New data on pre-Eocene karst in the Tatra Mountains, Central Carpathians, Poland

Renata JACH1, Michal GRADZIŃSKI1: * and Helena HERCMAN2

1 Jagiellonian University, Institute of Geological Sciences, Oleandry 2a, 30-063 Kraków, Poland
2 Polish Academy of Sciences, Institute of Geological Sciences, Twarda 51/55, 00-818 Warszawa, Poland

Sparry limestone, ferruginous muddy limestone and limestone breccia have been found in the Western Tatra Mts. They occur within Jurassic rocks of the Choč Nappe just below red conglomerates of probable Eocene age. The deposits found bear strong resemblance to the infill of subterranean karst forms. They differ significantly from Quaternary karst deposits of the Tatra Mts. The δ18O values of speleogen rocks suggest crystallisation at relatively high temperatures (over 20°C) whereas their relatively negative δ13C values imply the presence of soil-derived CO2 linked with vegetation dominated by C3 pathway plants. The karst forms and their infill were formed before the Eocene transgression, which shows unequivocally that the Tatra Mts. were subjected to karstification at that time.

Key words: cave deposits, speleothems, weathering, Paleogene.

INTRODUCTION

Several periods of non-deposition in subaerial conditions occurred in the geological history of the Tatra Mts. Bearing in mind that the area is composed predominantly of carbonate rocks, one can expect not only weathering, but also the development of karst phenomena during these periods. At least four phases of karstification have been recognized in the Tatra Mts. – namely: Triassic (Anisian, and Ladinian/Carnian), Early Cretaceous (Aptian/Albian), mid-Cretaceous to Eocene, and post-Eocene (Glazek, 1989; Gradziński et al., 2009 and references therein). The karstification between the mid-Cretaceous and Eocene is named pre-Eocene hereafter in this paper.

This pre-Eocene karstification was primarily postulated by Kuźniar (1913), who also compared red-stained rock occurring at the base of the Eocene transgressive sequence to continental “siderolitique formations” known from Switzerland. Wyżółkowsk (1956) associated Eocene red conglomerate to be continental in origin. Later, this view was questioned by Roniewicz (1969), who regarded red conglomerate as a transgressive marine deposit and considered its colouration as resulting from the occurrence of red-stained limestone in the basement. Concomitantly, Roniewicz (1969) noted that Eocene red conglomerate in the area of Hruby Regiel was laid dawn on an uneven, karstified surface of the oldest rocks present and that the conglomerates in question are locally underlain by breccias with a red-stained matrix. He noticed that the contact between breccia and overlying red conglomerate is gradual. The suggestion of the presence of a karstified surface below Eocene red conglomerates was also made by Passendorfer (1978: p. 207). Uchman (1997, 2014) described the occurrence of breccia with a red-stained matrix within Jurassic rocks of the Choč Nappe which directly underlie the red conglomerates. Glazek (1989, 2000, 2004) summarized previous opinion about the geological history of the Tatra Mts. between nappe thrusting and the Eocene transgression and ascribed a karst origin to the breccias in question. Moreover, he postulated the presence of an extensive polje in the area of the present Hruby Regiel before the Eocene transgression. Gradziński et al. (2006) provided indirect proof of pre-Eocene karstification. They suggested that Mesozoic rocks in the Tatra Mts. must have been karstified before the Eocene transgression, based on the occurrence of calcareous tufa, encompassing calcite-encrusted freshwater algae, within Eocene conglomerate in the Sucha Woda Valley. Findings of speleothem clasts in Eocene conglomerates near the village of Húty (western part of the Tatra Mts.) mentioned by Gross et al. (1993: p. 70) also implies the existence of pre-Eocene karst there. Although many suggestions as summarized above have been put forward, no unequivocal proof of pre-Eocene karstification of the Tatra Mts. has been provided so far.

Conversely, there exist several papers describing or mentioning pre-Eocene karst forms and karst deposits from other mountain massifs of the Central Carpathians. Some analogues to that in the Tatra Mts. includes a karst form filled with bauxite at Mojčin (Strážovské vrchy, Slovakia; Cičel, 1958; Andrusov, 1965: pp. 228, 229, 232). The bauxite is hypothesized to be Senonian in age (Aubrecht, 2015). Other karst localities of simi-
lar age also filled with bauxite were recognized in the Little Carpathians (Male Karpaty; Činčura, 1998b). Some karst forms originated and filled with internal deposits before the Eocene transgression have been noted from various massifs of the Central Carpathians (Bośk et al., 1989; Činčura and Köhler, 1995; Činčura, 1998a; Novotný and Tulis, 2002; Osborne, 2007). Such forms must also have been destroyed during the Eocene transgression since rare silts from below the soil cover (area. The wind fall formed many pits, where rock debris appears also suggest karstification of older carbonate rocks at that time. The precise age of karstification is difficult to assess. It post-dates the thrusting of the Central Carpathian nappes and predates the Eocene transgression. In some areas it predates the deposition of the so-called Gosau beds of Late Cretaceous age, whereas in others it is ascribed to the Paleogene (Bośk et al., 1989).

This paper focuses on pre-Eocene karst in the Tatra Mountains. The main aim is to provide unambiguous evidence that the area in question was karstified before the Eocene transgression. The paper is based on the specimens found in the course of a field study carried out in the area where Eocene red conglomerate directly overlies Mesozoic carbonate of the Choć Nappe. The area is normally devoid of natural exposures, being mantled with a relatively thick soil cover and densely vegetated. The field study was possible due to an extremely strong wind that in December 2013 devastated the forest and cleared the area. The windfall formed many pits, where rock debris appears from below the soil cover (Fig. 1A). It created a unique opportunity to seek traces of pre-Eocene karst deposits.

GEOLOGICAL SETTING

Middle–Upper Eocene deposits crop out along the northern margin of the Tatra Mts. (Fig. 2; Roniewicz, 1969). These deposits discordantly covered various Mesozoic sedimentary rocks that composed several nappes of the Tatra Mts. The nappes were thrust northward during the mid-Cretaceous. The Eocene sequence records progressive deepening of the depositional setting (Roniewicz, 1969; Kulka, 1985; Olszewska and Wieczorek, 1998; Bartholdy et al., 1999). The sequence commences with conglomerates composed of Mesozoic bed-rock clasts (Fig. 2), overlain by littoral extraclastic packstones which grade up the section into various types of limestone commonly including large benthic foraminifers (Roniewicz, 1969; Machaniec et al., 2011; Jach et al., 2012; Jach and Machaniec, 2014). Conglomerates and marls occur subordinately (Alexandrowicz and Geroch, 1963; Olszewska and Wieczorek, 1998). The whole sequence represents the Bartonian–Priabonian. However, the basal conglomerates are devoid of fossils, and so their age is only hypothesized as Early Bartonian based on their position in the sequence. The Eocene carbonates are succeeded by a succession about 2.5 km thick of Oligocene turbiditic deposits (Radomski, 1958; Sotak et al., 2001). In the Miocene the Tatra Mts. were uplifted along a prominent boundary fault to the north.

The Mesozoic rocks in the area studied are mainly composed of Lower Jurassic carbonate and siliceous rocks of the Choć Nappe (Bac-Moszaszwill et al., 1979). They represent several facies (Uchman, 1994, 1997, 2014) including peloidal calcarenites (Upper Sinemurian), crinoidal-bioclastic calcarenites (Upper Sinemurian–Upper Pliensbachian), crinoidal calcarenites (Pliensbachian) and spiculites (Pliensbachian). Some carbonates, and more commonly the spiculites, are silicified. These rocks represent the Miętusia Formation (Lefeld et al., 1985) and form two thrust-sheets: the Bra ma Kentaka thrust-sheet and the Kłoczycsturmthrust-sheet (Kotarski, 1965; Grabowski, 1967). They overlie Lower Cretaceous marls of the Krížna Nappe.

The Mesozoic rocks are directly overlain by red conglomerate. Its thickness is estimated to 50 m. It occurs exclusively at the foot of the Western Tatra Mts., namely between the Malá Łaňa Valley (to the east) and the Lejowa Valley (to the west). This deposit is poorly exposed and, hence, it is somewhat enigmatic in terms of its characteristics and origin. The exploratory observations carried out in the course of this study show the presence of cross-beded sandstones and distinctly graded beds within the red conglomerate (Fig. 1B).

MATERIALS AND METHODS

The detailed field study along the contact zone between the red conglomerates and the basement Mesozoic carbonates
was undertaken with special consideration paid to windfall tree pits. Samples of breccia, red-stained carbonate rock and cement visible with the naked eye were collected. The internal structures of the samples were observed in polished sections. The GSA Color Chart (Goddard et al., 1970) was used to determine lithotype colour. The study was extended by observation of thin sections under a standard petrographic optical microscope and under a field emission SEM Hitachi S-4700, equipped with a NORAN Vantage energy dispersive spectrometer (EDS).

For measurements of stable carbon and oxygen isotope ratios of the carbonates, samples were taken with a Dremel drilling machine. The stable isotope composition was analysed at the Warsaw Isotope Laboratory for Dating and Environment Studies of the Polish Academy of Sciences. The samples were dissolved in 100% phosphoric acid at 70°C, using a Kiel IV online carbonate preparation device, connected to a Thermo-Finnigan Delta Plus mass spectrometer. The quality of the analysis was controlled by NBS-19 international standard measurements. The \(\delta^{13}C \) and \(\delta^{18}O \) values are given relative to the V-PDB standard. Analytical reproducibility was verified on the basis of the repeatability of the NBS-19 results, with an observed deviation of <0.07‰ for \(\delta^{13}C \) and <0.12‰ for \(\delta^{18}O \) measurements.

Chemical separation of U and Th from the carbonate matrix was carried out in the Institute of Geological Science, Polish Academy of Sciences, Warsaw, Poland. Uranium and thorium were separated from the carbonate matrix using TRU-Spec resin. Prior to any chemical treatment, a mixture of \(^{229}\text{Th},^{231}\text{U},^{236}\text{U} \) was added as a spike. Organic matter was removed from sample by ignition in an oven. The spiked sample was dissolved in concentrated nitric acid. Any insoluble residue was removed by centrifuging. A sample was loaded into the columns with the TRU-resin in 1M nitric acid. Carbonate matrix
was removed with acid then U and Th were washed from the columns with mixtures of 0.1 M HNO₃ + 0.2 M HF. After evaporation, the sample was dissolved in 10% nitric acid. Measurements were performed with a double-focusing sector-field ICP mass analyzer (Element 2, Thermo-Finnigan MAT in Institute of Geology, Czech Academy of Science, Prague, Czech Republic). The instrument was operated at a low mass resolution (m/Δm ≥ 300). A double pass spray chamber with teflon nebulizer was used as the sample-introduction system.

RESULTS

PETROGRAPHY OF DEPOSITS

Three lithotypes have been distinguished: (i) sparry limestone, (ii) ferruginous muddy limestone, and (iii) limestone breccia. They have been found in three localities, two at Kantaka Gate and one in Staników Gully. Table 1 shows the precise location of each locality and the lithotypes found there (see also Figs. 1 and 2). All of them occur in recent scree exposed in fallen tree pits. The direct contact with basement rock is invisible or only visible in part. All the localities are on limestones of the Choč Nappe but very close to the lower boundary of the overlying Eocene deposits. The distance from the contact can be estimated as <10 m at each locality.

Sparry limestone. The thickness of sparry limestone varies between a few millimetres and 12 cm (Fig. 3A–C). The samples show layering visible with the naked eye. The dominant layers are dark yellowish brown (10 YR 4/2). They alternate with layers that are greyish orange in colour (10 YR 7/4). The boundaries between layers are clearly visible. The layers are up to 4 mm in thickness. Generally, their shape is slightly curved; only in some zones do they form distinct syn- and antiforms. Growth cavities may have formed between neighbouring antiforms.

Sparry limestones are composed mainly of elongated crystals of columnar shape the length: width ratio of which does not exceed 6:1 (Fig. 4A). The crystal length is >2 mm whereas their maximal width exceeds 0.5 mm. These crystals form columnar proper fabrics (sensu Frisia and Borsato, 2010) or columnar compact fabrics (sensu Frisia, 2015). More elongated crystals with length:width ratios exceeding 6:1 occur subordinately (Fig. 4B). They correspond to elongated columnar fabric (sensu Frisia and Borsato, 2010; Frisia, 2015). Microcrystalline calcite is very rare. It builds distinctive laminae up to 0.4 mm in thickness, enriched in non-carbonate grains (e.g., quartz, Fig. 4C).

The columnar crystals are densely packed; there is a lack of intercrystalline porosity. Columnar calcite crystals developed according to competitive growth (Fig. 4A; sensu González et al., 1992) or an impingement crystallisation pattern (sensu Dickson, 1993). The width of crystals increases upwards from the nucleation surface, whereas their optic orientation becomes more uniform. The crystals overgrowing monocrystalline fragments of crinoidal limestone display specific optic arrangements. They derive optic orientation from their basement, hence they grew syntactically.

Ferruginous muddy limestone. Ferruginous muddy limestone is pale red (5 R 6/2), moderate reddish orange (10 R 6/6) to dark reddish brown (10 R 3/4). It forms veinlets penetrating down the Jurassic basement rocks, occurs as matrix in breccia which is composed of Jurassic rock fragments or fills growth cavities within sparry limestone (Fig. 3D). Such breccias were noted at locality A. Similar breccias were earlier mentioned from rock crags located in the Staników Gully (Uchman, 1997) and at the Kantaka Gate in the Kościeliska Valley (Glazek, 2000). The limestone host rock along a contact with a veinlet is rounded, which suggests dissolution prior to filling of a veinlet.

The ferruginous muddy limestone is generally poorly cemented. It is exceptionally well-cemented only when it co-occurs with sparry limestone or breccia (Figs. 3A and 4C, D).

Ferruginous muddy limestone is composed of extraclasts derived from older carbonate rocks. Thus, they represent calcilithic rock. Single crystals, being disintegrated parts of crinoidal limestone, are most common. The extraclasts are densely packed, with common grain-to-grain contacts; they form a grain-supported texture. The cement completely fills spaces between the extraclasts. The cement has a dark reddish, homogeneous appearance in transmitted light; in some places it is almost opaque (Fig. 4D). Observation under SEM and EDS analyses reveals the presence of fine aluminosilicate particles and microcrystalline carbonate – most probably calcite cement. Some zones are enriched with iron oxide or iron hydroxide cement (up to 46 wt.% of Fe₂O₃).

Brecia. Brecia has been found at all three sites. It comprises clasts with a size range mainly of 1–6 cm (Fig. 3B, E, F). Clasts are angular to subangular in shape, moderate brown to grey in colour with white coarsely crystalline veinlets. They consist of a variety of carbonate and siliceous rock types. Crinoidal, crinoidal-biocaltic, biocalctic packstone and grainstone clasts are most common. Clasts of microsparite limestone and spiculite occur as well. Some of these, mainly the spiculites, are silicified. All these clasts were derived from basement rocks of the Choč Nappe (see Uchman, 2014).

The breccia contains red matrix with a composition similar to that of the ferruginous muddy limestone. Some zones of breccia are cemented with sparry cement analogous to the sparry limestone described above.

ISOTOPIC COMPOSITION

Each lithotype distinguished has its own characteristic composition of stable carbon and oxygen isotopes (Fig. 5 and Table 2). The differences are more easily visible as regards the stable carbon isotopes. Sparry limestone and sparry cement of limestone breccia have the most negative values of δ¹³C ranging from −10.1 to −6.31‰. Ferruginous muddy limestone displays more positive values of δ¹³C – between −3.40 and −0.64‰. The stable carbon isotope composition of the Mesozoic rock clasts falls within a broad range typical of marine limestones. Partly silicified rock serves as the exception; values of its δ¹³C are more negative.

Results of uranium isotope dating are given in Table 3. Age estimation is impossible since the ²³⁰Th/²³⁴U activity ratio is over 1 (see Ivanovich and Harmon, 1992). This suggests open system behaviour. Such a ratio does not result from Th excess since Th is generally stable and remains bounded. Rather, it is

<table>
<thead>
<tr>
<th>Location</th>
<th>Coordinates</th>
<th>Lithotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kościeliska Valley, Kantaka Gate</td>
<td>49°16'17" N, 19°52'11" E</td>
<td>sparry limestone, ferruginous muddy limestone</td>
</tr>
<tr>
<td>Kościeliska Valley, Kantaka Gate</td>
<td>49°16'17" N, 19°52'12" E</td>
<td>sparry limestone breccia</td>
</tr>
<tr>
<td>Staników Gully</td>
<td>49°16'18" N, 19°52'18" E</td>
<td>sparry limestone breccia</td>
</tr>
</tbody>
</table>
caused by U migration. The content of ^{232}Th, which is an indicator of detrital Th, is at the level of 68 ppb and the $^{230}\text{Th}/^{232}\text{Th}$ activity ratio is >20 which is accepted as a “threshold value” (see Schwarcz and Latham, 1989).

DISCUSSION

ORIGIN OF DEPOSITS FOUND

All the deposits found bear the strong resemblance to infills of karst forms. What they have in common is:

– textures,
– stable isotopic composition (both carbon and oxygen).

Sparry limestone and sparry cements in the breccia show all the characteristic features of speleal calcite. Lamination with syn- and antiforms reflects the morphology of a flowstone with vertical ribs. The empty spaces between neighbouring ribs were partly filled with ferruginous muddy limestone (Fig. 3A). The flowstones discussed are composed predominantly of sparite calcite crystals. The spatial organization of the crystals suggests that sparry limestone grew on a cave wall as a flowstone cover whereas the microscopic features imply that it was fed with a water film flowing down the cave wall. Columnar fabric is typical of a speleothem growing from moderately to highly supersaturated solutions (cf. González et al., 1992; Gradziński et al., 1997; Frisia and Borsato, 2010; Frisia, 2015). Some elongated crystals probably grew during episodes of higher supersaturation (cf. Given and Wilkinson, 1985). The presence of the nucleation surfaces marked with impingement growth of a new generation of crystals shows, on the one hand, interruptions in the crystallisation of the speleothems studied and, on the other hand, the lack of strong diagenetic recrystallisation. The scarcity of detrital components, as shown by microscopic observations and supported additionally by the $^{230}\text{Th}/^{232}\text{Th}$ ratio, suggests that the water supplying the ions was relatively clean.

Thus, all the data collectively indicate that the sparry limestone represents fragments of flowstones which grew within caves. Later, during destruction of the caves, the flowstones were exposed at the surface and fragmented. Similarly, the
Fig. 4. Microscopic features of the lithotypes found

A – columnar calcite growing on Jurassic limestone, note impingement crystallisation pattern, sparry limestone; B – highly elongated crystals, sparry limestone; C – lamina composed of microcrystalline calcite with admixtures of detrital non-carbonate components (e.g., quartz); D – ferruginous muddy limestone composed of crystalline clasts of Jurassic crinoidal limestone cemented with iron compounds

Fig. 5. Isotopic composition of the deposits studied

teriary speleothems has been abandoned or demands additional data (see Fairchild and Baker, 2012). However, such estimations have been commonly made in a study of other freshwater carbonates, namely palaeosols (e.g., Dworkin et al., 2005 and references therein), and also palaeokarst deposits (e.g., Eliassen and Talbot, 2005). The Hays and Grossmann’s (1991) equation is routinely used. It is formulated as follows: \[T = 13.3 \pm 32.6 - [0.231 - 0.0631 (\delta^{18}O_{\text{SO4}} + \delta^{18}O_{\text{Ne}})] \times 10^2 \], where mcl. and sw. denotes meteoric calcites and seawater respectively.

Applying this above equation, using the values of \(\delta^{18}O \) of the carbonates studied and assuming \(\delta^{18}O_{\text{SO4}} = 0 \)%, a temperature range between 23 and 28°C was obtained, with a mean value of 26°C. Clearly, these results must be treated with great caution.

The values of \(\delta^{13}C \) show that sparry limestone was fed with water charged with soil-derived CO₂ (Fairchild and Baker, 2012). The values of carbonates studied are lower than analogue values of Holocene and Pleistocene freshwater carbonates (mainly speleothems) from the Tatra Mts. and their vicinity (Fig. 5). This suggests a denser vegetation cover during the crystallisation of the deposits studied than during the Pleistocene and Holocene in the Tatra Mts. The relatively negative values of \(\delta^{13}C \), ranging between –9.62 and –6.31‰, imply a dominance of C3 pathway plants (see Dreybrodt, 1980; Baker et al., 1997). The ferruginous muddy limestone yields \(\delta^{13}C \) values higher than the flowstone and breccia cement but lower than the Jurassic host limestone. This results from a mixture of limestone extraclasts, which are isotopically heavier, and isotopically light cements (see Woolhouse et al., 2009; Gradziński et al., 2014).

Table 2

<table>
<thead>
<tr>
<th>Sample number</th>
<th>(\delta^{13}C) [‰ V-PDB]</th>
<th>(\delta^{18}O) [‰ V-PDB]</th>
<th>Lithotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK 1e</td>
<td>–4.31</td>
<td>–5.89</td>
<td>breccia – clast of silicified spiculite</td>
</tr>
<tr>
<td>BK 1a</td>
<td>–6.39</td>
<td>–5.52</td>
<td>breccia – clast of silicified spiculite</td>
</tr>
<tr>
<td>BK 13b</td>
<td>1.04</td>
<td>–8.32</td>
<td>white veinlet within Jurassic limestone</td>
</tr>
<tr>
<td>BK 6c</td>
<td>1.68</td>
<td>–11.85</td>
<td>white veinlet within Jurassic limestone</td>
</tr>
<tr>
<td>BK 17b</td>
<td>–0.90</td>
<td>–5.71</td>
<td>white veinlet within Jurassic limestone</td>
</tr>
<tr>
<td>BK 17c</td>
<td>–1.19</td>
<td>–5.94</td>
<td>white veinlet within Jurassic limestone</td>
</tr>
<tr>
<td>BK 6d</td>
<td>–2.15</td>
<td>–4.38</td>
<td>ferruginous muddy limestone</td>
</tr>
<tr>
<td>BK 7b</td>
<td>–0.64</td>
<td>–1.87</td>
<td>ferruginous muddy limestone</td>
</tr>
<tr>
<td>BK 1k</td>
<td>–3.40</td>
<td>–5.47</td>
<td>ferruginous muddy limestone</td>
</tr>
<tr>
<td>BK 12g</td>
<td>–2.81</td>
<td>–5.28</td>
<td>ferruginous muddy limestone</td>
</tr>
<tr>
<td>BK 7a</td>
<td>2.34</td>
<td>–1.12</td>
<td>breccia – clast of basement limestone</td>
</tr>
<tr>
<td>BK 17a</td>
<td>2.03</td>
<td>–3.62</td>
<td>breccia – clast of basement limestone</td>
</tr>
<tr>
<td>BK 13a</td>
<td>1.78</td>
<td>–1.63</td>
<td>breccia – clast of basement limestone</td>
</tr>
<tr>
<td>BK 12d</td>
<td>–7.04</td>
<td>–6.00</td>
<td>sparry limestone</td>
</tr>
<tr>
<td>BK 6b</td>
<td>–9.31</td>
<td>–6.80</td>
<td>sparry limestone</td>
</tr>
<tr>
<td>BK 12f</td>
<td>–7.05</td>
<td>–5.29</td>
<td>sparry limestone</td>
</tr>
<tr>
<td>BK 12c</td>
<td>–6.31</td>
<td>–5.83</td>
<td>sparry limestone</td>
</tr>
<tr>
<td>BK 6a</td>
<td>–9.29</td>
<td>–6.92</td>
<td>sparry limestone</td>
</tr>
<tr>
<td>BK 12a</td>
<td>–7.25</td>
<td>–6.28</td>
<td>sparry limestone</td>
</tr>
<tr>
<td>Sz 1a</td>
<td>–10.1</td>
<td>–6.85</td>
<td>sparry limestone</td>
</tr>
<tr>
<td>Sz 1b</td>
<td>–8.35</td>
<td>–6.22</td>
<td>sparry limestone</td>
</tr>
<tr>
<td>BK 1h</td>
<td>–7.69</td>
<td>–6.28</td>
<td>breccia – sparry cement</td>
</tr>
<tr>
<td>BK 1d</td>
<td>–8.38</td>
<td>–6.11</td>
<td>breccia – sparry cement</td>
</tr>
<tr>
<td>BK 1i</td>
<td>–9.62</td>
<td>–6.88</td>
<td>breccia – sparry cement</td>
</tr>
<tr>
<td>BK 1b</td>
<td>–8.99</td>
<td>–7.07</td>
<td>breccia – sparry cement</td>
</tr>
<tr>
<td>BK 1f</td>
<td>–7.45</td>
<td>–6.03</td>
<td>breccia – sparry cement</td>
</tr>
<tr>
<td>BK 1g</td>
<td>–8.08</td>
<td>–6.05</td>
<td>breccia – sparry cement</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lab. No.</th>
<th>U cont. [ppm]</th>
<th>(^{234}\text{U}/^{238}\text{U})</th>
<th>(^{230}\text{Th}/^{234}\text{U})</th>
<th>(^{238}\text{Th}/^{232}\text{Th})</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK 12</td>
<td>58</td>
<td>0.0869 ± 0.003</td>
<td>1.099 ± 0.006</td>
<td>1.22 ± 0.01</td>
<td>47.5 ± 0.4</td>
</tr>
</tbody>
</table>

The possibility of a younger age cannot be ruled out without discussion. The deposits in the Kościeliska Valley were found at ca. 55 and 70 m above the valley bottom (site A and B, respectively). Estimating a rate of valley incision, one can expect relatively young karst forms and their infills in such a setting, notably Middle Pleistocene or younger. However, the lithology of the deposits studied differs markedly from that of Quaternary cave deposits in the Tatra Mts. There is a lack of red cave deposits – clastic deposits or red-stained speleothems in the Tatra Mts. (Glazek and Grodzicki, 1996). Neither are the known cave deposits of this area cemented with iron oxide. Quaternary clastic deposits contain, in the sand fraction, material derived from crystalline rocks of the Tatra Mts. core and tectonic outliers, notably quartz, feldspars and micas (Wójcik, 1966; Gradziński and Szułc, 2014). Such detrital components occur also in Pleistocene speleothems there (Dziadzio et al., 1993). These have not been found in the samples studied, except for quartz which is exceptionally rare. This suggests that the deposits studied origin-
nated in different conditions than did the Quaternary cave deposits in the Tatra Mts. Conversely, the iron-rich material bears some affinities to red residual deposits which are common in pre-Eocene karst in the Central Carpathians (Činčura and Köhler, 1995 — “palaeoalpine” according to their terminology).

The pre-Eocene age of the karst is additionally supported by other evidence, that is: (i) loss of uranium from the sparry limestone, and (ii) the stable isotope composition of the deposits studied, although neither of these provides unquestionable proof. The loss of uranium means that the carbonate system was “open”, which enabled the diffusion of uranium. Such factors as time and temperature stimulate greatly the diffusion of uranium (van Calsteren and Thomas, 2006). Both factors were at work in the case of the pre-Eocene deposits which experienced an overburden of a few kilometres of Eocene–Oligocene and ?Miocene strata, which probably coincided with an increased heat-flux (Ford and Williams, 2007: p. 80–81).

The isotopic composition of the speleal calcites studied, that is the sparry limestone and the sparry cements of the breccia, displays considerable differences from those of Quaternary speleal calcites of the Tatra Mts., as discussed above. Concomitantly, they share some similarities with Eocene speleal calcites from Hungary (Gyri et al., 2014). This suggests similar environmental conditions of their origin, namely climate and vegetation cover. What is more, the above-calculated temperature of crystallisation, which equals ca. 26°C, is very similar to the temperature postulated for the Late Eocene in the Tatra Mts. on the basis of plant communities. Worobiec et al. (2015) estimated this temperature at over 20°C. The above values are in line with the sea surface temperature exceeding 20°C calculated for Eocene nannoplankton limestone of the Central Carpathians by Soták (2010) and temperatures of sedimentation of the Lower Eocene Malenica freshwater limestone (Strážovské Mts., Slovakia) postulated to fall within a range of 23–27°C (Repčok and Salaj, 1998). The plant community described from the Tatra Eocene with representatives of Lauraceae (e.g., Eotrigonobalanus urcinervis and Daphnogone sp.) as well as the palm Nypa burtini point to evergreen forests of a warm and humid (annual rainfall over 1.000 mm) climate (Glazek and Zastawniak, 1999; Worobiec et al., 2015 and references therein; see also Zachos et al., 2001). Such a climate is especially favourable for karst processes and efficient dissolution of carbonate bedrock (Ford and Williams, 2007: p. 80–81).

The above conditions are in line with the relatively light isotopic composition of carbon of the speleal calcites studied. The views expressed above collectively lead to the statement that the deposits discussed are the infills of pre-Eocene karst forms. Thus, they provide unequivocal proof that karst features sculpted the Tatra Mts. before the Eocene transgression.

The precise age of the deposits and karst forms they filled is hard to estimate. They are covered with red conglomirates. However, bearing in mind the uncertainties concerning the age of the red conglomerates, the karst can be dated back even to mid-Cretaceous (Glazek, 2000). A Cretaceous age seems to be less probable because karstification could have started after the significant erosion of overridden nappes, hence considerably after thrusting of the nappes, which is dated to the mid-Cretaceous (e.g., Passendorfer, 1978; Płaśienka, 2008; Lefeld, 2009). The more probable scenario is that karstification immediately preceded Eocene transgression. It may have been associated with creation of an extensive polje hypothesized by Glazek (2000, 2004) on the basis of the occurrence and thickness distribution of the red conglomerates. It is noteworthy that the deposits discussed were found within Jurassic rocks which bordered the polje. Employing the results of recent sedimentological and tectonic analysis (Jach et al., 2012; Dąbrowska and Jurewicz, 2013, respectively) it can be presumed that the polje in question was bound by an active fault and that tectonics affected its subsidence. Such a phenomenon relates also to many recently existing poljes (Gams, 2013). The subsidence continued during the Middle and Late Eocene, and resulted in deposition of the thick succession of detrital limestone (Jach et al., 2012). Nonetheless, some doubts as to the age of these karst forms and their infills still exist, especially taking into account the more complicated Cretaceous–Paleogene geological history of the Tatra Mts. postulated by Birkenmajer (1999).

CONCLUSIONS

1. The deposits studied — sparry limestone, ferruginous muddy limestone and breccia — are the infills of subterranean karst forms. Sparry limestone originated as flowstone growing on a cave wall.

2. The δ18O values of sparry limestone and sparry cement of the breccia suggests their crystallisation in temperatures over 20°C. However, these results are based on several assumptions.

3. Karst forms were created by water charged with soil-derived CO2 connected with vegetation dominated probably by C3 pathway plants. This is inferred from relatively negative values of δ13C of the speleal carbonates.

4. The location of the deposits studied as well as their textures and stable isotope composition collectively prove that they were formed before the Eocene transgression. Thus, they demonstrate unequivocally that the Tatra Mts. were subjected to karstification at that time.

Acknowledgements. Authorities of the Tatra National Park are kindly acknowledged for providing permission for the field study. R. Gradzińska helped in the field in the summer of 2014. K. Gradzińska is thanked for her perseverance which enabled us to finish this paper. The paper has greatly benefited from the constructive comments of reviewers P. Bosák and J. Soták, as well as of the editors T. Peryt and J. Żalasiewicz.

REFERENCES

