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During the Paleogene, the area of the northern Tethys was controlled by a turbidity system stimulated by diastrophic and
geodynamic processes. These factors contributed to the dispersion and rapid oxygenation of organic debris. Its accumula-
tion was a consequence of stagnant bottom water conditions that periodically occurred in the basin. In these periods, intense
decomposition intensified by hydrothermal and diagenetic processes was associated with oxygen consumption and the re-
lease of greenhouse gases, which led to hypoxia and acidification. These phenomena intensified by thermal and density
stratification had a major impact on the structure, evolution and distribution of biota. Stress associated with rapidly changing
conditions induced by sedimentary process and upwelling resulted in the dominance of forms that colonized most sediments
(Glomospira, Ammodiscus, Recurvoides, Rzehakina) and surface waters (Guembelitria, Chiloguembelina, Globanomalina,
Globigerina, Cassigerinella, Catapsydrax). At the time, foraminifera were limited to low-diversified eutrophic assemblages or
were mainly replaced by siliceous phytoplankton (radiolarians and diatoms). Geochemical data confirm that environmental
crises in the Paleogene basin took place under changing thermal conditions that reflect global events (KTBE, PTME, EEOC
and TTE). Thermal stress favouring the formation of certain minerals or rocks occasionally occurred during the Paleocene to

=

Eocene (siderite, phosphates) and dominated in the Early Oligocene (silica).
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INTRODUCTION

The Paleogene was a period of major changes in ocean cir-
culation and global climate, induced by reorganization of tec-
tonic plates, accompanied by intense volcanic and diastrophic
activities and sea level fluctuations (Haq et al., 1988; Vogt,
1989). These external factors influenced the accumulation and
preservation of organic debris in marine deposits (Calvert and
Pederson, 1992). Its decomposition associated with oxygen
consumption led to anoxia. The spread of these conditions in
the basin depended not only on the water temperature and sa-
linity, but also on the intensity of hydrothermal and diagenetic
processes (Brener, 1984; Tucker, 1991; Katz et al., 2001).
These processes associated with the release of volcanic and
biogenic gases and fluids (CO,, NH3 and SiO,) also favoured
the formation of minerals (phosphorite, siderite) which contrib-
uted to calcium utilization and acidification (Zachos et al., 2005;
Williams et al., 2017).

Through most of the Paleogene, oxidative and geochemical
stress took place under warm “greenhouse” climatic conditions
(Zachos et al., 2001; Pujalte et al., 2009). The warming trend
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started at the Maastrichtian-Paleocene transition and intensi-
fied at the Paleocene-Eocene Thermal Maximum (PETM), cul-
minating in the Early Eocene (EECO) (Fig. 1). After this climatic
optimum, short-term warming events occurred until the end of
the Eocene (Bohaty and Zachos, 2003; Rohl et al., 2005;
Thomas et al., 2006; Luciani et al., 2016). Futher climate
change occurred close the Eocene/Oligocene boundary. At that
time the closure of the Tethys seaway (Terminal Tethyan Event
— TTE) and limited marine connections between the Indian
Ocean and the Atlantic led to perturbations in the ocean circula-
tion and sea level fluctuations which resulted in a cooling effect
(Barron and Baldauf, 1989; Miller et al., 2009). However, this
trend was interrupted by the warming episode in the Late
Oligocene ~26 Ma (Miller et al., 1987; Zachos et al., 2001; Villa
and Persico, 2006; Pekar et al., 2006).

Under these climate conditions, environmental stress af-
fected the number and structure of the biota to a variable degree.
It usually created opportunities for the establishment and survival
of new forms and favoured opportunistic species of animals or
plants that are adapted to exploit newly available habitats or re-
sources and can be recognized as indicators of eutrophic envi-
ronments (Levinton, 1970; Dimichele et al., 1987; Frezza et al.,
2005; Alegret et al., 2012). Foraminifera include taxa that tolerate
a wide range of environmental conditions. The distribution of
these organisms is determined by oxygen and food availabilities
(Gooday, 1990; Kuhnt et al., 1996; Stigter et al., 1998; Heinz et
al., 2001; Alegret and Thomas, 2009, 2013; Arreguin-Rodriguez
et al., 2013). The extinction of specialized forms with massive
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Fig. 1. Global oceanic palaeogeographical, palaeoenvironmental and palaeobiological events in the Latest
Mesozoic and Cenozoic with respect to the geochronology and sea level curve, respectively (Berggren et
al., 1985; Haq et al., 1987; Aubry et al., 1988; Kuhnt et al., 1992; Erbacher et al., 1999; Kaminski et al., 1999;

Keller and Padro, 2004; Kaminski, 2005)

and ornamented tests, which belong to k-strategists, and the ap-
pearance of low-oxygen and acidification tolerant dwarf r-strate-
gists can be identified as an example of adaptive radiation asso-
ciated with drastic ecological changes that took place close to the
Maastrichtian-Paleocene, Paleocene-Eocene and Eocene-
Oligocene boundaries (Macleod, 1993; Luciani et al., 2016). At
the end of the Paleocene (~57 Ma), changes in hydrothermal ac-
tivity and circulation in bottom waters and atmosphere, accom-
panied by global warming (greenhouse effect), led to perturba-
tions in marine environments that resulted in global anoxia (Rea
et al., 1990; Kennett and Stott, 1991; Stott, 1992; Speijer et al.,
1997, Bains et al., 2000; Fig. 1). The PETM event (~55.5 Ma) is
characterized by globally elevated temperatures and major biotic
changes on land and in the oceans, including the extinction of
deep-water benthic foraminifera (Galeotti et al., 2004; Arreguin-
-Rodriguez et al., 2013). At that time, marine plankton and ter-
restrial organisms were significantly differentiated, while numer-
ous species of flysch-type assemblages became extinct
(Kaminski et al., 1995; Kelly et al., 1998; Kelly, 2002). Benthic
foraminiferal survived in homogeneous eutrophic assemblages
including species of the Glomospira (Biofaces B) biofacies
(Kaminski, 2005; Arreguin-Rodriguez et al., 2013; Fig. 1). A de-
cline of acarininids and foraminiferal benthos is paralleled by a
marked increase in carbonate content of sediments. It suggests
that these intervals of carbonate enrichment, and its specific
microfauna, reflects stepwise enhanced carbon participation in
marine environments, induced by increasing concentrations of
atmospheric carbon dioxide lead to an increase in sea sur-
face temperatures and intense fluvial input of organic-rich
terrigenous material from the adjacent land under humid climate
conditions at that time (Kelly, 2002; Giusberti et al., 2007;
Taucher et al., 2012). Among calcareous foraminifera, aerobic
and oligotrophic assemblages were both replaced by species re-
flecting low oxygenation and enriched with forms occurring in en-
vironments that were previously limited to continental shelf
(Speijer et al., 1997).

After the thermal optimum, a cooling trend became wide-
spread in the Late Paleogene. Rapid changes were separated
by intervals of more stable conditions and occasional warming
periods (Berger, 1972; Barron and Baldauf, 1989). The major
cooling interval in the Early-Middle Eocene and the earliest
Oligocene reflect the reversal of the climate trend seen during
the Early Paleogene. It resulted from changes in ocean water
circulation and upwelling, which initiated the process of moving
masses of cold water to the surface. Under these settings the
activity of siliceous plankton abruptly increased (Fig. 1). The
dominance of these forms was closely attributed to natural pro-
cesses (stratification and upwelling) which led to eutrophication.
Low-diversity or monospecific assemblages can also be associ-
ated with brackish estuarine waters reflecting river influx (dia-
toms) or mixed waters in the tidal zone (radiolarians) (Bolto-
vskoy et al., 2003; De Wever et al., 2003). Intense decomposi-
tion of this biogenic and terrestrial plant material on the sea floor
was associated with the consumption of oxygen, which led to
anoxic bottom conditions (\Veto, 1987). Poorly diverse epifauna
and some shallow- or deep-water infauna prefer this hostile en-
vironment including organic-rich sediment and cold stable bot-
tom waters (Sen Gupta et al., 1993; Kaminski et al., 1995;
Kaminski et al., 1999; Nagy et al., 2009).

Changes in water geochemistry also reflect a crisis in the
marine environment (Zachos et al., 2005). This is manifested by
enrichment in trace elements and chemical compounds result-
ing from the decomposition of organic matter, activity of organ-
isms, and the impact of volcanic and climate factors. Oganic
carbon and carbon and hydrocarbon biomarkers usually indi-
cate intense decomposition of land- and marine-derived or-
ganic matter owing to microbial processes on the sea floor
(Lange et al., 2000). Under these conditions shaped by subma-
rine volcanism, greenhouse gases were released: carbonate di-
oxide and methane (Vogt, 1989; Jardine, 2011). An increase in
the content of these products usually results in both low-oxygen
conditions in the basin and a warming effect on the surrounding
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lands. These environmental trends, which led to the elimination
of marine benthic fauna and intense vegetation on land, were
evidenced by the presence of kaolinite (Thiry, 2000). Other clay
minerals (montmorillonite), trace elements (Zn, V), and mineral
rocks (phosphates) reflect the early diagenesis of sedimentary
and volcanic deposits caused by the activity of marine water,
chemical compounds and greenhouse gases released during
the decomposition of organic debris and hydrothermal activity
(Compton et al., 2000; Maslennikov et al., 2012). These pro-
cesses led to intense oxygen consumption. The extended an-
oxia in stratified and cold waters favoured the formation of sid-
erite on continental shelves (Berner, 1984; Tucker, 1991;
Melinte-Dobrinescu and Roban, 2011).

Fluctuations in the ocean circulation, sea level, the carbon
cycle, and climate that contributed to sea surface productivity or
bottom conditions during the Paleogene have been identified
by the analysis benthic and planktic foraminifers and geochemi-
cal indices from the flysch deposits in the Outer Carpathian Ba-
sin. In this marginal basin of the northern Tethys, deposition of
siliciclastic-carbonate turbidities prevailed. The flysch series
dominated by sandstones include shales and local marls that
may reflect environmental perturbations associated with
changes in water circulation and geochemistry. The wide-
spread occurrence of these conditions was intensified by ther-
mal and salinity changes in the basin studied. The Paleogene
flysch series from the Polish Outer Carpathians are examined

in order to understand environmental stress and its external set-
tings. This analysis is based on original, archived and published
results to determine whether it could occur under the influence
of global and regional factors.

GEOLOGICAL AND SEDIMENTOLOGICAL
REMARKS

Environmental changes in the northern Tethyan Sea were
analysed based on foraminiferal and geochemical index from
the Paleogene flysch series of the Polish Outer Carpathians
(Fig. 2). During the Paleogene the study area was a marginal
basin very sensitive to relative sea level changes. In this area,
presently divided into tectonic zones, the sedimentary system
dominated by turbidity currents was strongly controlled by
geodynamic processes (Oszczypko, 2004; Jankowski, 2015).

Under these settings, turbiditic siliciclastic-carbonate de-
posits formed (Koszarski et al., 1974; Slaczka and Kaminski,
1998). Those deposited under low sedimentation rate condi-
tions reflected environmental stress associated with abrupt
changes in the water circulation and chemistry. They are repre-
sented mainly by shales and occasional marls with siderites,
phosphates (Paleocene), tuffites (Paleocene-Eocene) and
cherts (Lower Oligocene) and often occur within sandstone se-
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Fig. 2. Location of selected outcrops and boreholes on the background of tectonic units of the Polish Outer Carpathians
(modified from Zytko et al., 1989; Oszczypko, 2006)

1 — Ustron (Istebna Fm.), 2—4 — vicinity of Zywiec Lake (Istebna Fm.; 2 — Mata Tresna, 3 — Oczkéw, 4 — Wilczy Jar), 5 — Istebna-Olza-Olecka
region (Istebna Fm.), 6 — Kamesznica (Istebna Fm.), 7 — Kety (Variegated Shales), 8 — Wadowice (Menilite Fm.), 9 — LefAcze (Menilite Fm.),
10 — Harbutowice (Menilite Fm.), 11 — Skawinki (Menilite Fm.), 12 — Myslenice (Menilite Fm.), 13 — Stréze (Menilite Fm.), 14 — Mszana Gérna
(Menilite Fm.), 15 — Cieniawa (Menilie Fm.), 16 — Kleczany (Menilite Fm.), 17 — Tabaszowa (Istebna Fm.), 18 — Bie$nik (Variegated Shales),
19 — Maslana Goéra (Variegated Shales), 20 — Ropa, 21 — Magdalena (Menilite Fm.), 22 — Gtadyszéw (Watkowa Sandstones, Gtadyszéw
Beds), 23 — Sekowka (Variegated Shales, Magura Beds, Menilite Fm.), 24 — Dukla (Majdan Beds), 25 — Trzciana (variegated shales in
Magura Beds), 26 — Wegléwka (variegated marly and shaly deposits), 27 — Czarnorzeki (Istebna Fm.), 28 — Godowa (Krosno Fm.), 29 —
Jasiondéw (Variegated Shales), 30 — Potomia (Czudec Clays), 31 — Komancza (Majdan Beds, Variegated Shales, Menilite Fm.), 32-34 —
Cisna-Majdan-Solinka (Majdan Beds), 35—-37 — Baligrod-Bystre-Rabe (Menilite Fm., Krosno Fm., Istebna Fm.), 38 — Harta (Krosno Fm.), 39 —
Hyzne (Variegated Shales, Hieroglyphic Fm.), 40 — Bezmiechowa (Wegléwka Marls), 41 — Krepak (Menilite Fm.), 42 — Leszczawa Gérna
(Menilite Fm.), 43 — Ropienka (Menilite Fm.), 44 — Cisowa (Menilite Fm.), 45 — Brzegi Dolne (Menilite Fm.), 46 — Hulskie (Krosno Fm.), 47 —
Czarna Goéra (Krosno Fm.)
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ries in different proportions and locally form independent
lithofacies (e.g., Variegated Shale Fm., Wegléwka Marls; Fig.
3). During the Paleocene-Eocene, shales and marls dominated
in the external (Skole and Subsilesian units) and, locally, in the
inner (northern part of the Magura Unit) zones of the Polish
Outer Carpathians. In the Oligocene, shales (Menilite Fm.) be-
came the dominant lithofacies (Koszarski et al., 1974; Malata,
1997; Slaczka and Kaminski, 1998; Fig. 3). Their distribution
was strongly controlled by geotectonic and geodynamic pro-
cesses. Under these conditions, the basin was frequently di-
vided into interconnected sub-basins (Ksigzkiewicz, 1962;
Golonka et al., 2000; Jankowski, 2015). As a consequence of
this subdivision, deposits that previously accumulated in the
same basin currently belong to different tectonic units. Their
comparison shows that only the Magura, Silesian and Skole
sub-basins could be considered as independent sedimentary
areas. While the Subsilesian and Silesian zones were closely
related to each other, the Dukla Zone, which was a transitional
area between the Silesian and the Magura zones, was individu-
alized and transformed during the Paleogene (Cieszkowski,
2001; Oszczypko, 2004).

Perturbations in marine ecosystems, strongly determined
by tectonic history and geological factors, also reflect major
palaesogeographic and biotic events. These relations with re-
spect to environmental stress during the Paleogene are dis-
cussed in this study.

MATERIAL AND METHODS

The study is based on samples collected from Paleogene
deposits of the Silesian, Subsilesian and Dukla units (Fig. 3). The
results include also the data from the Magura and Skole series,
which was partly published by the present authors and others.
Rock material was collected during geological mapping of the
Polish Outer Carpathians on the scale of 1:50,000, and during
research conducted by the authors. Most of the samples were
taken from outcrops, but some of them come from boreholes.
Sampled rocks were disintegrated by boiling and freezing at the
laboratory of the PGI-NRI Carpathian Branch in Krakow. The
micropalaeontological analysis and photographic documentation
of selected material (63 um) was performed using a stereoscopic
optical microscope (Zeiss Stereo Discovery.V12). The collected
microfossils are described with special focus on the relationship
between test morphology and living or feeding strategy, ecologi-
cal preferences and fossilization potential (Jones and Charnock,
1985; Corliss, 1985, 1991; Bernhard, 1986; Corliss and Chen,
1988; Nagy et al., 1995; Kaminski and Kuhnt, 1995). These re-
sults are compared with palaeogeographic events shaped by
sea level and oxygenation changes in marine environments.
Micropalaeontological data are discussed with respect to water
geochemistry and climate fluctuations documented by geochem-
ical indices, including trace elements and minerals and chemical
compounds preserved in shales. These data are correlated with
sedimentary processes and biotic events reflecting environmen-
tal crises during the Paleogene. Changes in the diversity and
number of foraminifera observed by the authors are reported
with respect to both other microfossils (radiolarians, diatoms, al-
gae) and geochemical data that are part of archived and pub-
lished studies (Wieser and Gucwa, 1977, 1980; Muszynski et al.,
1979; Gucwa and Slaczka, 1980; Olszewska, 1984, 1985;
Gucwa, 1990; Gucwa and Poprawa, 1996; Dziubinska and
Narebski, 2004; Bienkowska-Wasiluk, 2010; Zielinska, 2010,

2017; Garecka, 2012; Salata and Uchman, 2012, 2013; Szydto
and Olszewska, 2012; Slqczka et al., 2014; Dziadzio et al.,
2016). The results compiled by authors are presented against
the geochronology and the stratigraphic position of the studied
deposits (Fig. 4).

MICROPALAEONTOLOGICAL
AND GEOCHEMICAL DATA

In the Paleogene flysch series, environmental stress and its
external settings are mainly evidenced by foraminiferal and
geochemical data. The most widespread fossil group is the ag-
glutinated and calcareous benthic foraminifera that are closely
related to the sediment and marine waters, and reflect depo-
sitional conditions and their duration. Agglutinated foraminifers,
as the most numerous group in the study area, include mainly
autochthonous forms with tests cemented by silica and some-
times calcium carbonate. Planktic and calcareous benthic
forms occur only in parts of the studied deposits that accumu-
lated during some intervals of the Paleogene. These forms are
more numerous in the Paleogene Subsilesian series and the
Upper Eocene-Oligocene deposits of other tectonic zones
(Huss, 1957; Jurkiewicz, 1967; Jednorowska, 1975; Olsze-
wska, 1980; Morgiel and Olszewska, 1978, 1981; Morgiel and
Szymakowska, 1978; Olszewska et al., 1996; Olszewska,
1997b). Due to the high fossilization potential, foraminifera are
used for palaeoecological and biostratigraphical research in the
Polish Outer Carpathians (Geroch et al., 1967; Ksigzkiewicz,
1975; Geroch and Nowak, 1984; Olszewska, 1985, 19973;
Geroch and Koszarski, 1988; Fig. 3). The characteristics of this
group with respect to other microfossils (radiolarians, diatoms
and algae) and geochemical data are discussed in this chapter.

PALEOCENE

In the Paleocene dark shales of the Istebna (Silesian Unit)
and Majdan Beds (Dukla Unit), siderites and agglutinated fora-
minifera cemented by silica are found. Species belonging to the
genera: Glomospira (G. charoides, G. diffundens, G. gordialis),
Glomospirella (GI. grzybowskii) and Rzehakina (Rz. epigona,
Rz. fissistomata, Rz. simplex) are recovered from all study ar-
eas west of the Sota River and near the Dunajec River and east
of it (Fig. 2). Representatives of the genera Haplophragmoides
(H. horrides, H. mjatlukae, H. stomatus), Recurvoides (R. nu-
cleolus, R. walteri) and Recurvoidella (Re. lamella) are found
mainly in localities situated in the eastern part of the Polish
Outer Carpathians. They are occasionally accompanied by ag-
glutinated foraminifera of the genera Kalamopsis, Ammodis-
cus, Caudammina, Trochamminoides, Saccammina, Reophax
and Bolivinopsis (Fig. 4). Some of these genera are also re-
ported from variegated shales of the Istebna Formation. Other
siliceous and calcareous microfossils also sporadically occur in
these series. The former are represented by radiolarians and di-
atoms dispersed in the studied deposits or are present at the
top of them, while calcareous foraminifera occasionally occur in
muddy flows and shales. The appearance of calcareous forms,
which was reported from the vicinity of Zywiec Lake (Nescieruk
and Szydto, 2003), was also confirmed in the Krosno region
(Figs. 2 and 4). Single specimens of calcareous benthic (Nutta-
lides trumpyi, Gyroidinoides nitidus) and planktic species
(Eoglobigerina trivialis, Subbotina triloculinoides, Chiloguem-
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M. marginodentata Chilostomella tenuis
M. velascoensis Nonionella liebusi
Catapsydrax dissimilis Allomorphina trigona
C. primitivus Kalamopsis grzybowskii
Globorotaloides suteri o |Saccamminoides carpathicus
Cassigerinella chipolensis o |Reophax duplex
Tenuitellinata angustiumbilicata R. pilulifer
Te. ciperoensis o Karrerulina coniformis
Te. postcretacea o |Gerochammina conversa
Tenuitella denseconnexa o |Bolivinopsis spectabilis <z(
T. brevispira o |Remesella varians §
T. munda Bulimina polymorphinoides E
T. liverovskae Globobulimina pyrula E
T. inaequiconica o |Bolivina crenulata
T. wilsoni Virgulina dibolensis
Paragloborotalia nana o |Virgulinella karagiensis
Globigerinella obesa o | Caucasina coprolithoides

Radiolarians (x)

Uvigerina multistriata

Diatoms (*)

Fursenkoina schreibersiana

erected
epifauna

1

1

surficial/
semi-infauna

shallow
infauna

deep
infauna

Lol

planktic
foraminifera

II' radiolaria II' diatoms

Fig. 4. The variability of foraminifera in studied deposits with special focus on benthic morphogroups
and distribution of planktic foraminifera and phytoplankton
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belina crinita, Ch. morsei, Morozovella velascoensis and P.
pseudobulloides) are characteristic for these assemblages.
Rarely, they contain Planorotalites pseudomenardii and
Acarinina mcanai that indicate the upper part of the Paleocene
(Fig. 4). Organic debris also accumulated in mudstones and
mudstone-sandy series of the Istebna Formation (Zielinska,
2010, 2017). This abundant and usually dispersed material of
terrestrial origin co-exists with very rare dinocysts in samples
from the vicinity of Kamesznica (Szydto et al., 2015a, b).

Similar agglutinated assemblages with Rzehakina were also
documented in other tectonic units of the Polish Outer Carpa-
thians (Jurkiewicz, 1967; Jednorowska, 1975; Olszewska et al.,
1996). It was confirmed by the authors in the Subsilesian
(Wegléowka Marls), Dukla (Majdan Beds) and Magura series
(Variegated Shales) (Fig. 4). Moreover, foraminiferal and radio-
larian plankton found in the Istebna Formation was also de-
scribed in variegated deposits of the Subsilesian (Huss, 1957;
Jednorowska, 1975; Olszewska, 1980; Waskowska-Oliwa,
2005, 2008) and Dukla units (Olszewska, 1980). However, they
usually contain numerous planktic foraminifera. These forms,
belonging mainly to the genera Globoconusa (Glc. daubjer-
gensis), Preamurica (Pr. ucinata), Morozovella (M. angulata),
Eoglobigerina (E. fringa), Subbotina (S. triloculinoides), Para-
subbotina (P. pseudobulloides) and Chiloguembelina (Ch.
morsei, Ch. crinita), sometimes co-exist with calcareous benthic
taxa (Nuttalides, Anomalina) (Fig. 4). In addition, specimens of
Guembelitria are occasionally found in shales accompanied with
the Inoceramian sandstones of the Skole Unit at the Creta-
ceous/Paleogene boundary (Gasinski and Uchman, 2011).

Organic matter is usually oxidized in variegated deposits.
However, shaly marls of the Subsilesian Unit (Bezmiechowa)
locally contain organic matter of marine origin (Szydto et al,,
2015b), while the variegated shales of the Skole Unit contain
phosphates and lenses of black clayey and muddy flows which
also occur in the Babica Clays (Franus and Rajchel, 2002;
Szydio et al., 2014; Fig. 4). Pyritization process was observed in
these series (Szydto et al., 2014).

EOCENE

Homogeneous agglutinated foraminiferal assemblages
containing Glomospira species (G. charoides, G. gordialis), and
associations with Saccamminoides (Sa. carpathicus) are char-
acteristic for the Early Eocene (Jurkiewicz, 1967). This micro-
fauna is known from shales of variegated colours (variegated
shales) which are accompanied by the Ciezkowice (Silesian
Unit), the Magura (Magura Unit) and the Hieroglyphic sand-
stones (Dukla and Skole units) or form separate litho-
stratigraphic units (Variegated Shales) in the Subsilesian zone
(Olszewska, 1973, 1980; Waskowska, 2008, 2015; Fig. 2).
Over most of the study area the Eocene shales contain
Bolivinopsis spectabilis and, locally, Ammodiscus latus, which
periodically occur in high number (Fig. 4). Variegated shales of
the Skole Unit were deposited in the Paleocene-Eocene. They
contain radiolarians, tuffites, specific minerals: montmorillonite
and kaolinite (Fig. 4), Mn and Fe oxide micro-concretions, and
Mn, Fe, Mg and Ca oxides and carbonate concretions
(Muszynski et al., 1979; Bak et al., 1997; Franus and Rajchel,
2002). Changes in plankton were also initiated at that time. This
biotic process continued to the Middle Eocene and was associ-
ated with the occurrence of Morozovella (M. marginodentata),
Acarinina (A. spinoinflata, A. bulbrooki), Turborotalia (T.
frontosa) and Hantenkina species, which were described from
samples collected by the present authors (Fig. 4) and others

(Nowak, 1954; Gasinski, 1978). Some of them were found in
black clays that occasionally occur in the Skole series (Hiero-
glyphic Formation). Benthic taxa of the genus Reticulophra-
gmium (Ret. amplectens, Ret. rotundidorsatum), sometimes
occurring in low-diversity assemblages (Jurkiewicz, 1967),
were encountered in the Middle and Upper Eocene variegated
shales of the Subsilesian (Kety borehole) and Dukla units
(Komancza; Olszewska, 1973; Fig. 4). Radiolarian horizons in
the Eocene variegated shales are usually associated with
pyritization (Bak and Barwicz-Piskorz, 2006).

OLIGOCENE

The next change among planktic foraminifera is observed at
the Eocene/Oligocene boundary in most areas of the Polish
Outer Carpathians (Olszewska, 1985). Massive and ornamented
forms disappeared at that time. Thick-walled taxa of Globi-
gerapsis index, Gs. coccoensis, Turbolotaria cerroazulensis and
GIb. amplipertura were replaced by small-sized specimens with
spinose and thin-walled tests and globular chambers (Globi-
gerina praebulloides, GIb. occlusa, Glb. ouachitaensis, Cassi-
gerinella chipolensis, Glb. officinalis and Tenuitellinata livero-
vskae), and others having partly covered aperture and an addi-
tional chamber or apertures. Forms belonging to Catapsydrax
(C. dissimilis, C. unicavus), Globorotaloides (Glo. suteri),
Subbotina (S. droogeri), Globoquadrina (Gq. selli) occur both in
the external (Skole) and internal (Magura) units (Fig. 4). They are
accompanied in the Menilite Beds by other forms belonging to
Globanomalina and Chiloguembelina, which are known from the
Late Eocene variegated shales (Olszewska, 1973, 1985; Fig. 4).
The Eocene-Oligocene boundary coincides with almost total dis-
appearance of agglutinated taxa that were replaced by calcare-
ous benthic forms of the genera Bolivina, Chilostomella,
Allomorphina, Nonionella, Globobulimina, Fursenkoina, Cauca-
sina, Virgulina and Virgulinella (Olszewska, 1985) found in the
Dukla, Silesian and Magura units (Fig. 4). Benthos with pyritized
tests is represented by the genus Cibicides. These forms occur
in organic-rich Menilite Shales that were widespread in the Outer
Carpathians during the Oligocene (Olszewska, 1985). Remains
of diatoms and fish are also found in these shales. After the Early
Oligocene dominance of calcareous benthos occurring in homo-
geneous assemblages, planktic foraminifera became more nu-
merous in the Late Oligocene. In shales of the Krosno sand-
stones, assemblages with benthic and planktic opportunistic
forms (Globigerina officinalis, Glb. ouachitensis, GIb. praebullo-
ides) were replaced by an association composed of Tenuite-
llinata angustiumbilicata, Te. ciperoensis and Te. postcretacea.
This type of microfauna was found in mud flows (Fig. 4).

The Menilite Shales also include many trace and mineral el-
ements: Ni, Cr, Mn, Mo, Zn, V, Cu and SiO,. Among clay miner-
als, montmorillonite prevails (Wieser and Gucwa, 1977; Gucwa
and Wieser, 1980; ten Haven et al., 1993; Gucwa and Poprawa,
1996). Some poarts of the Menilite Shales are predominantly of
biotic origin. More external zones (Skole, Subsilesian, and
Silesian units) abound in V and Mo, while the enrichment in Cu
is characteristic of the internal part of the Polish Outer
Carpathians (Gucwa and Slaczka, 1980; Gucwa, 1990; Fig. 4).
Moreover, hydrocarbon biomarkers, including norhopanes/ho-
panes, isoprenoids, diasteranes and oleananes, have been
documented in the Meniliite shales of the Silesian and Magura
units. Hopane and sterane biomarkers have also been docu-
mented in the Upper Eocene green shales of the Silesian Unit
(Sekdéwka), which underlie the Menilite Shales Formation in-
cluding siliceous marls (Dziadzio et al., 2016).
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CHANGES IN DEPOSITIONAL
ENVIRONMENTS

The siliceous-carbonate flysch deposition heavily influenced
the marine biota and preservation of organic debris. Hemipelagic
deposition which prevailed in the Subsilesian Zone and in part of
the Magura and Skole zones was frequently interrupted by the
abrupt supply of coarse-grained terrigenous material in the
Silesian and Dukla zones (Lesniak et al., 2001; Strzebonski,
2015; Fig. 3). This process, controlled by turbidity currents, usu-
ally led to mechanical destruction of biogenic material that was
strongly reworked and rapidly oxidized on the seafloor. Its de-

composition during long periods of low tectonic activity and lim-
ited water circulation contributed to oxygen consumption and the
release of greenhouse gases (CO,, CH,) (Fig. 5). This process,
associated with the activity of anaerobic bacteria and shaped by
submarine volcanism (tuffites), led to anoxia under humid warm
conditions (kaolinite). This phenomenon spread at different
range and time in the Outer Carpathian Basin. During progres-
sive anoxia, foraminifera migrate to the sediment and water sur-
face. Their distribution on the sea floor related to life position,
their feeding strategy and test structure, and oxygen availability
(Jones and Charnock, 1985; Bernhard, 1986; Nagy et al., 1995;
Kaminski and Kuhnt, 1995; Kaminski, 2012). In stratified and tur-
bid waters, agglutinated and calcareous benthics occurred as

increased O, solubility

planktonic erected
IEI foraminifera II' epifauna
III intermediate,
deep infauna

surficial
infauna
lIlradiolaria El

I i
infauna

diatoms

Fig. 5. Hypothetical diagram illustrating the activity of marine microorganisms and a change
in water chemistry under environmental and climatic conditions: A — Paleocene-Eocene warming,
B - Oligocene cooling (Praetorius et al., 2015, modified)
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epi- and infauna representing detritus, deposit and bacteria feed-
ers. During periods of total anoxia in the bottom waters the
foraminiferal benthos was eliminated, while shallow-dwelling sili-
ceous (radiolarians, diatoms) and calcareous plankton (foram-
inifera) dominated in the surface waters (Fig. 5).

In the Paleocene and Eocene, active epifauna (Rzehakina,
Ammodiscus) colonized most sediments from coarse- to very
fine-grained facies, attaching to the substrate. It seems that be-
cause of living strategy and environmental preferences this small
involute epifauna and shallow-water ovate infauna (Glomospira
and Caudammina) were better adapted to the frequently and
rapidly changing environments shaped by turbiditic deposition.
Moreover, assemblages dominated by species of the genus
Glomospira (G. charoides, G. gordialis, G. diffundens) occurring
under lower oxygenation also existed in dysoxic waters during
the formation of variegated shales especially in the Early
Paleocene and Early Eocene (Fig. 5A). This biotic episode oc-
curs across most of the Polish Outer Carpathians. The last pe-
riod was also documented in the surface waters by the
radiolarian bloom in the Skole Zone (Bak et al., 1997). The
infauna with coarse-grained tests cemented by siliceous (Karre-
rulina, Gerochammina) and calcareous material (Remesella)
also existed in more detrital sediment close to the CCD under
progressive oxygenation, which was induced by an increased
activity of bottom currents. In addition, deep infaunal forms of the
genus Bolivinopsis, reflecting cool, turbid and poorly oxygenated
bottom waters including pelagic substrates with high organic
matter content (Kaminski, 1984), also occur in variegated shales.
The Paleocene-Eocene shales also contain specimens of shal-
low (Recurvoides) and mobile infauna (Haplophragmoides)
which, along with species of Bolivinopsis and Ammodiscus, often
occur in eutrophic assemblages sensu Haig (1979). This trend is
especially characteristic for the lower/middle part of the Eocene
(Kaminski, 2005). Usually opportunistic benthic taxa (Glomo-
spira, Caudammina, Recurvoides, Haplophragmoides) which
were regarded as forms of the flysch-type by Gradstein and
Berggren (1981) highly contribute to the foraminiferal assem-
blages from habitats that experience periodic anoxia (Kaminski
etal., 1995; Figs. 1 and 4).This phenomenon was also observed
in the surface waters, as documented by dwarfed forms of the
Globigerina group and Chiloguembelina and Guembelitria taxa
(Figs. 1,4 and 5). This plankton tolerates nutrient-rich and anoxic
waters that were partly infiltrated by greenhouse gases and toxic
compounds transported from the bottom water during intense
upwelling in the Paleocene. Especially most of benthic and
planktic forms were eliminated just after the KTBE event in the
earliest Paleocene (Keller and Benjamini, 1991; Keller and
Pardo, 2004). At that time, perturbation in sea level and water cir-
culation led to the extension of anoxia and acidification in parts of
the basin. The formation of iron compounds (siderites) and phos-
phates intensified the process associated with intense consump-
tion of oxygen, which led to the mass extinctions and may con-
firm the influence of submarine volcanism (Berner, 1984; Keller,
1989; Tucker, 1991). The conditions shaped by diastrophic and
hydrothermal processes were also observed during the Paleo-
cene-Eocene (Oszczypko, 2004; Waskowska et al., 2014;
Jankowski, 2015). Replaced calcareous planktic and benthic
foraminifera and phytoplankton (red algae) described by the au-
thors and Leszczynski et al. (2012) in the Silesian series (Istebna
shales) reflect major relative sea level changes in the Late
Paleocene. This process influenced the water circulation and ox-
ygen availability. Planktic massive and ornamented species of
Morozovella and Acarinina were eliminated, while mono-species
assemblages with semi-infaunal forms of Glomospira charoides
and G. gordialis dominated under eutrophic conditions (Figs. 1
and 4). During extending the periods of oxygen deficiency

(hypoxia), planktic communities were dominated by radiolarians
in the Early and Middle Eocene (Bak et al., 1997). These biotic
events may correlate with upwelling and periodic cooling. Under
these conditions, early diagenesis (phosphates) took place in
stratified waters under the influence of volcanic fluids and gases.
It was associated with oxygen and calcium consumption. After
this thermal minimum, epifaunal forms of the genus Rethiculo-
phragmium became numerous and occurred in homogeneous
eutrophic assemblages in the Middle and Late Eocene (Fig. 4).
The periods of anoxia associated with a decrease in sedimenta-
tion rate and cooling effect at the beginning of the Paleocene and
the Eocene (PETM, EEOC) were interrupted by intense supplies
of coarse-grained material. Initially, this process led to short-term
oxygenation during the formation of sandstone bodies in the
Subsilesian, Silesian, and Dukla zones (Fig. 3). Dysoxic condi-
tions spread gradually into the internal and external zones of the
Outer Carpathian Basin (Hieroglyphic and Magura sandstones)
during the Eocene (Fig. 3). It seems that deep and shallow
infauna (Bolivinopsis, Recurvoides, Haplophragmoides, Glomo-
spira), usually existing in dark shales under low oxygenation con-
ditions, survived periods of deoxygenation during the formation
of variegated shales in the early part of the Paleogene. The inten-
sity of this trend is also evidenced by oligotrophic associations
with Nuttalides truempyi in the Late Paleocene (Figs. 1 and 4).
Moreover, assemblages with thick, coarsely agglutinated spe-
cies of Saccamminoides reflect periods of supply of coarse
grained material in the Early Eocene. It has been found in pelagic
and hemipelagic sediments of nutrient-rich environments close
to or below the CCD (Waskowska, 2008, 2014a). In the
Early/Middle and Late Eocene, benthic environments were in-
habited by assemblages dominated by shallow infaunal species
of Reticulophragmium, which became more diverse at the end of
these periods. This microfauna, accompanied by Nothia excelsa
and Ammolagena clavata, is found in variegated and green
shales which formed intercalations within the Hieroglyphic sand-
stones, and in thick complexes in most parts of the Polish Outer
Carpathians (Jurkiewicz, 1967; Waskowska, 2014a, b, 2015). In
the Late Eocene, radiolarians of variegated shales decrease in
number (Barwicz-Piskorz and Rajchel, 2012).

Climate changes were initiated during the formation of the
Globigerina Marls at the Eocene/Oligocene boundary. It was
associated with a palaeogeographic reorganization and chan-
ges in ocean circulation (TTE), which resulted in the reactiva-
tion of volcanism, sea level fluctuations and a limited deep-wa-
ter circulation. Under these conditions, forms characteristic for
eutrophic conditions (Globanomalina and Chiloguembelina) oc-
curred at this boundary. After this episode, a cooling trend in-
tensified in the Early Oligocene. The Menilite Shales include si-
liceous nodules (cherts) containing poorly diversified assem-
blages with calcareous benthic forms that reflect shelf environ-
ments (Olszewska, 1984). The replacement of the original fossil
material by pyrite is characteristic for this assemblage. Species
belonging to the genus Bolivina prefer a shallow, infaunal
microhabitat, and dominate in unstable sedimentary environ-
ments rich in organic matter. The other deep and intermediate
infauna of the genera Chilostomella, Nonionella, Globobulimina
and Uvigerina indicate oxygen deficiency in the bottom water
(Boersma, 1986; Corliss and Chen, 1988; Kaiho, 1994;
Jorissen et al., 1995; Pérez et al., 2001; Hess and Jorissen,
2009). These infaunal and epifaunal forms (Cibicides) with
unornamented and smooth tests often occurred in homoge-
neous eutrophic assemblages (Jorissen et al., 1995; Van der
Zwaan et al., 1999; Fontanier et al., 2007). The scarcity or lack
of benthos and the dominance of siliceous and organic phyto-
plankton may reflect periodic decreases in salinity. In limited
parts of the basin the influx of land-derived organic matter and
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river waters created low-salinity surface zones colonized by
brown algae, cyanobacteria (Zn, Cu, dinor-hopanes) and dia-
toms (V, isoprenoids) during the Oligocene cooling (ten Haven
et al., 1993; Koster et al., 1998; Fig. 5B). Similarly to the previ-
ous episodes, periods of anoxia and acidification were inter-
rupted by diastrophic processes that led to the reactivation of
water circulation and deoxygenation by an intense supply of
terrigenous material (Krosno sandstones). Initially, this process
affected surface water while the sea-floor conditions were still
restrictive. The Krosno Beds contain pyritized tests of opportu-
nistic plankton and epifaunal benthos that occur in the shaly in-
tercalations of the Krosno sandstones. Moreover, representa-
tives of stressed environments (Globigerina, Cassigerinella,
Chiloguembelina and Globanomalina), belonging to the sur-
face-dwelling group and typical of cooler water conditions dur-
ing the Early Oligocene, were replaced by thermophile fora-
miniferal plankton that reflect the short-term warming at the end
of the Paleogene (Olszewska, 1984; Spezzaferri and Premoli
Silva, 1991; Spezzaferri and Spiegler, 2005; Olszewska and
Malata, 2006).

DISCUSSION

Oxygen deficiency and acidification, controlled by dia-
strophic and hydrothermal processes, affected the benthic
and planktic biota during the Paleogene. The studied micro-
fauna tolerates siliciclastic influx caused by drastic sea level
changes during periodic marine floodings. Under conditions
of humid warm (Paleocene-Eocene) or cold (Oligocene) cli-
mate, intense continental runoff led to progressive acidifica-
tion and hypoxia of stratified waters in which sparse, poorly
diversified foraminiferal assemblages were dominated by
epifauna (Nagy et al., 2009) and some infauna. These detri-
tus and active deposit feeders relate to the flysch assem-
blages with Rzehakina and Glomospira-Ammodiscus (Bio-
facies B) and Recurvoides assemblages occurring under
eutrophic conditions (Haig, 1979; Kaminski et al., 1999)
(Figs. 1, 4 and 5). The species that tolerate changing oxygen
conditions also occur in variegated shales. Under conditions
of reduced clastic supply, the genera Nothia and Ammo-
lagena proliferated. They are characteristic for more oxygen-
ated bottom environments close to the CCD (Kaminski and
Geroch, 1992; Alve et al., 2011; Waskowska, 2014b). Fre-
quent supplies of coarse-grained terrigenous material con-
trolled by turbidity currents contributed to the renewal of bot-
tom waters in which opportunistic forms were replaced by
oligotrophic taxa. These conditions drastically changed in the
Late Paleocene and Early Oligocene. It was associated with
the reorganization of the basin and relative sea level fluctua-
tions induced by diastrophic and geodynamic processes.
These processes are documented by calcareous planktic
and benthic forms, some with pyritized tests. Changes in the
plankton populations were closely associated with intense
upwelling and acidification. This process was closely associ-
ated with hydrothermal and diagenetic processes and biotic
decomposition of marine and land-driven plant organic mat-
ter, as evidenced by hydrocarbon biomarkers (Lange et al.,
2000). In stratified nutrient-rich waters infiltrated by products
of hydrothermal and diagenetic processes (gases and lig-
uids), extended anoxia led to the gradual elimination of the
biota including benthos (foraminifera, bivalves), nekton (fish)
and plankton (brown algae, cyanobacteria, diatoms). These
anoxic conditions occurred in a semi-isolated sea inhabited

by endemic biota (Olszewska, 1984; Kotlarczyk and Uch-
man, 2012; Studencka et al., 2016; Fig. 5B).

The supplies of organic carbon, iron, phosphorus and sul-
phur favoured the formation of siderites, phosphates and silica.
This process was associated with intense oxygen and calcium
consumption and contributed to anoxia and acidification. These
phenomena coincided with both the bloom of siliceous
phytoplankton (radiolarians and diatoms) and perturbations in
calcareous zooplankton (foraminifers). Radiolarians were dis-
persed by turbidity currents in the Paleocene and accumulated
by suspension in the Early Eocene, while diatoms became nu-
merous during the hemipelagic deposition in the Late Paleo-
cene and Early Oligocene. These biotic events reflecting eutro-
phic conditions usually coincided with a decrease in the size
and diversity of opportunistic planktic foraminifera.

CONCLUSIONS

With respect to the geochemical index the Paleogene fora-
minifera reflect environmental perturbations in the various sta-
ges due to the nature of depositional settings and palaeo-
geographic position of the studied basin. In this area, located in
the northern Tethys, habitats were closely controlled by a tur-
bidity system stimulated by diastrophic and geodynamic pro-
cesses. These factors influenced the structure, evolution and
distribution of biotopes, and diagenetic and fossilization pro-
cesses. Microfossils, especially calcareous forms are poorly
preserved or mineralized under unfavourable conditions. Accu-
mulation of organic matter was a consequence of stagnant bot-
tom water conditions in the basin. Its decomposition, intensified
by hydrothermal and diagenetic processes, lead to periodic an-
oxia and acidification in the waters stratified due to temperature
and density differences.

Stress associated with rapidly changing oxygen conditions
induced by sedimentary processes and upwelling resulted in
the dominance of opportunistic benthos and plankton. At that
time, agglutinated and some calcareous forms were limited to
eutrophic assemblages dominated by individual species repre-
senting surficial epifauna and semi-infauna (Glomospira,
Ammodiscus, Recurvoides and Rzehakina) and planktic shal-
low-marine dwellers (Guembelitria, Chiloguembelina, Globano-
malina, Globigerina, Cassigerinella and Catapsydrax), or they
were replaced by phytoplankton (cyanobacteria, algae, radio-
larians and diatoms). The results discussed with respect to geo-
chemical data confirm the impact of environmental stress on
the marine life in the Paleogene basin and its relationship with
global events (KTBE, PTME, EEOC and TTE). Periods of
abrupt changes in temperature, oxygen content, and water cir-
culation that resulted in the formation of siderite, phosphates
and silica occurred occasionally under conditions of warm and
humid climate during the Paleocene-Eocene. Siliceous miner-
als and hydrocarbon compounds became dominant during the
Oligocene cooling, which was interrupted by warming episodes
at the end of this interval.
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