Dinoflagellate cysts and palynofacies across the Cretaceous-Paleogene boundary interval of the Vrancea Nappe (Eastern Carpathians, Romania)

Daniel ȚABĂRĂ1, * and Hamid SLIMANI2

1 *Al. I. Cuza* University of Iași, Department of Geology, 20A Carol I Blvd., 700505 Iași, Romania
2 University Mohammed V of Rabat, Scientific Institute, Laboratory of Geology and Remote Sensing, URAC 46, Avenue Ibn Batouta, P.B. 703, 10106 Rabat-Agdal, Morocco

A palynological study of uppermost Maastrichtian to Lower Paleocene deposits from a stratigraphic section of the Vrancea Nappe (Eastern Carpathians), reveals the presence of diverse and well-preserved dinoflagellate cyst assemblages. The biostratigraphic interpretation of these dinocyst assemblages suggests that (1) the Cretaceous-Paleogene boundary lies within a ~8 m thick sedimentary interval, between the Lepșa Formation (uppermost Maastrichtian) and Putna-Piatra Uscată Formation (Lower Danian), based on the Last Appearance Datum of latest Maastrichtian markers such as *Pterodinium cretaceum* and *Polyodon* cf. *gallator* and on the First Appearance Datum of Danian markers such as *Senonisphaera inornata*, *Xenocodium lubricum*, *Tectatodinium rugulatum* and *Eisenackia circumtubulata*, and (2) a discontinuity between the two formations. The palynofacies analysis from this geological section indicates an abundance of continental organic matter (mainly opaque phytofossils), deposited in a distal setting of the sedimentary basin. The occurrences in the palynological assemblage of some oceanic dinocyst taxa such as *Impagidinium* and *Pterodinium* suggest the same depositional environment for the geological formations analysed.

Key words: Vrancea Nappe, dinoflagellate cyst biostratigraphy, palynofacies, Cretaceous-Paleogene boundary interval.

INTRODUCTION

The Cretaceous-Paleogene (K-Pg) boundary is recognized as representing one of the greatest mass extinction events in the last 500 Ma. The impact on the Earth of a large asteroid (Alvarez et al., 1980), intense volcanic activity, sea level fluctuations and climatic changes (Courtillot et al., 1986; Courtillot, 1990) are presently recognized as the causes of the global mass extinctions of most marine and terrestrial biota at the end of the Cretaceous. Among these causes, the Chicxulub impact in northern Yucatan (southern Mexico) is widely accepted as the primary cause for this Cretaceous-Paleogene extinction event (65 Ma) while the Deccan volcanic activity in western India is also considered to be a principal cause (Keller, 2008; Keller et al., 2009).

In contrast to the terrestrial fauna (dinosaurs), as well as most aquatic organisms (calcareaous planktonic foraminifera, nanoplankton, etc), organic-walled dinoflagellate cyst taxa did not undergo a mass extinction across the K-Pg boundary (Benson, 1976; Hansen, 1977; De Coninck and Smit, 1982; Hultberg, 1985; Firth, 1987; Brinkhuis and Zachariasse, 1988; Moshkovitz and Habib, 1993; Habib et al., 1996; Gedl, 2004; Slimani et al., 2010). Biostratigraphical studies of this boundary based on the dinoflagellate cysts have been made at several Tethyan (Brinkhuis and Zachariasse, 1988; Gedl, 2004; Egger and Mohamed, 2010; Slimani et al., 2010, 2016; Mohamed et al., 2012, 2013, M’Hamdi et al., 2013; Mohamed and Wagreich, 2013; Slimani and Toufiq, 2013; Guédé et al., 2014) and boreal (Hansen, 1977; Moshkovitz and Habib, 1993; Brinkhuis and Schierle, 1996; Habib et al., 1996; Slimani, 2001; Slimani et al., 2011) geological sections. Other K-Pg sections are from New Zealand (Willumsen, 2004, 2011) in the Southern Hemisphere.

In the Moldavian units of the Eastern Carpathians, where the geological section studied is located, the K-Pg transition was analysed from a palynostratigraphic point of view by Olaru (1978). The author noted that, in the Maastrichtian, the Normalpolles group (primitive angiosperms) dominates the palynological assemblages (65–70%), represented by the genera *Complexipollis*, *Trudopollis*, *Plicapollis* and *Oculopollis*. In addition to these palynomorphs, some species of spore (*Leiotriletes tenuis*, *Verrucisporites quintus*, *Baculatisporites primarius*) and dinoflagellate cysts (e.g., *Hystrichosphaeridium tubiferum*, *Cardonidium diebelii*, *Areoligera cf. senonensis*) were noted. The Paleocene microflora cited from the Izvor Formation recorded a decline of the Normalpolles group, the prevalent taxa comprising mono- and dicotyledonous angiosperms (e.g., *Monocolpoporinae tranquillus*, *Tricoporopollis wallensenensis*, *T. kurtzchi*, *T. robustus*), and some pteridophytes and gymno-
spores. The relative abundance of the dinoflagellate cysts decreases in the Paleocene, compared to that identified in Maastrichtian deposits, the cited species being *Cerodinium diabelii*, *Achomosphaera ramullfera*, *Hystrochosaeridium tubiferum* and *Oligochaeridium complex* (Olaru, 1978). Based on spores and pollen identified, Olaru (1978) inferred a cooling of the climate at the Maastrichtian-Paleocene boundary.

Other biostratigraphical studies of the K-Pg boundary were made based on calcareous nannofossil assemblages from the southwestern part of the Eastern Carpathians (Melinte and Jipa, 2005; Bojar et al., 2009) and on significant foraminiferal assemblages from the central and northern parts of the Moldavian Units (Ionesi, 1966, 1975; Ion et al., 1982; Guerrero et al., 2012).

The aim of this paper is to describe the dinoflagellate cyst biostratigraphy and palynofacies distribution across the K-Pg boundary interval of the Vrancea Nappe (Cuejdui-Runcu geological section, Eastern Carpathians).

GEOLOGICAL SETTING AND STRATIGRAPHIC FRAMEWORK

In the Eastern Carpathians, the Moldavide Nappe System is divided into the Inner Moldavides (i.e., Teleajen, Macla and Audia nappes), consisting mainly of Cretaceous strata, and the Outer Moldavides (i.e., Tarcău, Vrancea and the Subcarpa-thian nappes), comprising Cretaceous to earliest Miocene flysch deposits (Sândulescu, 1984; Grasu et al., 1988).

The Vrancea Nappe is structurally interposed between the Tarcău and Subcarpathian nappes and crops out in several tectonic half-windows, including the Bistrița Half-window. The geological cross-section analysed in this paper is located in this tectonic half-window (Fig. 1), more specifically at the confluence of the Cuejdiu and Runcu rivers (8 km NW of the city of Piatra Neamț).

This geological section has been previously described, from the lithological and biostratigraphic point of view, by Grasu et al. (1988) and Guerrero et al. (2012). The sedimentary succession identified along the Cuejdiu and Runcu rivers is approximately 900 m thick, the lower part being assigned to the Sărata Formation of Early Cretaceous to Late Campanian age (Guerrero et al., 2012).

The Sărata Formation is subdivided into three lithological members: Lower Member (a succession of black shales with turbiditic arenites and conglomerate intercalations); Middle Member (silicified black shales with thin stratified calcarenites and breccias); and Upper Member (sandy marls with green-schists clasts). Upwards, the succession continues with the Lepșa Formation (~115 m thick, Maastrichtian), which consists mainly of grey sandy marls with conglomerates with breccia intercalations. This formation is ended by a slumped body (15 m thick), described as an olistostrome, consisting of black shale from the Sărata Formation (Middle Member) deposited on a slope (Guerrera et al., 2012).

![Fig. 1. Geological map of the studied area (after Micu, 1976, simplified); lithostratigraphic units and ages after Grasu et al. (1988), Amadori et al. (2012) and Guerrero et al. (2012)](image-url)
This olistostrome bed is overlain by the Putna-Piatra Uscată Formation (180 m thick; Lower Paleocene–uppermost Ypresian; Grasu et al., 1988; Guerrera et al., 2012), consisting of laminated black shales with limestone intercalations (up to 4–5 m thick), arenites and calcarenites. The geological section along the Runcu River ends with the Bisericiani Formation (Pria- bonian–Lower Rupelian; Amadori et al., 2012).

Biostratigraphical data, based on planktonic foraminifera from the K-Pg boundary interval of the section studied, show that the Lepşa Formation (the middle part) contains Late Maastrichtian taxa such as Globotruncana staufi (De Lapparent), Abathomphalus maasoyensis (Bolli) and Racemiguembelina fructicosa (Egger) (Guerrera et al., 2012). The micropalaeontological content of the top of this formation is poor, and consists of scarce agglutinated foraminifers; this scarcity may be related to the Cretaceous-Paleogene extinction event. The lower part of the Putna-Piatra Uscată Formation also shows a poor micropalaeontological content, consisting of some earliest Paleocene small globigerinids, such as Subbotina cancellata Blow. According to these biostratigraphical data, Guerrera et al. (2012) placed the K-Pg boundary somewhere near the top of the Lepşa Formation.

MATERIAL AND METHODS

The K-Pg boundary section (coordinates: N 46°59'44.04”; E 26°16'33.45”) investigated in the present paper is located along the Runcu River, near the confluence of the Runcu and Cuejdu rivers (Fig. 1). This section exposes ~30 m thick of strata composed of the uppermost part of the Lepşa Formation (Upper Maastrichtian) and the lowermost part of the Putna-Piatra Uscată Formation (Lower Paleocene) (Fig. 2).

In total, six samples were analysed (Fig. 2): two samples (P140, P141) from the Lepşa Formation, one sample (P142) from the olistostrome and three samples from the Putna-Piatra Uscată Formation. The palynological material studied shows low dinocyst diversity, but yielded the most dinocyst biostratigraphic markers, which are well-preserved and useful for age determinations of the samples analysed.

For palynological and palynofacies analysis, all samples were processed using standard palynological techniques (e.g., Batten, 1999). Approximately 50 g from each sediment sample was treated with HCl (37%) to remove carbonates and HF (48%) to remove the silicate minerals. Denser particles were separated from the organic residue using ZnCl₂ with a density of 2.0 g/cm³. The palynological residues were mounted on microscopic slides with glycerine jelly. All samples yielded a palynological assemblage dominated by dinoflagellate cysts, while pollen grains, spores, bryophytes and acritarchs show rare occurrences. Photomicrographs (Figs. 3 and 4) were taken with a digital Leica DFC420 camera mounted on an Leica DM1000 microscope. The taxonomy of the dinoflagellate cyst species follows Dinoflag2 (Fensome et al., 2008) and Slimani et al. (2008). The age determination of deposits from the section analysed was obtained based on dinoflagellate cyst assemblages and their comparison with similar assemblages identified in many Maastrichtian to Danian biostratigraphically calibrated sections from the Northern Hemisphere (see above in the Introduction).

For the palynofacies analysis, the amount of kerogen in the palynological slides was analysed. At least 300–400 organic particles (>15 μm) were counted in each sample, these being included at the three main groups of kerogen constituents proposed by Tyson (1995), Mendonça Filho et al. (2002), Carvalho et al. (2006), and Tabără et al. (2015), namely: palynomorphs group (dinoflagellate cysts, spores, pollen and acritarchs); phytoplankton group which includes opaque and translucent organic particles derived from terrestrial plants (woody tissues, cuticles, membranes); and Amorphous Organic Matter (AOM) group which includes structureless organic components derived from phytoplankton or degraded higher plant debris.

In the marine environments, the proximal-distal trend is one of the principal controls on kerogen distribution. Several interpretative parameters, based on palynofacies observations, can be used for a detailed palaeoenvironmental analyses, namely: ratio of opaque to translucent phytoplankton (O:Trans; Steffen and Gorin, 1993; Carvalho et al., 2013) and the continental/marine palynomorphs ratio (C/M; Pellaton and Gorin, 2005). Also, onshore-offshore depositional environments and transgressive-regressive trends can be inferred based on a spore-pollen-microplankton (SPM) ternary diagram proposed by Federova (1977) and Düringer and Doutbinger (1985).

The high relative abundance of translucent particles (e.g., woody tissues) in ancient marine deposits are known to indicate strong terrestrial influx, with deposition in nearshore proximal settings (e.g., fluvo-deltaic systems; Tyson, 1995; Carvalho et al., 2013). In contrast, opaque phytoplankton are derived from the oxidation of translucent particles, being more resistant palynomacerals that can be transported over a long distance without being further degraded. This O:Trans ratio tends to increase in the more distal facies. Large amounts of phytoplankton can also occur via turbidity currents in deep waters (Habib, 1982; Carvalho et al., 2013). The other parameter used, the C/M ratio (calculated by taking the number of all terrestrial palynomorphs, divided by the number of dinoflagellate cysts), generally decreases offshore.

RESULTS

PALYNOCOLOGICAL CONTENT

The palynomorph assemblages from the K-Pg section analysed here consist mainly of dinoflagellate cysts (83–100% of the total palynomorphs), except for sample P140, in which a lower percentage (61%) is recorded. A total of 52 dinoflagellate cyst species and subspecies have been recognized; most of the taxa recorded in the Upper Maastrichtian cross the K-Pg boundary and persist into the Danian. This aspect does not indicate a severe extinction of dinoflagellate species across the K-Pg boundary, in contrast to the mass extinction recorded in the planktonic foraminifer assemblages (Paul, 2005; Twitchett, 2006).

Lepşa Formation. The palynological assemblage identified in samples P140 and P141 (Fig. 2) contains dinocyst species such as Palynodinium cf. grillator, Pterodinium cretaceum, Deflandrea galeata, Manuelliella selandica, Muratodinium fimbriatum, Cerodinium diebili, Rotnostia wetzelii subsp. wetzelii, Trithyrodinium evitii, Achomosphaera sagana, Palaepерi-dinium pyrophorum, and Phelodinium magnificum (Table 1), commonly used to identify Upper Maastrichtian strata in many areas (see related references mentioned above in the Introduction). Rare Cretaceous reworked specimens such as Cannosphaeropsis utinensis have been found in sample P141. Among continental palynomorphs can be listed pteridophyte spores (Deltoidospora toralis, D. psilostomata, Glichenidites senonicus, Triplanospores sp.), gymnosperms (Podocarpi-dites sp., Araucariacites sp., Cycadopites sp. and Ephedripites sp.) and early angiosperms (Normapolles).
Fig. 2. A lithostratigraphical log of the geological section analyzed on the Runcu River and a range chart illustrating the stratigraphical occurrence of selected dinoflagellate cysts.
Fig. 3. Selected dinocyst species from Runcu section

A – Pterodinium cretaceum (sample P140); B – Xenodinium lubricum (sample P143); C – Hystrichokolpoma bulbosum subsp. bulbosum (sample P144); D – Tectatodinium rugulatum (sample P145); E – Senoniaisphaera inornata (sample P143); F – Eisenackia circumtubulata (sample P143); G – Deflandrea galeata (sample P141); H – Manumiella seelandica (sample P141); I – Rottnostia wetzeli subsp. wetzeli (sample P141); J – Muratodinium fimbriatum (sample P141); K – Glaphyrocysta perforata (sample P143); L – Xenascus sp. (sample P142); M – Cerodinium diebeli (sample P141); N – Hystrichosphaeridium tubiferum (sample P144); O – Achomosphaera alcicornu (sample P145); P – Oligosphaeridium complex (sample P140); Q – Xenodicinium delicatum (sample P145); R – Achomosphaera ramulifera (sample P144); S – Cordosphaeridium fibrospinosum (sample P144); T – Spiniferites ramosus (sample P141); scale bar 30 μm
From the olistostrome above the Lepșa Formation, a single sample (P142) was analysed. The dinoflagellate cyst assemblage is dominated by *Spiniferites* div. sp., and other taxa such as *Cribroperidinium* cf. *edwardsii*, *Hystrichodinium* cf. *pulchrum*, *Oligosphaeridium* *buciniferum*, *Protoellipsodinium* cf. *clavulum*, *Xenascus* sp. have been identified. Continental palynomorphs have a frequency of 12%, and include some spores (*Deltoidospora* *toralis*, *Baculatisporites* sp.) and rare specimens of *Normapolles* pollen.

Putna-Piatra Uscată Formation. From the bottom of this formation, three samples were analysed (P143–P145; Fig. 2). The palynological content consists of a high frequency of dinocyst taxa (mainly *Spiniferites* group, and *Xenocodium* div. sp.), together with species such as *Achomosphaera ramulifera*, *A. alicornu*, *Baltiachasphaera rifensis*, *Hafnia* *septata*, *Impagidinium* sp., *Oligosphaeridium* complex, *Spiniferella cornuta* subsp. *cornuta*, *Cribroperidinium wetzelii*, *Eisenackia circumtubulata*, *Senoniasphaera inornata*, *Tectodinium rugulatum*, *Xenicodinium delicatum* and *X. lubricum* (Table 1). The spores identified in the samples analysed have a low frequency (some specimens of *Baculatisporites* sp., *Deltoidospora* sp. found in sample P145), and gymnosperm pollen is represented by *Pinuspollenites* sp. and *Cycadopites* sp. (Table 1). An acritarch species (*Micrhystridium fragile*) occur in sample P145, while *Normapolles* pollen is poorly represented in samples P143 and P145.

PALYNOFACIES DATA

The quantitative and qualitative analysis of organic particles present in all the samples analysed reveals a predominance of organic matter of continental origin. At the top of the Lepșa Formation (samples P140 and P141), the palynofacies consists of a large proportion of opaque phytoplankton (95–98%), that belong to the inertinite group, and locally small amounts of woody tissues and cuticles can be identified. The palynomorph group is poorly represented (1–2%), generally consisting of dinofla-
Dinoflagellate cysts and palynofacies across the Cretaceous-Paleogene boundary interval of the Vrancea Nappe...
<table>
<thead>
<tr>
<th>Age</th>
<th>Maastr.</th>
<th>B-M</th>
<th>Danian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxa/Samples</td>
<td>P140</td>
<td>P141</td>
<td>P142</td>
</tr>
<tr>
<td>Palynodinium cf. grallator</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pterodinium cingulatum</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pterodinum cretaceum</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achomosphaera sagena</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cannospaeropsis utinensis (reworked)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerodinium diebelii</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerodinium speciosum</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deflandrea galeata</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manumiella seelandica</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palaeoperidinium pyrophorum</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phelodinium magnificum</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanyosphaeridium xanthiopyxides</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trityrodinium evitii</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achomosphaera ramulifera</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Areoligera senonensis</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fibrocysta axialis</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Hafriasphaera septata</td>
<td>1</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Hystricho. bulbosum subsp. bulbosum</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Hystrichosphaeridium tubiferum</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Impagidinium sp.</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Muratodinium fimbriatum</td>
<td>4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Oligosphaeridium complex</td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Operculodinium centrocarpum</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Rottnestia wetzelii subsp. wetzelii</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Spiniferella cornuta subsp. cornuta</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Spiniferites multibrevis</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Spiniferites ramosus</td>
<td>6</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Spiniferites sp.</td>
<td>3</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>Cribroperidinium cf. edwardsii</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exochosphaeridium cf. majus</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hystrichodinium cf. pulchrum</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hystreichospha. salpingophorum</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impletosphaeridium? clavulum</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligosphaeridium buciniferum</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protoellipsodinium cf. clavulum</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senoniasphaera cf. rotundata</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xenascus sp.</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cordosphaeridium exilimurum</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cribroperidinium wetzelii</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eisenackia circumtabulata</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glaphyrocysta perforata</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lingulodinium sp.</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operculodinium corradinii</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senoniasphaera inornata</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achomosphaera regiensis</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Pentadinium sp. A</td>
<td>4</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Xenicodinium delicatum</td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Xenicodinium lubricum</td>
<td>10</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Batiacasphaera rifensis</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hystreichosphaeridium recurvatum</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impletosphaeridium sp.</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kleithriasphaeridium truncatum</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Xenicodinium lubricum Zone (upper part of the Damassadinium californicum Zone; Hansen, 1977), established in Lower Danian limestones in Denmark. Also, both species (X. lubricum and T. rugulatum) were recorded in Danian deposits in the Caspian Depression by Vasilyeva and Musatov (2012). Carpathella cornuta, the zonal species of the lowermost Danian Carpatella cornuta Zone (lower part of the Damassadinium californicum Zone; Hansen, 1977) is not extreme scarcity or to unfavorable environmental conditions. The FADs of Achomosphaera alicicorna and Xenicodinium delicatum are also indicative of the Lower Danian (Hultberg, 1985; Sliman, 2001; Sliman et al., 2010, 2011; Sliman and Toufiq, 2013; M’Hamdi et al., 2013). Their occurrence in the section studied supports the Danian age of the interval analyzed in the Putna-Piata Uscatã Formation. Other species, previously recorded in Maastrichtian and Danian strata, were identified only in the Putna-Piata Uscatã Formation. Among these taxa are Batiacasphaera rifensis, Cordosphaeridium fibrospinosum, Crioproteridinium wetzelli, Gleicheniidae perforata and Operculodinium corradinii.

In summary, all these Maastrichtian and Danian dinocyst event markers suggest that the K-Pg boundary may be placed somewhere between the latest sample analysed (P141) at the top of the Lepşa Formation and the earliest sample analysed (P143) of the base of the Putna-Piata Uscatã Formation. The presence of the Barremian-Lower Maastrichtian olistostrome (devoid of dinocyst markers of the uppermost Maastrichtian -lowermost Danian boundary interval) between the Lepşa and Putna-Piata Uscatã formations prevent precise localization of the K-Pg boundary in the study section. We also did not observe, as indicated in other studies (see above in the Introduction), any mass extinction of dinocysts in the K-Pg boundary interval of the Runcu section. However, the micropalaeontological content (foraminifers) is poor at the top of the Lepşa Formation (Guerrera et al., 2012) and may suggest consequently a mass extinction of this group close to the K-Pg boundary interval.

The Maastrichtian dinoflagellate assemblage in the section studied shows more similarities with Tethyan assemblages (De Coninck and Smit, 1982; Brinkhuis and Zachariasse, 1988; Slimani et al., 2010, 2016; Mohamed et al., 2012; M’Hamdi et al., 2013) than with Boreal assemblages (Hansen, 1977; Hultberg, 1985; Schiller and Wilson, 1993; Sliman, 2001; Slimani et al., 2011). Compared to the other sections from the Tethyan realm, shows also more similarities with the Maastrichtian dinocyst assemblage from southeastern Czech Republic (Carpathian domain; Gedl, 2004) than with the assemblage from south-east Poland (western part of the East European Platform; Machalski et al., 2016), which was considered to be characteristic of Boreal province, due to the high abundance of the cold water taxon, such as Palynodinium grallator. The most important differences observed, compared to the assemblage quoted from the Czech Carpathians, consists in the fact that Palynodinium grallator disappears earlier (uppermost Maastrichtian) in the studied section, probably due to different palaeoenvironmental conditions. However, the Danian assemblage is similar to many other assemblages quoted from world-wide, identified both at low and high latitude.
PALAEOENVIRONMENTAL RECONSTRUCTION

Palynofacies analyses as described by Tyson (1995) comprise an important tool in sedimentology for reconstructing depositional environments. The sedimentary organic matter (also called kerogen) recorded from the formations discussed herein includes a large proportion of continental material, with phytoclasts, pollen grain and spores, as well as a small amount of marine material composed of dinoflagellate cysts and granular AOM.

The kerogen analysed from the Lepşa Formation is composed mainly of opaque phytoclasts that are derived primarily from the oxidation of plant tissue, which was transported over a prolonged period of time (Carvalho et al., 2013). The O:Trans ratio, calculated based on palynofacies data obtained from this geological formation, shows a high value, suggesting a more distal setting, at least outer shelf zone. The same environment is also indicated by the C/M ratio, the latter having a lower value in sample P141 (dinoflagellate cysts prevailing) and slightly higher in sample P140 due to sporomorphs derived from the continental landmass. The occurrences in the Lepşa Formation of some oceanic dinocysts such as Impagidinium and Pterodinium supports the same palaeoenvironmental interpretation. Oceanic dinoflagellate taxa were also recorded in Maastrichtian-Danian deposits from the Czech Carpathians, showing a high frequency in hemipelagic deposits (Gedl, 2004). Nevertheless, the palynological assemblage from the Lepşa Formation also contains some species of the Spiniferites group, which indicates inner-outer neritic environments (Sluijs et al., 2005). This offshore depositional environment inferred for the Lepşa Formation is also suggested by plotting the frequencies of palynomorphs in an SPM ternary diagram (Fig. 5).

The palynofacies recorded from the olistostrome above the Lepşa Formation is generally similar to that inferred from the Lepşa Formation. The organic matter is characterized by a high percentage of opaque phytoclasts and a small amount of granular AOM and dinoflagellate cysts. The O:Trans ratio, as well as the C/M ratio, indicate a more distal facies for these deposits.

The depositional environment of the Putna-Piatra Uscatã Formation (lower part) is very similar to that inferred from the Lepşa Formation. The palynofacies of this formation is dominated by opaque phytoclasts (98%), these organic particles of...

Fig. 5. Spore-pollen-microplankton ternary plot (Federova, 1977; Duringer and Doubinger, 1985) indicating an offshore depositional environment for the deposits analysed

Transmitted light microphotographs of the palynofacies from the samples analysed (scale bar 30 μm): A – opaque phytoclasts of various shapes and sizes, with small amounts of translucent phytoclasts (olistostrome, sample P142); B – a mixed assemblage of opaque phytoclasts and dinocysts (Lepşa Formation, sample P141); C – palynofacies dominated by small opaque phytoclasts (Putna-Piatra Uscatã Formation, sample P143)
conclusions

This paper describes biostratigraphical data from the K-Pg boundary interval of the Outer Moldavides (Vrancea Nappe), inferred based on dinoflagellate cyst bioevents, as well as on palynofacies analysis across this boundary interval. The main conclusions are the following:

- the dinocyst assemblage identified in the top of the Leşıșa Formation indicates a latest Maastrichtian age. Important biostratigraphic event markers for this age are the LADs of *Pterodinium cretaceum* and *Palynodinium cf. grallator*. This interval can be correlated with the latest Maastrichtian *Palynodinium grallator Zone of Hansen* (1977) and the *Hystrichostrogyton conniciti* Zone of Slimani (2001); and
- the occurrence of the dinocyst taxa *Xenascus* sp. and *Hystrichodinium cf. pulchrum* may indicate a Barremian to Early Maastrichtian age for the olistostome disposed above the Leşıșa Formation. This slumping event may suggest significant tectonic activity at the Cretaceous-Paleogene transition;
- the dinocyst assemblage recorded in the Putna-Piatra Uscată Formation can be correlated with the Lower Danian *Xenodinium lubricum* Zone of Hansen (1977). The K-Pg boundary lies somewhere within the ~8 m thick strata interval between the top of the Leşıșa Formation (sample P141) and the base of the Putna-Piatra Uscată Formation (sample P143), namely between the last occurrence of the Maastrichtian dinocyst markers, such as *Pterodinium cretaceum* and *Palynodinium cf. grallator*, and the first occurrence of Danian dinocyst markers such as *Senoniaisphaera inornata, Xenodinium lubricum, Tectodinium rugulatum* and *Eisenackia circummultabulata*. Unfortunately, the presence of the olistostome between the Leşıșa and Putna-Piatra Uscată formations does not allow a more accurate localization of the K-Pg boundary in the section studied;
- the Maastrichtian dinoflagellate assemblage from the Runcu section shows more similarities with Tethyan assemblages, but compared with other assemblages from the same palaeogeographical area (the Western Carpathians and the western part of the East European Platform), some differences in the last appearance and abundance of cold water taxa (e.g., *Palynodinium grallator*) can be observed. These small differences in palynomorph distribution are probably related to different palaeoenvironmental conditions. The Danian assemblage from the section studied is similar to many assemblages of the same age previously recorded worldwide;
- palynofacies analysis of the section studied shows an abundance of continental organic matter (mainly opaque phytoclasts belonging to the inertinite group, sometimes with small dimensions and rounded shapes), which could suggest an offshore depositional environment of the sedimentary basin. The presence of some oceanic dinocysts (e.g., *Impagidinium*, *Pterodinium*) in the Leşıșa and Putna-Piatra Uscată formations, supports the same palaeoenvironmental interpretation.

Acknowledgments. The authors would like to thank the two reviewers (P. Gedl, Polish Academy of Sciences and M. Barski, University of Warsaw, Poland) and the Editor in Chief of the journal, T.M. Peryt, for their comments and suggestions that greatly improved the earlier version of this manuscript. J. Zalasiewicz is thanked for linguistic correction of the final version of this text.

REFERENCES

APPENDIX 1

Checklist of palynomorph taxa mentioned in the text in alphabetic order. The references to dinocyst species’ authors are given by Fensome et al. (2008). Some species listed in this appendix are presented in Figures 3 and 4.

Dinoflagellate cysts

Acromphora alcicornu (Eisenack, 1954) Davey and Williams, 1966 (Fig. 3O)
Acromphora ramulifera (Deflandre, 1937) Evitt, 1963 (Fig. 3R)
Acromphora regiensis Corradini, 1973 (Fig. 4A)
Acromphora sagena Davey and Williams, 1966
Arealgira senonensis Lejeune-Carpentier, 1938 (Fig. 4B)
Baltsacaphera rifensis Slimani, 2008
Cerodinium diebeli (Alberti, 1959) Lentin and Williams, 1987 (Fig. 3M)
Cerodinium speciosum (Alberti, 1959) Lentin and Williams, 1987 (Fig. 4D)
Cordosphaeridium exilimurum Davey and Williams, 1966
Cordosphaeridium fibrosinum Davey and Williams, 1966 (Fig. 3S)
Cribroperidinium cf. edwardsii (Cookson and Eisenack, 1958) Davey, 1969
Cribroperidinium wetszeli (Lejeune-Carpentier, 1939) Helenes, 1984 (Fig. 4I)
Deflandrea galeata (Lejeune-Carpentier, 1942) Lentin and Williams, 1973 (Fig. 3G)
Eisenackia circumtubulata Drugg, 1967 (Fig. 3F)
Exochosphaeridium cf. majus (Lejeune-Carpentier, 1940) Peyrot, 2011
Fibrocysta axialis (Eisenack, 1965) Stover and Evitt, 1978
Glaphycysta perforata Hultberg and Malmgren, 1985 (Fig. 3K)
Hafniaasphaera septata (Cookson and Eisenack, 1967) Hansen, 1977
Hystrichokolpoma bulbosum subsp. bulbosum (Ehrenberg, 1836) Morgenroth, 1968 (Fig. 3C)
Hystrichodinium cf. pulchrum Deflandre, 1935
Hystrichosphaeridium recurvatum (White, 1842) Lejeune-Carpentier, 1940
Hystrichosphaeridium salpingophorum Deflandre, 1935
Hystrichosphaeridium tubiferum (Ehrenberg, 1838) Deflandre, 1937 (Fig. 3N)
Impagidinium sp.
Impletosphaeridium sp.
Impletosphaeridium? clavulum Davey, 1969
Kleithriasphaeridium cf. loffrense Davey and Verdier, 1976
Kleithriasphaeridium truncatum (Benson, 1976) Stover and Evitt, 1978
Lingulodinium sp.
Manumiella seelandica (Lange, 1969) Bujak and Davies, 1983 (Fig. 3H)
Muradotinium fimbriatum (Cookson and Eisenack, 1967) Drugg, 1970 (Fig. 3J)
Oligosphaeridium fimbriatum Corradi, 1973 (Fig. 4E)
Oligosphaeridium complex (White, 1842) Davey and Williams, 1966 (Fig. 3P)
Oligosphaeridium pulcherrimum (Deflandre and Cookson, 1955) Davey and Williams, 1966
Operculodinium centrocarpum (Deflandre and Cookson, 1955) Wall, 1967
Operculodinium corradini Slimani, 1994 (Fig. 4F)
Palaeocystodinium cf. golzowense Alberti, 1961
Palaeoperidinium pyrophorum (Ehrenberg, 1838 ex Wetzel, 1933) Sarjeant, 1967 (Fig. 4G)
Palynodinium cf. grallator Gocht, 1970
Pentadinium sp. A (Fig. 4C)
Phelodinium magnificum (Stanley, 1965) Stover and Evitt, 1978
Protoellipsodinium cf. clavulum Davey and Verdier, 1974
Pterodinium cingulatum (Wetzel, 1933) Below, 1981
Pterodinium cretaceum Slimani, 2008 (Fig. 3A)
Rottnestia wetzelii subsp. wetzelii (Deflandre, 1937) Slimani, 1994 (Fig. 3I)
Senoniasphaera cf. rotundata Clarke and Verdier, 1967
Senoniasphaera inornata (Drugg, 1970) Stover and Evitt, 1978 (Fig. 3E)
Spiniferella cornuta subsp. cornuta (Gerlach, 1961) Stover and Hardenbol, 1994 (Fig. 4H)
Spiniferites multibrevis (Davey and Williams, 1966) Below, 1982
Spiniferites ramosus (Ehrenberg, 1838) Mantell, 1854 (Fig. 3T)
Spiniferites sp.
Systematophora sp.
Tanyosphaeridium xanthiopyxides (Wetzel, 1933) Stover and Evitt, 1978
Tectatodinium rugulatum (Hansen, 1977) McMinn, 1988 (Fig. 3D)
Trithyrodinium evitti Drugg, 1967
Xenascus sp. (Fig. 3L)
Xenicipodinium delicatum Hultberg, 1985 (Fig. 3Q)
Xenicipodinium luridum Morgenroth, 1968 (Fig. 3B)

Acritarcha
Micrhystridium fragile Deflandre 1948

Pteridophyta
Baculatisporites sp.
Deltoidospora psilostomata Rouse, 1959
Deltoidospora toralis (Leschik, 1955) Lund, 1977
Deltoidospora sp.
Gleicheniidites senonicus Ross, 1949
Triplanosporites sp.

Gymnospermophyta
Araucariacites sp.
Cycadopites sp.
Ephedriites sp.
Pinuspollenites sp.
Podocarpidites sp.