
gered several distinct bioevents (i.e., FOs of Praeorbulina
circularis, Orbulina suturalis and Helicosphaera waltrans over a
short period of time which coincides with the drop in the
Coccolithus  pelagicus/Reticulofenestra  minuta  ratio;
Tomanova-Petrova and Svabenicka, 2007; Spezzaferri at al.,
2009). This is interpreted as a result of variations in surface wa-
ter quality. C. pelagicus is an indicator of cold and nutrient-rich
waters (Okada and Mclintyre, 1979; Winter et al., 1994; Cachao
and Moita, 2000), which is consistent with the estuarine circula-
tions in the Early Langhian. On the other hand, the occurrence
of R. minuta indicates environmental stress characterized by
salinity and nutrient oscillations (Flores et al., 1997; Wells and
Okada, 1997; Kameo, 2002; Wade and Brown, 2006). Deterio-
rating quality of surface waters may be linked to salinity oscilla-
tions in a downwelling circulation regime expanding from the
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Mediterranean to the Paratethys. Our detailed analysis shows
that the interval with H. walfrans represents a transition be-
tween both regimes with locally persisting coastal upwelling
(Holcova et al., 2015a). Generally, this newly established
anti-estuarine circulation triggered the formation of a warm
summer surface water layer and the immigration of planktonic
taxa such as orbulinas and praeorbulinas and also
Globigerinoides spp. and Globigerinella regularis (Fig. 6;
Holcova et al., 2015a).

The variegated succession of the FOs of Praeorbulina
circularis, Orbulina suturalis and Helicosphaera waltrans and
the position of the FO of Orbulina in normal and reverse
magnetochrons suggests that the second Badenian transgres-
sion was not isochronous across different basins. This effect is
generally recognized in peripheral foreland basins as the forma-
tion of accommodation space in distal and proximal parts
(Heller et al., 1988; Catuneanu et al., 1997, 1998).

Interval with Orbulina suturalis and common H.
walbersdorfensis dominated by anti-estuarine circulation
and onset of the Wielician salinity crisis (14.3-13.8 Ma). No
global bioevent has been recognized in the Central Paratethys
during this interval. A local event characterized by a gradual
substitution of large H. waltrans by small H. walbersdorfensis
occurred at its base. The relative abundance of H.
walbersdorfensis positively correlated with Reticulofenestra
minuta (Holcova, 2017) suggests its stress-tolerance. The
palaeoenvironmental changes during this event were summa-
rized by Dolakova et al. (2014), Holcova et al. (2015a, b), and
Nehyba et al. (2016), being characterized by increasing aridity
and decreasing riverine and terrestrial nutrient input with epi-
sodic heavy rainfalls. Increased seasonality caused perturba-
tions in mixed and stratified water columns and seasonal varia-
tions in nutrient input. Increase in the surface water salinity dur-
ing summers can be detected in the oxygen isotope record
(Scheiner, 2015) and dinoflagellate assemblages (Nehyba et
al., 2016). Aridification trends can also be traced in the in-
creased percentage of xerophytic markers in the pollen spectra
from our studied boreholes (Fig. 2C). A similar trend dated at
14.3 Ma was described by Bohme et al. (2010) from xyloflora of
the Alpine Foredeep Basin.

The timing at ~14.3 Ma can also be approximated to the
FCO of H. walbersdorfensis. The age of its FCO in the Mediter-
ranean (14.05 Ma; Mourik et al., 2011) indicates the immigra-
tion direction from the Paratethys to the Mediterranean, which is
expressed in the bioevents succession. The stress-tolerant H.
walbersdorfensis, a typical Paratethyan species, reflected a
varying quality of surface water in a small epicontinental basin
which extended to the Mediterranean due to the Middle Mio-
cene Climatic Transition, while closure of the Indian—Mediterra-
nean Gateway and a change in the circulation pattern also oc-
curred in the Atlantic-Mediterranean Gateway at the end of the
Langhian (Gebhardt, 1999).

This interval is characterized by a dominance of conifers in
the pollen spectra, which is sometimes referred to as the Pinus
event. The accumulation of conifer pollen in offshore marine
sediments may be explained by pollen mass production,
long-distance aerial transport (from W or NW) and also by their
high resistance to oxidation in water or sediment (Heusser,
1978; Hopkins and McCarthy, 2002). A cyclic arrangement of
this mass accumulation is consistent with variations in abun-
dance of biserial agglutinated foraminifera and Globorotalia
transylvanica/bykovae and also with multiproxy cyclicity in the
Sooss borehole (Vienna Basin), interpreted as Milankovitch cli-
matic cycles (Hohenegger et al., 2008).

The interval was terminated by the Wielician salinity event
that led to increased salinity of the surface water layer
(Scheiner, 2015; Nehyba et al., 2016). This can be documented
by an increase in miliolid abundance in the shallow-water de-
posits. This bioevent is dated at 13.73 Ma in the Danube Basin
(Fordinal et al., 2014) which is consistent with dating of the sa-
linity crisis (beginning at 13.81 Ma with a duration between 200
and 600 ky; de Leeuw et al., 2010).

Although the persistant anti-estuarine circulation should gen-
erally favour the immigration of biostratigraphic plankton markers
to the Central Paratethys (the FO of G. praemenardi at 14.4 Ma
in the world oceans or 13.9 Ma in the Mediterranean; Gradstein
etal., 2012), the cooling (recorded in micro- and macroflora) and
salinity oscillations in the surface waters probably restricted this
process. The salinity crisis started prior to the LO of S.
heteromorphus in the world oceans (13.5 Ma; Gradstein et al.,
2012), which suggests that the bioevent occurred earlier in the
Central Paratethys due to oscillating salinity.

Salinity oscillations accompanied by salt deposition can be
detected all over the Mediterranean region (evaporite deposits
in Egypt; led et al., 2011) and may be used as a correlation hori-
zon in sequences with no index taxa.

The cooling event can be detected slightly later in the conti-
nental plant assemblages (at ~13.5 Ma; Planderova, 1990;
Jiménez-Moreno et al., 2005; Jiménez-Moreno, 2006; Kvacek
et al., 2006; Dolakova et al., 2011, 2014; Kovacova et al.,
2011). This disproportion has not yet been adequately ex-
plained.

CONCLUSIONS

1. The interval between the FO of Praeorbulina and the FO
of H. waltrans and/or Orbulina correlates with the first Badenian
transgression. Probably only the Mediterranean—Central
Paratethys Gateway was in place at this time with no direct con-
nection between the Central Paratethys and the world ocean.
Therefore, the timing of biostratigraphical events recorded here
must be coeval with or later than in the Mediterranean. In this
case, correlation of the Karpatian/Badenian boundary with the
Burdigalian/Langhian boundary (in the sense of Piller et al.,
2007) is appropriate, and can be corroborated by climatostrati-
graphic data placing the top of the MMCO to this interval.

The first Badenian biostratigraphical markers (Praeorbulina
sicana and P. glomerosa) were only rarely detected in the Cen-
tral Paratethys. This is interpreted as a consequence of restricted
immigration of the index taxa linked to the absence of a warm
surface water layer in this region and predominantly estuarine
circulation in the Mediterranean—Paratethys system. The scar-
city or absence of standard biostratigraphical markers and/or
presence of numerous gaps related to tectonic uplift complicate
stratigraphic correlation in this interval, and more radiometric
ages would certainly help understanding of this period.

2. The coeval FOs of Praeorbulina circularis, Orbulina
suturalis and Helicosphaera waltrans at the base of the second
Badenian transgressive cycle coincide with the change from
estuarine to anti-estuarine circulation regime in the Mediterra-
nean—Paratethys system. This was accompanied by establish-
ment of a warm summer surface water layer in the Central
Paratethys. Slightly different bioevent timings and their succes-
sion may indicate heterochrony of the transgression in individ-
ual basins and the formation of a summer surface water layer.

3. The Middle Miocene climatic transition significantly af-
fected the Central Paratethys palaeoenvironment in the time in-
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terval following the LCO of Helicosphaera waltrans. This re-
sulted in climatic instability, and climate cooling followed by a
regional salinity crisis. Its onset can be detected earlier in ma-
rine settings and later in continental environments. The ab-
sence of standard stratigraphical markers can be related to
palaeoenvironmental fluctuations and salinity oscillations.
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