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The palaeolake from Osséwka, eastern Poland, is an unusual example of basin, in which sedimentation lasted from the be-
ginning of the Holsteinian through several climatic oscillations until the Early Saalian, i.e. over a period of ~70,000 years.
This provides us with the opportunity of correlating the dynamically changing events on land with their potential equivalents
in the marine profiles. Alkenone-based temperature reconstructions using U, are an unusual tool in this respect. Neverthe-
less, as a result, we successfully relate this pollen sequence to the changing SST (sea surface temperature) values in the
colder phases of MIS 11. The bipartite Ferdinandovian Interglacial was previously correlated with the upper part of the
Cromerian complex (MIS 13 and MIS 15). Having at our disposal limits in the SST alkenone-based record, we clearly identify
the stratigraphic position of the second warm phase of MIS 15 and a small fragment of MIS 14. In our opinion, the Rhume
Interglacial, identified in Germany, should be located within MIS 13. Using the available orbitally tuned chronology, we also
give a substantial input to estimate duration of these terrestrial interglacials, indicating the starting and ending points of their
equivalents in the alkenone records.

Key words: Middle Pleistocene stratigraphy, MIS, duration of interglacial, terrestrial record, alkenone-based palaeo-

temperatures.

INTRODUCTION

Deep-sea cores are archives registering multiple se-
quences of climatic cycles deciphered using different tech-
niques. Divided into marine isotope stages (MIS) of glacial and
interglacial climate, the marine isotope stratigraphy provides
the framework to which the Quaternary stratigraphers can refer
their terrestrial profiles. However, we are often unable to corre-
late unequivocally these marine records with the pollen data on
land. Until recently, only the stratigraphic positions of the MIS
5e (Eemian Interglacial) and MIS 11c (Holsteinian Interglacial)
equivalents were accepted on the continent (Desprat et al,,
2005; Candy et al., 2014; Railsback et al., 2015; Berger et al.,
2016) and the pollen sequences, which are the most powerful
tool in the correlation, have well-defined palynological charac-
teristics. Other terrestrial analogues of marine warm phases
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are known almost exclusively from mammalian or molluscan re-
cords or from pollen sequences that are mostly fragmentary
and of uncertain position (Preusser et al., 2005). Yet even re-
lated to these two, accepted stratigraphic positions of
interglacials (MIS 5e and MIS 11c) there exist some doubts.
The position of the terrestrial equivalent of MIS 11c is ques-
tioned by some researchers (Bittmann and Mdiller, 1996;
Zagwijn, 1998; Geyh and Muller, 2005, 2007; Kuhl and Gobet,
2010). In turn, the identification of MIS 5e in central Europe can
be also uncertain, because apart from well-recognized pollen
records from the Central Massif in France (Reille et al., 2000),
we have only poorly documented terrestrial analogues of MIS 7
and MIS 9 available in this region. These records, despite the
differences, are very similar to the evolution of the Eemian veg-
etation.

Attempts were made to correlate not only the higher-rank
MIS phases with their equivalents on continents, but also the
intra-interglacial events or small-scale climate changes,
~400-1000 years long. The well-defined Weichselian stratigra-
phy as well as older glacial/interglacial stratigraphic units (from
MIS 10 to MIS 6) from the Central Massif and their precise cor-
relation with the marine analogues using alkenone-based (U)
SST are the best example (Martrat et al., 2007).
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The aim of this paper is to propose reliable correlations be-
tween the terrestrial interglacials distinguished based on pollen
records from eastern Poland and the marine stratigraphy, espe-
cially sea surface temperature records of the Iberian margin,
covering the last 580 ky (Rodrigues et al., 2011). Such correla-
tion is extremely important because of lack of reliable age con-
trol due to uncertainties of the applied dating techniques. In fact,
stratigraphic setting of Middle Pleistocene interglacial pollen
successions in Poland and especially of their post-interglacial
parts is generally less or more uncertain. Therefore, the correla-
tion between marine and terrestrial stratigraphic schemes
based on independent age models seems to be the main chal-
lenge of the modern Quaternary stratigraphy.

Pollen records in marine sedimentary sequences are often
the only source of information about the vegetation on the
nearby land, allowing correlation with the environmental events
registered in marine deposits. However, the quality of these pol-
len profiles is far from palynological standards required for
these collected from lake deposits or peat-bogs. The results of
examination of such sequences are usually of general nature,
including tracing of interglacial successions with somewhat
fluctuating boundaries, main components of the spectra, and
percentage contents that are, however, quite different from
those in the pollen rain on land. Certainly, no reliable conclu-

sions should be drawn about smaller intra-interglacial and gla-
cial oscillations, and the marine-derived pollen spectra cannot
be the main base of conclusions on subtle decoupling trends
between oceanic and land conditions. The reasons of these are
multidimensional (see Sanchez Goni et al., 1999, 2016; Oliveira
et al., 2016, 2017). One is a long distance of a deep-sea core
from the continent (Oliveira et al., 2016, 2017; Sanchez Goni et
al., 2016), which makes pollen that is best-adapted to long
transport to be the main component of the spectrum. The prob-
lem of pollen transport has not been usually considered with ad-
equate attention. The second problem is a low pollen concen-
tration in the deposits and a low pollen sum counted if excluding
Pinus equal from 100 to 166 per sample only (Oliveira et al.,
2016). Application of Lycopodium tablets in order to calculate
concentration of pollen in a definite volume was done by
Desprat et al. (2005) (MD01-2447 core with the MIS 11 record),
but their pollen sequence is not suitable to more subtle consid-
erations. However, in this case, analysed interval is correlated
by authors with the Holsteinian and three post-interglacial oscil-
lations. Generally, the conclusions are based on the changing
proportion of Quercus pollen.

The reinvestigation of the unique pollen succession from
Ossowka, eastern Poland (Fig. 1), lasting ~70 ky (Krupinski,
1995; Nitychoruk et al., 2005; Binka and Nitychoruk, 2013),
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Fig. 1. Location of the discussed sites

1 — Ossowka, 2 — tukéw, 3 — Czaple, 4 — Btedowo, 5 — Bilshausen, 6 — Dethlingen, 7 — Déttingen, 8 — Tenaghi Philippon,
9 — Praclaux, 10 — Schoéningen, 11 — Marks Tey, 12 — Munster-Breloh, 13 — MD03-2699, 14 — MD01-2443,
— |ODP Site U1313, 16 — ODP Site 980, 17 — MD01-2447, 18 — MD01-2446
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gives a new impulse in this area of research. The sequence
started in the Late Elsterian, continued throughout the
Holsteinian, and terminated in the Saalian (Table 1). Numerous
stadial/interstadial events with more subtle climate shifts are
crucial for further considerations. The sequence from tukéw
(Pidek and Poska, 2013), which is the second interesting pollen
record reported from the nearby site, revealed a very complex
succession with the two-phased Ferdinandovian Interglacial
and a series of neighbouring stadials and interstadials. It has
been usually correlated with MIS 15 (lower temperate part) and
MIS 13 (upper one) or generally located in the upper segments
of the Cromerian Complex (see Lindner et al., 2013).

Having high-resolution pollen profiles at our disposal, we
test the possibility of correlating the marine records from the
North Atlantic, especially 8"®0 of planktic/benthic foraminifera
and alkenone-based (U%,) temperature reconstructions with
pollen sequences on land.

The sites at Osséwka and tukow, located in eastern Po-
land, and the nearest deep-sea cores are about a few thousand
kilometres apart. However, also in this region, the influence of
the North Atlantic Circulation (NAC) is predominant throughout
a year, when the westerly winds bring moist air masses even
much further eastwards than the analysed sites. On the other
hand, polar continental air masses (westward displacement of
the Siberian High) result in cold winters and warm summers.
Hence, the influence of continental climate in eastern Poland is
also an important factor. Because the surface waters at sites
near Portugal “are derived in one form or another from the Gulf
Stream and the North Atlantic Current (NAC)” (Voelker et al.,
2010) the link between the climate in that area and this in Po-
land seems to be clear. As we can see from the Atlantic
deep-sea cores, NAC influenced substantially the weather in
western and central Europe in the middle and the Upper Pleis-
tocene. Hence, the stratigraphical framework for the Quater-

nary in these areas is generally similar, differing only in plant
composition. Thus, it appears that the correlation of pollen re-
cords in eastern Poland is certainly possible.

METHODS

The sites at Ossowka and t.ukdw are located in eastern Po-
land at the latitudes of 52°11’N and 51°93'N, respectively (Fig.
1). The Osso6wka section reveals a continuous sequence of car-
bonate gyttja, laminated in the interglacial part and without any
stratigraphical gaps (Krupinski, 1995; Nitychoruk, 2000). Quite
recently, a new, 55 m long core from the central part of the
palaeolake was analysed (Binka and Nitychoruk, 2013). The
site at Lukow, situated not far from Osséwka, is represented by
a 10 m long sequence of lacustrine deposits.

Deep-sea records, selected for correlation procedures, are
located at mid-latitudes and in the subpolar North Atlantic (Fig.
1). They represent different hydrologic conditions and produc-
tivity regimes: ODP Site 980 (the branch of NAC, subpolar re-
gime), IODP Site U1313 (the branch of NAC, mid-latitude re-
gime), core MD01-2447 offshore of the Iberian Margin (south-
ward recirculation of NAC), cores MD03-2699 and MD01-2443
in nearshore positions on the Iberian Margin (subtropical
Azores Current and upwelling) and ODP Sites 1056/1058 (Gulf
Stream) (McManus et al., 1999; Martrat et al., 2007; Voelker et
al., 2010; Rodrigues et al., 2011).

The correlation was performed with the peak by peak com-
parison. Efficiency of correlation depends on sampling resolu-
tion in the marine cores, e.g. in core MD03-2699 the 2 cm sam-
pling interval allows an average resolution of 168 years
(Rodrigues et al., 2011) and the temporal resolution for the
MDO01-2443 record does not exceed 250 +149 years for MIS 11
(Martrat et al., 2007). Because the length of the stadials/inter-
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stadials in the analysed pollen records exceeds significantly
these estimations, the final correlation seems very likely.

The correlation is based upon the &'®0 record of
planktic/benthic foraminifera, which serves as an indicator in
global ice volume and the alkenone-based temperature recon-
struction (UX,). In the latter case, the alkenone unsaturation in-
dex (U%,) is commonly converted into mean annual sea surface
temperature (SST; e.g., Naafs et al., 2011). However, many
factors, such as depth or seasonality of haptophyte blooms, can
cause the index to deviate from the mean annual values and it
should not be interpreted in a simplistic manner (Herbert,
2003). According to Lawrence et al. (2009), the estimates of
alkenone temperature in the subpolar North Atlantic reflect
probably summer conditions, because the highest productivity
of coccolithophorids occurs from summer to early autumn in
this area. Also, near the west coast of Portugal, blooms of
coccoliths are observed first of all from spring to autumn and
they are related to the intensity and persistence of upwelling
(Silva et al., 2008; Amore et al., 2012). Because the core
MDO03-2699 is under the influence of the Portugal upwelling
system, we can treat SST for this site as reflecting mostly the
summer temperatures.

Stadials, interstadials and interglacial parts in pollen se-
quences with their reconstructed varying temperature range in
the isotope and alkenone record should have their counterparts
represented by maxima and minima of the curves (peak by
peak comparison). Two basic plant communities in the pollen
record from Ossowka and tukow, which appear repeatedly in
the examined sequences, comprise a pine forest (forming veg-
etation of the interstadials as well as of the onset and the end of
the interglacials) and a tree-less steppe of stadials. Analogue
positions of these have been identified in the alkenone or iso-
tope records of a particular site and should represent more or
less the same temperature on the chart.

DISCUSSION

In temperate Europe, the term interglacial, based on pollen
analysis, represents a succession that started with birch/pine for-
est, followed by temperate deciduous forest and terminated with
pine forest. Using this approach this term usually does not corre-
spond with the marine/ice warm peaks described as odd num-
bers — MIS 5, 9, 11 (see review in Candy et al., 2014), because
their duration is most often definitely shorter. Their equivalent in
marine records is named “full interglacial condition” or “major
warm climate peak”, without precise identification of the onset
and termination. These secondary peaks in marine isotope
stages are named with additional numbers or letters (see Martin-
son et al., 1987; Railsback et al., 2015). Hence, locating these
turning points on isotope curves allows calculating duration of the
interglacial on the continent (see Sanchez Goiii et al., 1999).

The interval selected for correlation spans the terminal pine
zone of the Holsteinian, and three pine interstadials (O-3, O-5
and O-7) and four steppe stadials dominated by Artemisia (O-2,
0-4, 0O-6 and 0-8) in the post-interglacial part (Fig. 2B). The
first two interstadials represent a mature forest growing at
higher temperatures than the third one. The O-4 stadial repre-
sents probably the short-term phase and the O-8 stadial is the
longest one. Within these warm and cold stages, numerous mi-
nor oscillations were also observed. Each interstadial starts
with a quick succession of juniper followed in the first two
interstadials by birch forest with larch. Such forest represents
partly post-fire vegetation as indicated by abundant Pteridium

spores (Binka and Nitychoruk, 2013). Scots pine forest is a cli-
max community. A similar pattern was noted also at Praclaux in
Central Massif, in the two long, reliable records of the Early
Saalian (Reille et al., 2000) and at Schéningen in Germany (Ur-
ban et al., 1991; see Fig. 3).

Comprehensive studies of the pollen rain and the actual
vegetation in southern Siberia (Pelankova and Chytry, 2009)
show that steppe communities occur in this region within the
mean temperature range from —20 (—27)°C in January to 17
(20)°C in July. Certainly, substage b of the O-8 stadial is charac-
terized by lower January temperatures than others, as indicated
by a lower pollen concentration, higher NAP, and the decline of
carbonate sedimentation. In southern Siberia, mature dry pine
forests are limited by the mean temperature range from —19 to
—29°C in January and from 14 to 16°C in July. In turn, the pine
forest in northern Finland, which may also serve as an analogue
of interstadial communities, occurs from —14 to —16°C in Janu-
ary and from 12 to 13°C in July (Kuliti et al., 2006). Reconstruc-
tion of palaeotemperatures, based on post-fire vegetation and
quick secessional initial phases, is rather impossible.

The age of the examined sequence results from the age of
the underlying interglacial deposits. Typical succession of main
plant components, the presence of two intra-interglacial climate
oscillations: OHO and YHO, indicative exotics, e.g. Pterocarya,
and culmination of yew in the first half of the sequence prove its
Holsteinian age (Binka and Nitychoruk, 2013). We can find the
same features in the successions in the Central Massif, Ger-
many and Great Britain (Turner, 1970; Urban et al., 1991; Reille
et al., 2000).

MARINE RECORDS OF THE EARLY SAALIAN

Numerous &'®0 isotope records (planktic and benthic
foraminifera) as well as alkenone-based SST reconstructions
are the crucial instrument in correlation of marine events with
those on land. Some of the records seem to be more valuable.
These resulting from sophisticated stacking techniques show
clear isotopic cold and warm stages, which generally suggest
the presence of such glacial and interglacial stages on land.
However, there are serious problems in correlation of smaller
episodes, which are referred to as stadials/interstadials in conti-
nental Europe. Stacks composed of more than a single section
do not eliminate, in fact, “noise” errors, but may cause that the
real oscillation of lower amplitude is smoothed out as a side ef-
fect, e.g. in the SPECMAP project (Imbrie et al., 1984) and
LRO04 stack (Lisiecki and Raymo, 2005). The first one in the
post-optimal interval of MIS 11 noted only a single interstadial,
the second one indicated a smooth transition from a warm cul-
mination to the glacial inception.

Continuous oscillation of the curves is a substantial problem
in correlation of minor climatic events in the §'20 records, apart
from the low-resolution sequences. In the case of sta-
dial/interstadial units we cannot firmly evaluate their number or
determine their climatic significance. The multispecies planktic
580 isotope curves from core MD01-2443 (de Abreu et al.,
2005) show so many variations in the discussed period that
identification of clear trends is not possible. Similarly, in the
IODP Site U1313 records (Stein et al., 2009; Voelker et al.,
2010), both benthic and planktic §'®0 curves show a series of
quick oscillations hard to correlate with those at Osséwka. Simi-
lar problems arise while analysing records from the core MDO03-
-2669 and the ODP Sites 1056/1058 (\Voelker et al., 2010).

There are only a few sites with clearly delimited minor events.
In the ODP Site 980, the post-optimal part of MIS 11 is punctu-
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Fig. 2. Correlation of alkenone-based record (U,) of deep-sea core MD03-2699 (A — after Rodrigues et al., 2011)
with the main pollen zones of the Holsteinian and Early Saalian sequence from Osséwka in eastern Poland
(B — simplified pollen diagram after Binka and Nitychoruk, 2013)

OHO - Older Holsteinian Oscillation; L PAZ — local pollen assemblage zone; interstadials in red and stadials in blue after
Rodrigues et al. (2011). Elongated rectangle marks the temperature range corresponding with the pine forest in eastern Poland

ated by 2—4 undoubted interstadial episodes (McManus et al.,
1999), whereas the MD01-2446 record reflects 3 post-intergla-
cial warm and cold events with the descending trend of SST
(Voelker et al., 2010). However, even in these cases, precise es-
timation of the SST level for stadials and interstadials is difficult.

Alkenone-based SST reconstructions (U,) at the same sites
provide, in our opinion, the most reliable data, recording even a
short-lived climatic excursion. The high-resolution record of core
MDO03-2699 undoubtedly stands out among the few ones avail-
able (Voelker et al., 2010; Rodrigues et al., 2011). It is astound-
ing that each stadial/interstadial phase in the Osséwka core has
its close equivalent in the alkenone curve as regards both its rel-
ative magnitude and sedimentation rate (Fig. 2A).

During the first two interstadials, 6 and 7 on the curve of
Rodrigues et al. (2011) and O-3 and O-5 at Oss6wka, sea sur-
face temperature increased to 15.8°C. The end of interstadial 6

marks the onset of MIS 10. In the succeeding interstadial (bipar-
tite interstadial 3-4 in MD03-2699 and O-7 at Ossowka) the SST
decreases to ~14.5°C. At Osséwka, the O-7 interstadial is also
bipartite. However, we are treating this minor recurrence of
colder conditions with birch and juniper as a single phase. The
SST in the post-Holsteinian stadials varies from 13.3 to 14.1°C
with rare, sharp downward shifts. Stadials 5 and 6, separated by
a smallrise of SST (interstadial 5) as established by Rodrigues et
al. (2011), can be the equivalent of the O-6 stadial at Ossowka.

At the MD01-2443 site, three interstadials are also noted af-
ter the full interglacial conditions (Martrat et al., 2007), two of
which display the same SST (~17°C) and the third one is char-
acterized by the lower SST (14.5°C), a value equal to that from
stadial 4 in MIS 10. This is incompatible with the pattern estab-
lished for the succession at Osséwka. Similarly, in the MDO01-
2444/2443 composite sequence (comprising four supercycles),
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A — Artemisia steppe, P — pine forest

U¥, SST for the first two interstadials of the Weichselian (see
Fig. 4) is almost the same as for the Holsteinian.

The IODP Site U1313 alkenone curve in the discussed in-
terval shows three interstadials after a major warm peak, with
relatively similar magnitude as at Ossowka, but it suffers from
lower resolution (Stein et al., 2009). However, SST levels of the
third one (16°C) are in this case the same as the temperature of
the stadial between the first and the second interstadial. The
duration of some Early Saalian phases in the alkenone record is
also quite different from those at Osséwka and in the core
MDO03-2699.

As regards the correlation power of alkenone records, the
MD03-2699 site record, in which we can precisely find equiva-
lents of all post-interglacial oscillations, is absolutely the best of
these three ones. It is noteworthy that OHO is clearly marked in
all three alkenone (Uk) records (stadial 9; Rodrigues et al.,

2011), ~14,000 years after the onset of the interglacial. In Eu-
rope, OHO is visible as a short-lived period of 350 years at
Marks Tey (Turner, 1970) and 220 years at Dethlingen (Koutso-
dendris et al., 2010), indicated by a retreat of more demanding
plants. In the pollen diagram from Kalitéw in eastern Poland
(Binka and Nitychoruk, 1996) we can see, however, that this
event is an element of long-lasting climate deterioration, re-
corded by a gradual rise, culmination (with birch) and decrease
of pine, indicating a decreased summer and winter tempera-
tures and precipitation. It certainly lasted not less than
1500—-2000 years. Such a pattern of gradual SST decrease and
its absolute short minimum at ~412 ka (stadial 9; Rodrigues et
al., 2011)is noted in the alkenone SST curves. This implies that
the influence of the Atlantic circulation in eastern Poland dimin-
ished earlier and this cool trend lasted longer than the OHO at
German sites.
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For explanations see Figure 2

PRE-HOLSTEINIAN INTERGLACIAL
IN THE ALKENONE RECORDS

A bipartite succession at Lukéw starts with an initial birch/pi-
ne zone followed by a deciduous temperate forest, final pine for-
ests of the first warm phase, two-phased steppe stadials with a
short intervening pine interstadial, pine forest, temperate horn-
beam forest, pine forest, long steppe period stadial, and finally by
an interstadial with declining pine forest (Pidek and Poska,
2013). The Ferdynandovian Interglacial itself comprises only a
part of the Lukow succession. It is represented only by two inter-
glacial-rank warmings with the initial/final pine forests (Fig. 5).

In the stratigraphic schemes of both Poland and Western
Europe, this interglacial is attributed to MIS 15 (older temperate

stage) and MIS 13 (younger one) in the Cromerian Complex
(Zagwijn, 1998; Lindner et al., 2013; Table 1). At Lukow, the es-
timated temperature range for pine forests is from -12 to
+15°C, and for steppe vegetation from —17°C and —10 to +15°C
(Pidek and Poska, 2013).

On the alkenone SST curve of Rodrigues et al. (2011) we
use the boundary of 15.8°C for delimiting the presence of ma-
ture pine forests of the first two Saalian interstadials and of the
onset/end of the Holsteinian. The area outlined above this limit
(Fig. 2) shows the interglacial conditions with temperate vegeta-
tion. There can be some doubt that this bordering line delimits
similar zones in other MIS periods. MIS 15, as suggested by
deuterium and 8'0 curves (Lisiecki and Raymo, 2005; Jouzel
etal., 2007), is tripartite and divided by a long period of ~30,000
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years with cooler conditions. The MD03-2699 alkenone record
shows that the third culmination of MIS 15 (Fig. 5) and the short
warm interval during MIS 14 are the only possible position for
each of the nine pollen zones from tukdéw, including minor sep-
aration of steppe by a pine episode. The whole tukéw se-
quence, in general, can be correlated with the second optimum
of MIS 15, covering also almost completely MIS 14 (Fig. 5). De-
spite the fact that MIS 15 is represented by three warm seg-
ments visible in the LR04 stack, the two interglacial-rank warm-
ings from tukéw cannot be coincidental with them, because
such a long colder stage between them has not been confirmed
in numerous Polish sequences. A characteristic feature of the
second optimum is vegetation dominated by hornbeam, not by
trees usually expanding at the beginning of the interglacial.
Carpinus, Quercus and Betula represent ectomycorrhiza-de-
pendent trees. Hornbeam occurs in the later stages of inter-
glacials, when resources of the easily available phosphorous
become lower (Kunes et al., 2011). Once the temperate stages
of the Ferdynandovian were separated by a 30,000 years long
period of colder vegetation, the surface of the terrain would be
refreshed as a result of geomorphologic processes and the ex-

pansion of trees dependent on arbuscular myccorrhiza (early
interglacial stages) would be quite likely. It is the additional ar-
gument for a relatively short time separating the two optima of
this interglacial.

The SST profile from MD03-2699 shows that the pine forest
at Lukow, like in the Early Saalian at Osséwka, existed under a
similar range of SST, from 14.5 to 15.8°C, and that the temper-
atures of the two optima were lower than those in the
Holsteinian. Duration of the stratigraphic units at tukdéw, ex-
pressed by the sedimentation rate, is similar to their equivalents
in the alkenone record.

The Holsteinian and Ferdynandovian interglacials (irre-
spective of their internal dynamics), understood as the temper-
ate successions from initial “birch/pine to the final pine”, are of
varying duration, as inferred from marine and laminated terres-
trial records. In the marine sections, it is, however, not possible
to indicate precisely the onset/ending point of “full interglacial
conditions”. Nevertheless, given that the SST level of ~15.8°C
in the MD03-2699 record is correlated with a pine forest of the fi-
nal Holsteinian and the first two Saalian interstadials at
Ossoéwka, we can estimate duration of both the marine “warm
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full interglacial conditions” and their analogue on land. It is
worth-noting that the alkenone-based SST of ~15.8°C in the
MDO03-2699 is characteristic also for the Allergd Interstadial
(Rodrigues etal., 2011). At the Btedowo site (Binka etal., 1991)
a pine forest formed vegetational cover at that time too. Inter-
glacial boundaries, thus outlined, allow estimating duration of
the Holsteinian. The estimated age of 393-426 ka (33 ky) is
very close to that at Osséwka. The duration of the Holsteinian
(~25-30 ky) is accepted in most recent studies (see overview in
Tzedakis et al., 2012; Candy et al., 2014). The first temperate
optimum at Lukéw, calculated “from pine to pine” and correlated
with the third culmination of MIS 15, lasted ~15 ky (from 580 to
565 ka BP), while the upper hornbeam optimum with the bor-
dering pine forests — ~8 ky (from 563 to 555 ka). Duration of the
whole sequence from tukdw is therefore ~40 ky. The bordering
points marking interglacial conditions in the MD03-2699 SST
record result in an extremely long duration of the interglacial pe-
riod positioned with this approach within MIS13 — equal ~57 ky
(from 536 to 478 ka BP). Because the estimated age of the
whole MIS 13 is ~60 ky (Rodrigues et al., 2011) this interglacial
would comprise almost the entire isotope stage — an excep-
tional situation in comparison with other MIS. This warm stage
imitates to some extent a climate change during the Holsteinian
with the first phase colder than the second one (fir hornbeam
zone) following the OHO (Voelker et al., 2010; Candy et al.,
2014) as can be seen in marine and terrestrial records. How-
ever, temperature estimates of the first half of MIS 13 in the
MDO03-2699 core were similar or inconspicuously higher
(16-16.3°C) than these indicating the presence of a pine forest
in eastern Poland. They were decidedly lower than the
so-called first cold plateau of the Holsteinian, dominated in Po-
land by spruce, yew and alder. Duration of this very long boreal
period is ~18 ky. Later, we can observe in the alkenone SST re-
cord a long climatic optimum phase with SST of 17°C, with two
18°C oscillations.

In Europe, the sequence of the Rhume Interglacial from
Bilshausen (Luttig and Maarleveld, 1962; Miller, 1965) ap-
pears to correspond well to MIS 13. It is correlated with the
Kérlich Interglacial and treated as an equivalent of MIS 11 or
MIS 13 (Kuhl and Gobet, 2010). It is also positioned between
the Cromerian IV and the Holsteinian and correlated with the
Ferdynandovian (Bittmann and Muller, 1992; Gaudzinski et al.,
1996). Geyh and Muller (2005) treated the Rhume Interglacial
as the counterpart of MIS 11 situated below the true Holsteinian
(MIS 9). The sequence seems to be incomplete and in the pol-
len diagram there is a lack of initial zones, probably final ones
and unidentified fragments of temperate intervals, probably re-
moved during accumulation of sand layers. Laminated sedi-
ments indicate that this interglacial lasted ~25 ky (Kihl and
Gobet, 2010) or 30 ky (Mdller, 1965).

In the pollen diagram from Bilshausen, the first relatively
stable period of pine — spruce forest with small admixture of
temperate trees, ~10 ky long, resembles significantly the ‘bo-
real’ plateau of the first half of MIS 13 reflected in the
MD03-2699 record, which lasted ~18 ky. Below this sequence,
Muller (1992) described laminated deposits, ~8 ky long, which
are hard to interpret without a renewed investigation with signifi-
cantly higher resolution. It does not represent in our opinion
three interstadials but a single long and cold interval. In the
alkenone scheme (MD03-2699, Rodrigues etal., 2011), only an
episodic interstadial with the SST at the “pine level” is noted
(two samples) below MIS 13 in the corresponding period, which
was probably too short to establish a forest at Bilshausen. The

warm temperate period lasted ~13 ky at Bilshausen. This
phase, like at Osséwka, is interrupted by the short-term
“YHO-like” event, in which fir was almost completely removed
from plant communities.

Different natures of the Holsteinian and the Rhume
interglacials, despite their apparent resemblance including long
duration, “YHO-like” episodic decline of fir and hornbeam, and a
long period with a cool boreal forest in the first half, are indisput-
able. The differences are substantial with the occurrence of
OHO noted in the European sections investigated with higher
resolution, e.g. at Osséwka, Dethlingen (Koutsodendris et al.,
2010, 2012) or Marks Tey (Turner, 1970). The late presence of
Pterocarya is also diagnostic. In Poland, its pollen content is up
to 10%. The argument used by Candy et al. (2014) about loca-
tion of the Holsteinian palaeolakes on the thick Anglian/Elste-
rian/Sanian 1 till, deposited by one of the greatest glaciations in
Europe, is not without significance. In Poland, numerous
Holsteinian lakes, often extensive, deep and with thick deposits,
were also a result of this process. The commonly recognized
early culmination of yew, e.g. in many sections of Poland, at
Dethlingen and Munster-Breloh (Muller, 1974a), at Doéttingen
(Diehl and Sirocko, 2008) or in the Central Massif (Reille et al.,
2000), marks probably a maximum sea level highstand in the
warm part of MIS 11.

There is no doubt that fluctuations of SST in the MD03-2699
record between MIS 10 and MIS 15 are reflected by climate and
vegetation changes in eastern Poland. Does it mean that clima-
tic conditions off the Iberian Peninsula influenced weather in
such remote areas? Today, the MD03-2699 site and others in
the vicinity, are strongly affected by the subtropical Azores Cur-
rent (AC) diverging from the Gulf Stream, and by the Portugal
Current (PC) as the southern branch of the North Atlantic Cur-
rent (advecting freshly ventilated waters to the south) (Voelker
et al., 2010; Rodrigues et al., 2011). According to Rodrigues et
al. (2011), Pleistocene fluctuations of SST in the MD03-2699
record reflect the longitudinal migration of the Polar Front and
subtropical water masses, modelling climatic conditions in
warm and cold phases off the Iberian Peninsula. It seems to be
an unlikely situation that the westerlies from this region influ-
enced substantially and directly the climate in Poland. Today,
the tropical maritime air mass from this region appears in Po-
land only sporadically throughout the year. However, at all sites
analysed in this paper, surface waters are finally transported in
various forms from the Gulf Stream and the North Atlantic Cur-
rent (NAC). Hence, we think that rather general changes in this
current system induced changes in the weather in Poland.

UNCERTAINTIES IN CORRELATION OF MARINE
AND TERRESTRIAL STAGE BOUNDARIES

This problem has been best recognized for the Eemian
Interglacial (cf. Tzedakis, 2003), but should be also valid for the
earlier interglacials. A lag of the Eemian terrestrial boundaries
with respect to the marine ones was determined. The age of the
Eemian could be estimated by comparing the curve of sea sur-
face temperature based on the benthic and planktic §'°0 record
in the deep-sea core MD95-2042 off south-west Portugal
(Sanchez Goiii et al., 1999; Shackleton et al., 2002) and the ar-
boreal pollen (AP) percentages from Bispingen in Germany
(Mdaller, 1974b). Marine evidence suggested that interglacial
conditions in the sea were initiated already at 132 ky BP and ter-
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minated at 115 ky, whereas the Eemian, recorded by the pollen
diagram in the deep-sea core MD95-2042, was reported as
lasting from 126.1 ka to 109.7 ky (cf. Shackleton et al., 2002).

This lag, however, is most distinct if comparing the temper-
atures based on benthic evidence. SST, determined based on
planktic §'20 in the core MD95-2042, is much closer to terres-
trial estimations. Certainly, the terrestrial interglacial could start
earlier and terminate later in southern Europe. Eventual delay
of initial interglacial conditions on land in this region could indi-
cate high dependence of terrestrial vegetation on water circula-
tion in the North Atlantic, and, especially, replacement of the
NAC by cold Arctic currents prevailing during climate deteriora-
tion at the end of the interglacial. Such tight relation of marine
and terrestrial conditions at the end of the interglacial was indi-
cated by a sudden drop of SST, reflected by alkenone analysis
of the core MD95-2042 at 113-111 ka. This cooling presumably
appeared already at ~115 ka on the British Isles (Shackleton et
al., 2002).

A high dependence of environmental conditions in northern
continental Europe on the NAC was suggested for the Eemian
and Early Weichselian (cf. Marks et al., 2016). At that time,
eastward increasing continentality was typical for the Eemian
and the following warm interstadials (Amersfoort, Brérup and
Odderade), but westward increasing continentality during the
intervening colder stadials (Herning, a cold phase between the
Amersfoort and Brorup, Rederstall). An eastward decreasing
trend of continentality in Europe during cold stadials could result
from a remarkably less dynamic NAC and extensive sea-ice
cover in the North Atlantic, favouring, among others, permafrost
aggradation on the adjoining land.

CONCLUSIONS

In the light of the above considerations, the location of the
Holsteinian and the Ferdynandovian in the stratigraphical
framework of the Pleistocene is beyond dispute. They can be
correlated with warm phases of MIS 11 (Holsteinian), and with
the upper optimum of MIS 15 and a small part of MIS 14
(Ferdynandovian; Table 1).

It is justified to assume that the equivalent of MIS 13 is the
Rhume Interglacial.

We give clear, credible answers to the question how long
the terrestrial equivalents of the warm intervals of MIS 11 (~33
ky), MIS 13 (57 ky) and part of MIS 15 and MIS14 (15 and 8 ky)
are. In the case of MIS 13, the duration of the interglacial is un-
usual. The estimated, extremely long time span of the continen-
tal interglacial within MIS 13 makes it the longest one known
from the Quaternary period.

Alkenone-based SST reconstruction (UX,) is the most reli-
able method to investigate the more subtle climatic trends re-
corded in marine cores, whereas the results, based on the oxy-
gen isotope record (benthic and planktonic foraminifera), allow
for only partial modelling of climatic changes, especially those
of higher magnitude.
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