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The pa ram e ter for the den sity spec i fi ca tion of nat u rally com pacted non-co he sive soils and soils in em bank ments of  hy drau -
lic struc tures is the den sity in dex (ID). The pa ram e ter used to con trol the qual ity of com pac tion of co he sive and non-co he sive
soils ar ti fi cially thick ened, em bed ded in a va ri ety of em bank ments is the de gree of com pac tion (IS). In or der to de ter mine the
pa ram e ters of den sity (ID or IS), com pac tion pa ram e ters (rdmin, rdmax or rds, wopt) should be ex am ined in a lab o ra tory, which of -
ten is a long and dif fi cult pro ce dure to carry out. There fore, there is a need for meth ods of im prov ing and short en ing the test of 
com pac tion pa ram e ters based on the de vel op ment and ap pli ca tion of use ful cor re la tions. Since com pac tion pa ram e ters are
de pend ent on the soil gran u la tion, a method based on re gres sion and ar ti fi cial neu ral net works was ap plied to de velop re -
quired cor re la tions. Due to the large num ber of in put vari ables of neu ral net works in re la tion to the num ber of case stud ies, a
PCA method was used to re duce the num ber of in put vari ables, which re sulted in re duc tion in the size of neu ral net works.

Key words: ar ti fi cial neu ral net works, prin ci pal com po nent anal y sis, com pac tion pa ram e ters, min i mum and max i mum dry
den sity of solid par ti cles, grain ing pa ram e ters.

INTRODUCTION

The pa ram e ter for the den sity spec i fi ca tion of nat u rally
com pacted non-co he sive soils and em bank ments of hy drau lic
struc tures is the den sity in dex (ID). The pa ram e ter used to con -
trol the qual ity of com pac tion of co he sive and non-co he sive
soils ar ti fi cially thick ened, em bed ded in a va ri ety of em bank -
ments (com mu ni ca tion tract em bank ments, earthen struc tures, 
back fills) is the de gree of com pac tion (IS).

Den sity in dex (ID) also called a rel a tive den sity (DR) in lit er a -
ture (Lade et al., 1998) and the de gree of com pac tion (IS) are
cal cu lated ac cord ing to the fol low ing for mu las:
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where: rdmin, rdmax – the min i mum and max i mum dry den sity of solid
par ti cles de ter mined in the lab o ra tory ac cord ing to PN-88/B-04481
(1988) in the mould (height h = 12.54 cm and di am e ter D = 7.10 cm)
us ing a vi brat ing fork sim u lat ing com pact ing of non-co he sive soil

due to geo log i cal pro cesses [Mg ´ m–3];
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where: rdmax – the max i mum dry den sity of solid par ti cles de ter mined 
in the lab o ra tory ac cord ing to PN-88/B-04481 (1988) by the dy namic 
com pac tion method (the Stan dard Proc tor test) which stim u lates ar -
ti fi cial com pac tion of soil by use of the com pact ing equip ment

[Mg ́  m–3]; rdmaxis re ferred to as rds to avoid iden ti fy ing this value as
the max i mum dry den sity of solid par ti cles de ter mined us ing a vi -

brat ing fork, thus rds is not equal tordmax in for mula [1]; rds – thedry
den sity of solid par ti cles de ter mined for soil in an em bank ment or in

the ground [Mg ´ m–3]. 

Compactibility is the abil ity of the soil to achieve the dry den -
sity of the solid par ti cles rds, and it de pends, among other
things, on the phys i cal char ac ter is tics of the soil: granulometric
and lith o logic com po si tion, shape and de gree of round ness of
grains, soil or i gin, and ap plied en ergy of com pac tion, as well as
on the method for the en ergy trans fer and the soil mois ture dur -
ing com pact ing (Proc tor, 1933; Pisarczyk, 1977; Barton et. al.,
2001). Com pac tion pa ram e ters are: rdmin, rdmax, rds, wopt; and
rdmax ¹ rds. Op ti mum wa ter con tent wopt is the mois ture con tent
at which com pacted soil reaches the max i mum dry den sity rds.

Quick and ef fi cient qual ity con trol of the re sult ing den sity is
very im por tant when com pact ing soil lay ers as sem bled into em -
bank ments. Lab o ra tory tests of com pac tion pa ram e ters are la -
bo ri ous and time-con sum ing. Con duct ing such tests will cause
breaks in the pro cess of com pos ing of the em bank ment. There -
fore, new meth ods of re duc ing the time of test ing these pa ram e -
ters are be ing sought. Ways of im prov ing the meth ods to de ter -
mine the pa ram e ters of com pac tion rds and wopt the Proc tor test
are par tic u larly in ter est ing. This ap plies par tic u larly to co he sive
soils, for which the Proc tor test is es pe cially long and com pli -
cated. Nu mer ous anal y ses were con ducted to de velop em pir i -
cal de pend ence of rds and wopt pa ram e ters on other
geotechnical pa ram e ters, such as the Atterberg lim its (liq uid
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and plas tic lim its), plas tic ity in dex, gran u la tion and com pac tion
en ergy, us ing sta tis ti cal mod els (Gurtug and Sridharan, 2004;
Sivrikaya, 2008; Sivrikaya et al., 2008) and evo lu tion ary poly no -
mial re gres sion, as well as ar ti fi cial neu ral net works (Singha
and Wang, 2008; Alavi et al., 2010; Ahangar-Asr, 2011). A re -
view of these re la tion ships was car ried out in a num ber of ar ti -
cles, among oth ers by D¹bska and Pisarczyk (2012), and
Sulewska (2012).

The aim of this work is to con tinue search ing the best re la -
tion ship be tween the com pac tion pa ram e ters of non-co he sive
soils and their par ti cle size dis tri bu tion us ing a sim ple lin ear re -
gres sion mod els and non lin ear re gres sion, mul ti ple re gres sion,
ar ti fi cial neu ral net works and prin ci pal com po nent anal y sis
(PCA).

DESCRIPTION AND RESULTS 
OF EXPERIMENTAL PROCEDURES

Lab o ra tory tests were car ried out on 121 sam ples of Pleis -
to cene non-co he sive soils orig i nat ing from the Odra Gla ci ation,
in the area around the city of Bia³ystok. The sam ples were the
nat u ral soils or spe cially screened off from the nat u ral soils to
ob tain a di ver si fied grain: silty sands (code 1), fine sands
(code 2), me dium sands (code 3), coarse sands (code 4), sand
and gravel mixes (code 5) and grav els (code 6; Sulewska,
2010a, b). For each soil sam ple, the stud ies of com pac tion pa -
ram e ters and grain-size anal y sis were con ducted com ply ing
with PN-88/B-04481 (1988). On the ba sis of grain-size dis tri bu -
tion, curve grain di am e ters Dx  were de fined be low which x% of
soil mass is placed, for x = 10, 20, ..., 90, and uni for mity co ef fi -
cient CU:

C
D

D
U = 60

10

[3]

The value ranges for the pa ram e ters are shown in Ta ble 1.
Fig ure 1 sup ports the view that the com pac tion pa ram e ters

are in flu enced by the type of soil (i.e. grain size). It can be ob -

served that along with in creas ing grain size rdmin, rdmax, rds, val -
ues also grow, whereas wopt val ues de crease.

STATISTICAL ANALYSIS OF TEST FINDINGS

Sta tis ti cal anal y sis of the re sults of tests was car ried out us -
ing STATISTICA soft ware (Stanisz, 2007). Mod els of lin ear,
curvilinear and mul ti ple re gres sion (Sulewska, 2010a, b) are
shown in Ta ble 2.

In ter de pen den cies be tween vari ables were pre lim i nar ily
ana lysed on the ba sis of lin ear cor re la tion ma trix and it was
found that there were sta tis ti cally sig nif i cant lin ear cor re la tions
be tween the pa ram e ters of com pac tion ( rdmin, rdmax, rds, wopt )
and the pa ram e ters of par ti cle size (CU, D10–D90), at de ter mi na -
tion co ef fi cient  R2 = 0.31–-0.76. More over, it was not pos si ble
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Soil code 1–6

rdmin [Mg ´ m–3] 1.247–1.881

rdmax [Mg ´ m–3] 1.604–2.124

rds [Mg ´ m–3] 1.587–2.200

wopt  [%]   2.1–17.7

CU [–]   1.25–12.50

D10  [mm] 0.019–0.500

D20  [mm] 0.040–1.00  

D30  [mm] 0.040–2.20  

D40  [mm] 0.060–2.85  

D50  [mm] 0.070–3.50  

D60  [mm] 0.084–4.50  

D70  [mm] 0.093–6.00  

D80  [mm] 0.110–10.00

D90  [mm] 0.140–25.00

T a  b l e  1

The geotechnical pa ram e ters of tested soils

Model For mula De ter mi na tion
co ef fi cient R2

For mula
num ber

rdmin

Lin ear cor re la tion rdmin = 1.380 + 0.038CU ± 0.110 0.34 [4]

Curvilinear cor re la tion rdmin = 1.364 + 0.139lnCU ± 0.113 0.31 [5]

Mul ti ple re gres sion rdmin = 1.322 + 0.018CU + 0.734D10 ± 0.091 0.55 [6]

rdmax

Lin ear cor re la tion rdmax = 1.676 + 0.040CU ± 0.082 0.51 [7]

Curvilinear cor re la tion rdmax = 1.655 + 0.152lnCU ± 0.084 0.49 [8]

Mul ti ple re gres sion rdmax = 1.637 + 0.027CU + 0.499D10 ± 0.071 0.64 [9]

rds

Lin ear cor re la tion rds  = 1.589 + 0.060CU ± 0.078 0.72 [10]

Curvilinear cor re la tion rds = 1.551 + 0.235lnCU ± 0.076 0.73 [11]

Mul ti ple re gres sion rds = 1.619 + 0.035CU – 0.100D50 ± 0.070 0.78 [12]

wopt

Lin ear cor re la tion wopt = 14.8 – CU ± 2.3 0.46 [13]

Curvilinear cor re la tion wopt = 15.6 – 4.1lnCU ± 2.3 0.49 [14]

Mul ti ple re gres sion wopt= 15.9 - 0.7CU – 13.5D10 ± 2.00 0.59 [15]

T a  b l e  2

Mod els of lin ear, curvilinear and mul ti ple re gres sion



to dis tin guish any par tic u lar grain di am e ters as the most in flu -
en tial ones –- all di am e ters Dx af fect the ana lysed pa ram e ters
to a sim i lar ex tent. Cor re la tions be tween wopt and di am e ters Dx

are neg a tive, whereas those be tween  rdmin, rdmax, rds  and di -
am e ters Dx – are pos i tive. All pa ram e ters of the grain are mu tu -
ally highly cor re la tive – the co ef fi cient of de ter mi na tion of in ter -
de pen dence be tween the dif fer ent pa ram e ters of the par ti cle
size is R2 = 0.30–0.98 (Sulewska, 2010b).

It can be seen that the mul ti ple re gres sion mod els are better 
than lin ear and non lin ear mod els with one ex plan a tory vari able,
be cause they have a higher R2. How ever, they are not very
good qual ity mod els and ex plain only from 55 to 64% of the ob -
served vari a tion (when R2 = 0.55–0.64), with the ex cep tion of
the rds mod els which ex plained about 72–78% of the vari a tion.

It should be noted that the mul ti ple re gres sion mod els in cluded
only a few vari ables: CU and D10 or D50. Other ex plan a tory vari -
ables en tered into the mul ti ple re gres sion mod els proved to be
sta tis ti cally in sig nif i cant. This sit u a tion is the re sult of align ment
of the vari ables. The vari ables de scrib ing the par ti cle size dis tri -
bu tion are mu tu ally strongly cor re lated. There fore, the ob tained  
de ter mi na tion co ef fi cients do not re flect the full im pact of the in -
de pend ent vari ables on the de pend ent one, ex press ing it only
par tially (Stanisz, 2007). In or der to ac count for the ef fects of all
pa ram e ters of par ti cle size on the ana lysed com pac tion pa ram -
e ters, the ar ti fi cial neu ral net works were ap plied as they do not
have to con form to a num ber of the o ret i cal as sump tions and
are not sub ject to the lim i ta tions of sta tis ti cal anal y sis of data
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Fig. 1. Average values of compaction parameters for groups of soils 1–6

A – rdmin; B – rdmax; C – rds; D – wopt



(e.g., con cern ing nor mal dis tri bu tion of vari ables or cross-cor re -
la tion be tween the in de pend ent vari ables).

ARTIFICIAL NEURAL NETWORKS (ANNs)

Ar ti fi cial neu ral net works (ANNs) func tion on the prin ci ple of
the par al lel op er a tion of neu rons. Each neu ron is a sin gle trans -
ducer of sig nals (Haykin, 1999; Osowski, 2006). To solve re -
gres sion prob lems, the most com monly used types of net works
are multi-feed-for ward lay ered net works MLP (Multi-Lay ered
Perceptrons). They con sist of a num ber of in put vari ables, one
or more hid den lay ers and the out put layer of one or more out -
puts M (out put vari ables). For ex am ple, iden ti fi ca tion of neu ral
net work ar chi tec ture: 10-4-1 rep re sents a net work with 10 in -
puts, 4 neu rons in the hid den layer and one out put. 

A feed-for ward op er a tion of the net work con sists in pro -
cess ing the in put sig nal x(p) into the out put sig nals y(p)

(Waszczyszyn, 1999):
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In put and out put vec tors have the fol low ing com po nents:
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To learn and test net works, a set of P pat terns, i.e. pairs of
in put/out put vec tors of known com po nents are used:
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The set P is ran domly split into sub sets: the learner L and T
test: 
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where: L – num ber of learner pat terns, T – num ber of test pat terns, P
– num bers of pat terns.

The aim of the net work learn ing pro cess is to ad just net work 
pa ram e ters, i.e. a set of weights and trig ger points (bias) al low -
ing to ob tain pos si bly the small est ap prox i ma tion er ror, i.e. the
small est dif fer ence be tween the ap prox i mated el e ment di

(p) and
the ap prox i mat ing el e ment yi

(p). Af ter en ter ing sig nals x(p) into
the net work, in stead of the ex pected re sponse d(p), the out put
vec tor y(p) is ob tained, with the ac cu racy equal to the re quired
val ues di

(p). Learn ing net work is min i miz ing the er ror func tion,
which can be cal cu lated for the en tire net work as the mean
square er ror for the set P:
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where: M – num ber of out puts, i – out put num ber, i = 1, …, M.

Learn ing al go rithms are it er a tive. In each ep och, all the
cases from the train ing set are in tro duced to the net work and
fol lowed by im prove ment of net work weights. Se lec tion of op ti -
mal net work de sign is done in an em pir i cal way. In or der to es -
tab lish ar ti fi cial neu ral net work’s ar chi tec ture, the num ber of

hid den lay ers and the num ber of neu rons in each hid den layer
must be spec i fied.

The main fea ture of neu ral net work is the abil ity to gen er al -
ize the ac quired knowl edge. In or der to achieve good gen er al -
iza tion of the net work, it is nec es sary to min i mize net work struc -
ture, as well as to train it on a suf fi ciently large set of train ing
data. The larger the ra tio of the num ber of learn ing pat terns L to
the num ber of net work pa ram e ters NNP, the better the gen er al -
iza tion prop er ties of the net work. It is dif fi cult, how ever, to give
rec om men da tions for the above ra tio. For ex am ple, in the work
by Waszczyszyn (1999), it is rec om mended that the fol low ing
con di tion was met:

NNP L M£ ´ [21]

In this pa per, the feed-for ward neu ral net work with one hid -
den layer and one out put were ex er cised. Multilayer feed-for -
ward net works with one hid den layer were ap plied to solve the
ana lysed re gres sion prob lems. For such net works, the num ber
of net work pa ram e ters (NNP) is cal cu lated ac cord ing to the for -
mula:

NNP N H H M H M= ´ + ´ + + [22]

where: N – num ber of in puts, H – num ber of neu rons in a hid den
layer, num ber of out puts M = 1.

The greater the num ber of neu rons in the net work (i.e. NNP),
the greater the num ber of train ing data it should be pro vided with. 
Re duc ing the NNP can be done, among other meth ods, by lin ear 
trans for ma tion of the di men sion of data space into a space of a
smaller size through prin ci pal com po nent anal y sis (PCA; Haykin, 
1999; Osowski, 2006; Stanisz, 2007).

NEURAL MODELS

The neu ral anal y ses were con ducted us ing the
STATISTICA Neu ral Net works PL soft ware, where cases are
ran domly as signed to the sub sets: L – learn ing sub set, V – val i -
da tion sub set (which is used to in de pend ently ver ify the qual ity
of the net work dur ing the learn ing pro cess) and T – test ing sub -
set (which car ries out a one-off cal cu la tion of net work er ror at
the end of learn ing). The ac cepted ra tio is 50:25:25% of the to -
tal pat terns, i.e. 61:30:30 pat terns, re spec tively. The most ef -
fec tive train ing method was the Vari able Met ric Method with al -
go rithm of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) in
this study (Osowski, 2006). The tanh sig moid ac ti va tion func -
tions were ap plied in neu rons of the hid den lay ers and lin ear
func tions in neu rons of out put lay ers. The best neu ral mod els of 
ana lysed com pac tion pa ram e ters are given in Ta ble 4, fur ther 
in the ar ti cle. As in put vari ables, all grain-size pa ram e ters were
in tro duced (CU, D10–D90). As er ror mea sures of ANN, the val ues 
of co ef fi cient of de ter mi na tion R2 and Mean Ab so lute Er ror
(MAE) in the col lec tions of  L, V, T  were ap plied, and the val ues
of er ror mea sure ments in the sub set T were de ci sive:
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where: d(p) – ac tual value, y(p) – pre dicted value of y, d
p( )

 – mean of
the d(p) val ues. 

PRINCIPAL COMPONENT ANALYSIS (PCA)

Prin ci pal com po nent anal y sis (PCA) is a sta tis ti cal pro ce -
dure by which the ini tial vari able Xj are trans formed into mu tu -
ally or thogo nal PCj new vari ables. By us ing PCA, the num ber of
vari ables is re duced while main tain ing the vari abil ity in the data
as much as pos si ble. If the ini tial vari ables are cor re lated, the
knowl edge of only a part of them is suf fi cient to de ter mine other
vari ables. This is done by cre at ing new vari ables that are lin ear
com bi na tion of the ini tial vari ables. The new vari ables are called 
prin ci pal com po nents PCj. The equa tion in the method of PCA
is rep re sented by a change, which is a spe cial case of lin ear
trans for ma tion ac cord ing to the for mula:

PC = Ax [25]

where: x – orig i nal vari ables vec tor, x Î RN, PC – prin ci pal com po -

nents vec tor, A – ma trix of co ef fi cients, A Î RNxK, K < N.

Prin ci pal com po nent anal y sis is the de scrip tion of the pro -
cess of trans for ma tion of an N-el e ment vec tor x into a K-el e -
ment vec tor  PC via the ma trix A  Î RNxK. As the fur ther anal y sis  
in cludes se lected el e ments K, where K < N,  the PCA trans for -
ma tion  be comes a lossy com pres sion. The K-el e ment vec tor
PC is a vec tor of prin ci pal com po nents that have the great est
im pact on the re con struc tion of  N-el e ment data vec tor x.  New
vari ables (prin ci pal com po nents PCj) are or thogo nal to each
other, i.e. are uncorrelated. The prin ci ple of the PCA method is
to en sure such a ro ta tion of the co or di nate sys tem XOY so that
the new PC1OPC2 axes co in cide with the axes of the cloud of
points in a scatterplot. The po si tion of  PC1 axis is planned so
that it be comes an axis of the point cloud in the XOY sys tem
(Fig. 2). 

The first prin ci pal com po nent PC1 de ter mines the di rec tion
in mul ti di men sional space, with the max i mum data vari ance. It
ex plains most of the vari ance of the orig i nal vari ables. The vari -
ance of the main prin ci pal com po nent PC1 is equal to the value
of its eigenvalue l1 (Var(PC1) = l1). Other main com po nents
ex plain the re main ing, smaller and smaller pro por tion of the
vari ance of the orig i nal vari ables (Var (PCj) = lj).

Data com pres sion was con ducted to re duce the size of the
neu ral net work. Prin ci pal com po nent anal y sis was used to cre -
ate a new in put vari ables on the ba sis of ten pa ram e ters de -

scrib ing the grain size of the soils (D10–D90, CU), based on the
cor re la tion ma trix be tween these pa ram e ters (Stanisz, 2007). 

Ta ble 3 pres ents the per cent age of vari ance that is ex -
plained by each of the prin ci pal com po nents. The first prin ci pal
com po nent PC1 ac counts for 86.06% of the to tal vari ance, the
sec ond PC2 prin ci pal com po nent ac counts for 7.43% of the to -
tal vari ance.

Ac cord ing to the Kai ser cri te rion, only those main com po -
nents are used whose main val ues are lj > 1 (in: Stanisz, 2007). 
It has been de cided, how ever, to take into ac count the Cattell
scree test (in: Stanisz, 2007) and the adop tion of two prin ci pal
com po nents PC1 and PC2, which al to gether ex plained 93.49%
of the vari ance (Fig. 3). Prin ci pal com po nents PC1 and PC2 will 
func tion as in puts of newly de signed neu ral net works.

The PCA method was also used for the in put data of data
com pres sion pre-pro cess ing.

NEURAL MODELS WITH APPLIED PCA

The best new ar ti fi cial neu ral net works with two in puts (PC1
and PC2), one hid den layer and a sin gle out put are des ig nated
as ANN(PCA) and are pre sented in Ta ble 4. ANN(PCA)s of
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Fig. 2. Rotation of coordinate system in two-dimensional
space (see KuŸniar and Waszczyszyn, 2006; Stanisz, 2007)

Prin ci pal
com po nents Eigen value Per cent of to tal 

vari ance [%]

Cu mu la tive per -
cent of vari ance

[%]

PC1 8.606 86.06  86.06

PC2 0.743 7.43 93.49

PC3 0.394 3.94 97.43

PC4 0.144 1.44 98.87

PC5 0.073 0.73 99.60

PC6 0.022 0.22 99.82

PC7 0.010 0.10 99.92

PC8 0.005 0.05 99.97

PC9 0.002 0.02 99.99

PC10 0.001 0.01 100.00  

T a  b l e  3

Anal y sis of prin ci pal com po nents

Fig. 3. Percentage of variance explained by following PCs and 
Catell’s criterion
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Out put –
pa ram e ter

Ar chi tec ture of
ANN (train ing num -

ber of ep ochs)
NNP

MAE R2

L V T L V T

ANNs

rdmin 10-4-1 (43) 49 0.050 0.052 0.065 0.73 0.65 0.82

rdmax 10-4-1 (134) 49 0.040 0.055 0.047 0.74 0.71 0.70

rds 10-4-1 (28) 49 0.038 0.035 0.050 0.87 0.89 0.87

wopt 10-4-1 (48) 49 1.02  1.49  1.88  0.76 0.67 0.67

ANN(PCA)s

rdmin 2-6-1 (37) 25 0.058 0.056 0.066 0.67 0.72 0.72

rdmax 2-6-1 (201) 25 0.047 0.052 0.050 0.73 0.65 0.67

rds 2-6-1 (516) 25 0.034 0.038 0.045 0.89 0.89 0.89

wopt 2-6-1 (325) 25 1.34  1.34  1.11  0.72 0.71 0.72

T a  b l e  4

ANNs and ANN(PCA)s with the best pre dic tion ac cu racy and their er ror mea sures

Fig. 4. Comparison between target values and predicted values by ANNs

A – rdmin; B – rdmax; C – rds; D – wopt; other explanations as in Table 4



com pa ra ble pre dic tive qual ity were ob tained when us ing 3 in -
puts (PC1–PC3) or 4 in puts (PC1–PC4) as well as 2 in puts
(PC1 and PC2). The third (PC3) and/or fourth (PC4) prin ci pal
com po nents (vari ables) were not of ten in cluded in the model as 
a re sult of re set ting the weights.

In con clu sion of the anal y sis of net works, sum ma rized in
Ta ble 4, it can be stated that the qual ity of pre dic tion of com pac -
tion pa ram e ters rdmin , rdmax , wopt and rds is quite good, and by
ap ply ing the neu ral net works, the most ac cu rately pre dicted pa -
ram e ter was rds. Com par i son of neu ral net work qual ity mea -
sures con tained in Ta ble 4 shows that the PCA method of data
com pres sion en abled the con struc tion of neu ral net works
ANN(PCA)s with a much smaller num ber of neu rons, and a
smaller num ber of net work pa ram e ters than ANNs. In con trast,
af ter ana lys ing the mea sure ments of er rors MAE and R2, it can
be con cluded that the ac cu racy of pre dic tions did not de crease
or de creased only to a small ex tent. Fig ures 4 and 5 show the

rel a tive er ror (RE) of pre dic tion by us ing ANN and ANN(PCA)
mod els, cal cu lated ac cord ing to the for mula:

RE
y d

y

p p

p
=

-
´

( ) ( )

( )
%100

[26]

RESULTS AND CONCLUSIONS

Com par ing the val ues of the co ef fi cient of de ter mi na tion in
re gres sion mod els shown in Ta ble 2 and neu ral mod els shown
in Ta ble 4, it can be con cluded that, in gen eral, neu ral mod els
(R2 = 0.67–0.89 in the test sub set) have a better pre dic tive
value than the re gres sion mod els  (R2 = 0.31–0.78). Con sid er -
ing the ANNs and ANN(PCA)s mod els (Ta ble 4), it can be
stated that com pres sion of in put data by the PCA method and

406 Maria J. Sulewska and Katarzyna Zabielska-Adamska

Fig. 5. Comparison between target values and predicted values by ANN(PCA)s

A – rdmin; B – rdmax; C – rds; D – wopt; explanations as in Table 4



re duc ing the num ber of in put data to the neu ral net works (from
10 vari ables to 2 vari ables) re sulted not only in re duc ing the
num ber of neu ral net work pa ram e ters (from 49 to 25), but also
in im prov ing the pre dic tion ac cu racy for rds and wopt. The small -
est im prove ment in pre dic tive qual ity was ob tained for  pa ram e -
ter rdmax, whereas the great est im prove ment in the qual ity of
pre dic tion was ob tained by us ing a neu ral net work for the pa -
ram e ter  rdmin  (R

2 = 0.82 and R2 = 0.72 for the test sub set). The
clear est cor re la tions can be ob served be tween soil par ti cle size 
dis tri bu tion and max i mum bulk den sity of soil ma trix through the 
Proc tor test method rds. The ANN model (PCA) reached a
value of R2 = 0.89 in the test sub set. K³os et al. (2011) re ports
that it was pos si ble for mod el ling of rds by means of
semi-Bayesian Neu ral Net work (SBNN) with pre-pro cess ing of
in put data us ing PCA (ar ray covariance ma trix) for the SBNN

PCA model 10-2-1 to ob tain value R2 = 0.93 for the test sub set.
Ap pli ca tion of PCA in mod el ling the com pac tion curves of fly
ash us ing ANNs has also pro duced very good re sults and al -
lowed ob tain ing a neu ral net work of sat is fac tory ac cu racy
(Zabielska-Adamska and Sulewska, 2012). It can be con cluded 
that the ANN tool can be used to ana lyse the re sults of ex per i -
men tal stud ies and to ob tain the re la tion ships be tween the test
val ues with a better ac cu racy than by the re gres sion method,
which, how ever, has the ad van tage of an ex plicit char ac ter of
the pat tern.

Ac knowl edg ments. The au thors are grate ful to ref er ees
for crit i cal read ing of manu script. The pa per bene fited from con -
struc tive com ments and sug ges tions by Prof. V. Golovko, and
an anon y mous ref eree.
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