APPENDIX 7

Appendix to Figure 9

Fluid inclusion parameters in quartz from 3 different stages at the Złoty Stok deposit

П	Sample ID and location	Salinity - S [wt.% NaCl equiv.]	Crystallisation temperature - T [°C]	Pressure [kb]	Notes
1	·	7.6	346	1.2	Primary inclusion homogenized in liquid phase
2	Sample 18-Złoty Stok, Q veinlets 7-8 mm thick	7.9	340	1.2	
2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 8 1 2 3 4 5 6 7 8 8 1 1 2 1 2 1 3 4 1 5 6 6 7 7 8 8 8 9 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8		9	324	1.1	
4		8.1	285	1	
5		8	276	1	
6		6.9	272	1	
7		4.1	231	0.9	
8		4	222	0.9	
9		2.3	194	0.9	
10		2.4	191	0.9	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11		2.9	187	0.9	Secondary inclusion homogenized in temperature 217-88C (n=27)
7	Sample 21-Złoty Stok, Q veinlets+calcite	14.2	428	1.1	Primary inclusion in quartz veinlets homogenized in liquid phase
_		14	417	1.1	
3		13.3	384	1	
4		9.1 8.8	330 327	1	
6		8.9	324	1	
7		5.5	259	0.9	
8		4.9	243	0.9	Secondary inclusion homogenized in temperature 280-102C (n=42)
1	Sample 25-Złoty Stok, Q veinlets	13.8	397	1	Primary inclusion in quartz homogenized in liquid phase
2		14.5	395	1	i filmary inclusion in quartz. nomogenized in liquid phase
2		7.3	395	1	
<i>∆</i>		5	267	0.9	
5		3.3	218	0.9	
6		5.2	173	0.7	Secondary inclusion homogenized in temperature 234-96C (n=27)
1		13.6	429	1	Primary inclusion in quartz homogenized in liquid phase
2	Sample 25-Złoty Stok, Q veinlets but more schist	13.1	422	1	
3		13.5	420	0.9	
4		13.8	407	1	
5		13.2	407	0.9	
6		8.5	317	0.9	
7		8.4	316	0.9	
8		8	310	0.8	
9		7.7	302	0.8	
10		6.8	273	0.8	
11		6.9	272	0.8	
12		6.5	268	0.8	
13		7	259	0.8	
		6.7	254	0.8	Secondary inclusion homogenized in temperature 345-110C (n=40)
1	Sample S-73; Złoty Osioł; mineralised gneiss + quartz veinlet with arsenopyrite and loellingite	4.9	287	0.6	Primary inclusion in quartz homogenized in liquid phase
2		5.7	246	0.5	
3		5.5	243	0.5	
4		5.9	239	0.5	
5		5.1	230	0.5	
2 3 4 5 6		2.2	144	0.4	Consendent inclusion at itable for any and the second
_/		2.1	141	0.5	Secondary inclusion suitable for research were not found