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Data compression by principal component analysis (PCA) in modelling
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The parameter for the density specification of naturally compacted non-cohesive soils and soils in embankments of hydrau-
lic structures is the density index (/p). The parameter used to control the quality of compaction of cohesive and non-cohesive
soils artificially thickened, embedded in a variety of embankments is the degree of compaction (/s). In order to determine the
parameters of density (/p or Is), compaction parameters (pamin, Pamax OF Pas, Wopt) Should be examined in a laboratory, which of-
tenis along and difficult procedure to carry out. Therefore, there is a need for methods of improving and shortening the test of
compaction parameters based on the development and application of useful correlations. Since compaction parameters are
dependent on the soil granulation, a method based on regression and artificial neural networks was applied to develop re-
quired correlations. Due to the large number of input variables of neural networks in relation to the number of case studies, a
PCA method was used to reduce the number of input variables, which resulted in reduction in the size of neural networks.
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INTRODUCTION where: pgmax — the maximum dry density of solid particles determined
in the laboratory according to PN-88/B-04481 (1988) by the dynamic
compaction method (the Standard Proctor test) which stimulates ar-
tificial compaction of soil by use of the compacting equipment
[Mg x m™%]; pamaxis referred to as pys to avoid identifying this value as
the maximum dry density of solid particles determined using a vi-
brating fork, thus pgs is not equal topgmax in formula [1]; pgs — thedry
density of solid particles determined for soil in an embankment or in

the ground [Mg x m™].

The parameter for the density specification of naturally
compacted non-cohesive soils and embankments of hydraulic
structures is the density index (/p). The parameter used to con-
trol the quality of compaction of cohesive and non-cohesive
soils artificially thickened, embedded in a variety of embank-
ments (communication tract embankments, earthen structures,
backfills) is the degree of compaction (/s).

Density index (Ip) also called a relative density (D) in litera-
ture (Lade et al., 1998) and the degree of compaction (/s) are
calculated according to the following formulas:

Compactibility is the ability of the soil to achieve the dry den-
sity of the solid particles pqss, and it depends, among other
things, on the physical characteristics of the soil: granulometric
and lithologic composition, shape and degree of roundness of
grains, soil origin, and applied energy of compaction, as well as
on the method for the energy transfer and the soil moisture dur-
ing compacting (Proctor, 1933; Pisarczyk, 1977; Barton et. al.,
2001). Compaction parameters are: pamin, Pdmax, Pdss Wops; and
Pamax % Pas- Optimum water content w, is the moisture content

x Pd —Pdmin [1]

Pq P max ~Pdmin

/D — pdmax

where: pamin, Pamax — the minimum and maximum dry density of solid

particles determined in the laboratory according to PN-88/B-04481
(1988) in the mould (height h = 12.54 cm and diameter D = 7.10 cm)
using a vibrating fork simulating compacting of non-cohesive soil
due to geological processes [Mg x m™;

Pa _Pg (2]
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at which compacted soil reaches the maximum dry density pys.
Quick and efficient quality control of the resulting density is
very important when compacting soil layers assembled into em-
bankments. Laboratory tests of compaction parameters are la-
borious and time-consuming. Conducting such tests will cause
breaks in the process of composing of the embankment. There-
fore, new methods of reducing the time of testing these parame-
ters are being sought. Ways of improving the methods to deter-
mine the parameters of compaction ps and w,: the Proctor test
are particularly interesting. This applies particularly to cohesive
soils, for which the Proctor test is especially long and compli-
cated. Numerous analyses were conducted to develop empiri-
cal dependence of pgs and w,, parameters on other
geotechnical parameters, such as the Atterberg limits (liquid
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and plastic limits), plasticity index, granulation and compaction
energy, using statistical models (Gurtug and Sridharan, 2004;
Sivrikaya, 2008; Sivrikaya et al., 2008) and evolutionary polyno-
mial regression, as well as artificial neural networks (Singha
and Wang, 2008; Alavi et al., 2010; Ahangar-Asr, 2011). A re-
view of these relationships was carried out in a number of arti-
cles, among others by Dagbska and Pisarczyk (2012), and
Sulewska (2012).

The aim of this work is to continue searching the best rela-
tionship between the compaction parameters of non-cohesive
soils and their particle size distribution using a simple linear re-
gression models and nonlinear regression, multiple regression,
artificial neural networks and principal component analysis
(PCA).

DESCRIPTION AND RESULTS
OF EXPERIMENTAL PROCEDURES

Laboratory tests were carried out on 121 samples of Pleis-
tocene non-cohesive soils originating from the Odra Glaciation,
in the area around the city of Biatystok. The samples were the
natural soils or specially screened off from the natural soils to
obtain a diversified grain: silty sands (code 1), fine sands
(code 2), medium sands (code 3), coarse sands (code 4), sand
and gravel mixes (code 5) and gravels (code 6; Sulewska,
2010a, b). For each soil sample, the studies of compaction pa-
rameters and grain-size analysis were conducted complying
with PN-88/B-04481 (1988). On the basis of grain-size distribu-
tion, curve grain diameters D, were defined below which x% of
soil mass is placed, for x = 10, 20, ..., 90, and uniformity coeffi-
cient Cy:

¢, Do [3]

O

10

The value ranges for the parameters are shown in Table 1.
Figure 1 supports the view that the compaction parameters
are influenced by the type of soil (i.e. grain size). It can be ob-

Table 1

The geotechnical parameters of tested soils

Soil code 1-6
Pamin [Mg x m™] | 1.247-1.881
Pamax Mg x m™] | 1.604-2.124
pas [Mg x m™¥] | 1.587-2.200
Wopt [%] 2.1-17.7
Cul-l 1.25-12.50
Do [mm] 0.019-0.500
Dy [mm] 0.040-1.00
D3o [mm] 0.040-2.20
Dy [mm] 0.060-2.85
Dso [mm] 0.070-3.50
Dgo [mm] 0.084-4.50
D7o [mm] 0.093-6.00
Dgo [mm] 0.110-10.00
Dgo [mm] 0.140-25.00

served that along with increasing grain size pamin, Pdmax, Pds, Val-
ues also grow, whereas w,, values decrease.

STATISTICAL ANALYSIS OF TEST FINDINGS

Statistical analysis of the results of tests was carried out us-
ing STATISTICA software (Stanisz, 2007). Models of linear,
curvilinear and multiple regression (Sulewska, 2010a, b) are
shown in Table 2.

Interdependencies between variables were preliminarily
analysed on the basis of linear correlation matrix and it was
found that there were statistically significant linear correlations
between the parameters of compaction ( pamin, Pamax, Pds; Wopt )
and the parameters of particle size (Cy, D1o—Dgg), at determina-
tion coefficient R? = 0.31—0.76. Moreover, it was not possible

Table 2

Models of linear, curvilinear and multiple regression

Doterminatiop | Formua

Pdmin

Linear correlation Pamin = 1.380 + 0.038Cy + 0.110 0.34 [4]

Curvilinear correlation Pamin = 1.364 + 0.139InCy + 0.113 0.31 [5]

Multiple regression Pamin = 1.322 + 0.018Cy + 0.734D4, + 0.091 0.55 [6]
Pdmax

Linear correlation Pamax = 1.676 + 0.040C,, + 0.082 0.51 [7

Curvilinear correlation Pamax = 1.655 + 0.152InC, + 0.084 0.49 [8]

Multiple regression Pamax = 1.637 + 0.027C + 0.499D, + 0.071 0.64 [9]
Pds

Linear correlation pas = 1.589 + 0.060Cy, + 0.078 0.72 [10]

Curvilinear correlation pgs = 1.551 + 0.235InCy, £ 0.076 0.73 [11]

Multiple regression pgs = 1.619 + 0.035C, — 0.100D5, + 0.070 0.78 [12]
Wopt

Linear correlation Wept = 14.8 - Cy £ 2.3 0.46 [13]

Curvilinear correlation Wopt = 15.6 —4.1InCy + 2.3 0.49 [14]

Multiple regression Wopi= 156.9 — 0.7Cy — 13.5D4 + 2.00 0.59 [15]
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Fig. 1. Average values of compaction parameters for groups of soils 1-6

A- Pdmins B - Pdmax; C- Pads; D- Wopt

to distinguish any particular grain diameters as the most influ-
ential ones — all diameters D, affect the analysed parameters
to a similar extent. Correlations between w,,; and diameters D,
are negative, whereas those between pamin, Pamax, Pas and di-
ameters D, — are positive. All parameters of the grain are mutu-
ally highly correlative — the coefficient of determination of inter-
dependence between the different parameters of the particle
size is R? = 0.30-0.98 (Sulewska, 2010b).

It can be seen that the multiple regression models are better
than linear and nonlinear models with one explanatory variable,
because they have a higher R. However, they are not very
good quality models and explain only from 55 to 64% of the ob-
served variation (when R? = 0.55-0.64), with the exception of
the pgs models which explained about 72—78% of the variation.

It should be noted that the multiple regression models included
only a few variables: Cy and D+ or Dsy. Other explanatory vari-
ables entered into the multiple regression models proved to be
statistically insignificant. This situation is the result of alignment
of the variables. The variables describing the particle size distri-
bution are mutually strongly correlated. Therefore, the obtained
determination coefficients do not reflect the full impact of the in-
dependent variables on the dependent one, expressing it only
partially (Stanisz, 2007). In order to account for the effects of all
parameters of particle size on the analysed compaction param-
eters, the artificial neural networks were applied as they do not
have to conform to a number of theoretical assumptions and
are not subject to the limitations of statistical analysis of data
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(e.g., concerning normal distribution of variables or cross-corre-
lation between the independent variables).

ARTIFICIAL NEURAL NETWORKS (ANNs)

Artificial neural networks (ANNs) function on the principle of
the parallel operation of neurons. Each neuron is a single trans-
ducer of signals (Haykin, 1999; Osowski, 2006). To solve re-
gression problems, the most commonly used types of networks
are multi-feed-forward layered networks MLP (Multi-Layered
Perceptrons). They consist of a number of input variables, one
or more hidden layers and the output layer of one or more out-
puts M (output variables). For example, identification of neural
network architecture: 10-4-1 represents a network with 10 in-
puts, 4 neurons in the hidden layer and one output.

A feed-forward operation of the network consists in pro-
cessing the input signal x® into the output signals y®
(Waszczyszyn, 1999):

(p) (p)

X (nx 1) = Y (mx 1) [16]

Input and output vectors have the following components:

X((/’:/in = {x1,...,x,\,}(p),y((n‘j,>x1) = {y1!""yM }(p) (7]

To learn and test networks, a set of P patterns, i.e. pairs of
input/output vectors of known components are used:

P ={(x,y)(p);p =1,.‘.,P}

(18]

The set P is randomly split into subsets: the learner L and T
test:

L :{(x,y)“”;p :1,...,L},T:{(x,y)“”;p :1,”,,7} [19]

where: L —number of learner patterns, T—number of test patterns, P
— numbers of patterns.

The aim of the network learning process is to adjust network
parameters, i.e. a set of weights and trigger points (bias) allow-
ing to obtain possibly the smallest approximation error, i.e. the
smallest difference between the approximated element d” and
the approximating element y”. After entering signals x” into
the network, instead of the expected response d%’), the output
vector y(") is obtained, with the accuracy equal to the required
values d. Learning network is minimizing the error function,
which can be calculated for the entire network as the mean
square error for the set P:

E:%ii(dlgm _yl_(m)z

p=1i=1

[20]

where: M — number of outputs, i — output number, i=1, ..., M.

Learning algorithms are iterative. In each epoch, all the
cases from the training set are introduced to the network and
followed by improvement of network weights. Selection of opti-
mal network design is done in an empirical way. In order to es-
tablish artificial neural network’s architecture, the number of

hidden layers and the number of neurons in each hidden layer
must be specified.

The main feature of neural network is the ability to general-
ize the acquired knowledge. In order to achieve good general-
ization of the network, it is necessary to minimize network struc-
ture, as well as to train it on a sufficiently large set of training
data. The larger the ratio of the number of learning patterns L to
the number of network parameters NNP, the better the general-
ization properties of the network. It is difficult, however, to give
recommendations for the above ratio. For example, in the work
by Waszczyszyn (1999), it is recommended that the following
condition was met:

NNP <L xM [21]

In this paper, the feed-forward neural network with one hid-
den layer and one output were exercised. Multilayer feed-for-
ward networks with one hidden layer were applied to solve the
analysed regression problems. For such networks, the number
of network parameters (NNP) is calculated according to the for-
mula:

NNP =N xH +H xM+H + M [22]

where: N — number of inputs, H — number of neurons in a hidden
layer, number of outputs M = 1.

The greater the number of neurons in the network (i.e. NNP),
the greater the number of training data it should be provided with.
Reducing the NNP can be done, among other methods, by linear
transformation of the dimension of data space into a space of a
smaller size through principal component analysis (PCA; Haykin,
1999; Osowski, 2006; Stanisz, 2007).

NEURAL MODELS

The neural analyses were conducted using the
STATISTICA Neural Networks PL software, where cases are
randomly assigned to the subsets: L — learning subset, V — vali-
dation subset (which is used to independently verify the quality
of the network during the learning process) and T — testing sub-
set (which carries out a one-off calculation of network error at
the end of learning). The accepted ratio is 50:25:25% of the to-
tal patterns, i.e. 61:30:30 patterns, respectively. The most ef-
fective training method was the Variable Metric Method with al-
gorithm of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) in
this study (Osowski, 2006). The tanh sigmoid activation func-
tions were applied in neurons of the hidden layers and linear
functions in neurons of output layers. The best neural models of
analysed compaction parameters are given in Table 4, further
in the article. As input variables, all grain-size parameters were
introduced (Cy, D10—Dg). As error measures of ANN, the values
of coefficient of determination R* and Mean Absolute Error
(MAE) in the collections of L, V, T were applied, and the values
of error measurements in the subset T were decisive:

Z(d(m _y<p))2
_p-
1 i(d(m _g“’)) ’

p=1

(23]

2 _

MAE=li‘d(p) _y(p)‘ [24]
Pp:1
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where: d” — actual value, y* — predicted value of y,d”’ — mean of
the d® values.

PRINCIPAL COMPONENT ANALYSIS (PCA)

Principal component analysis (PCA) is a statistical proce-
dure by which the initial variable X; are transformed into mutu-
ally orthogonal PC;new variables. By using PCA, the number of
variables is reduced while maintaining the variability in the data
as much as possible. If the initial variables are correlated, the
knowledge of only a part of them is sufficient to determine other
variables. This is done by creating new variables that are linear
combination of the initial variables. The new variables are called
principal components PC;. The equation in the method of PCA
is represented by a change, which is a special case of linear
transformation according to the formula:

PC = Ax [25]
where: x — original variables vector, x € RN, pPC - principal compo-
nents vector, A — matrix of coefficients, A € R™*, K < N.

Principal component analysis is the description of the pro-
cess of transformation of an N-element vector x into a K-ele-
ment vector PC via the matrix A € R™*. As the further analysis
includes selected elements K, where K< N, the PCA transfor-
mation becomes a lossy compression. The K-element vector
PC is a vector of principal components that have the greatest
impact on the reconstruction of N-element data vector x. New
variables (principal components PC;) are orthogonal to each
other, i.e. are uncorrelated. The principle of the PCA method is
to ensure such a rotation of the coordinate system XOY so that
the new PC710PC2 axes coincide with the axes of the cloud of
points in a scatterplot. The position of PC7 axis is planned so
that it becomes an axis of the point cloud in the XOY system
(Fig. 2).

The first principal component PC7 determines the direction
in multidimensional space, with the maximum data variance. It
explains most of the variance of the original variables. The vari-
ance of the main principal component PC1 is equal to the value
of its eigenvalue L4 (Var(PC1) = X,). Other main components
explain the remaining, smaller and smaller proportion of the
variance of the original variables (Var (PC)) = A)).

Data compression was conducted to reduce the size of the
neural network. Principal component analysis was used to cre-
ate a new input variables on the basis of ten parameters de-

Axis of the second PC2 | AXis of the first PC1

Fig. 2. Rotation of coordinate system in two-dimensional
space (see Kuzniar and Waszczyszyn, 2006; Stanisz, 2007)

Table 3

Analysis of principal components

coF:Tqiggli']pearqts Eigen value P\%(r:gr:]tc%f [toc/:)t]al g:nTlcj)lfi\Egr?a%%;
PC1 8.606 86.06 86.06
PC2 0.743 7.43 93.49
PC3 0.394 3.94 97.43
PC4 0.144 1.44 98.87
PC5 0.073 0.73 99.60
PC6 0.022 0.22 99.82
PC7 0.010 0.10 99.92
PC8 0.005 0.05 99.97
PC9 0.002 0.02 99.99
PC10 0.001 0.01 100.00

scribing the grain size of the soils (D;;—Dgo, Cy), based on the
correlation matrix between these parameters (Stanisz, 2007).

Table 3 presents the percentage of variance that is ex-
plained by each of the principal components. The first principal
component PC1 accounts for 86.06% of the total variance, the
second PC?2 principal component accounts for 7.43% of the to-
tal variance.

According to the Kaiser criterion, only those main compo-
nents are used whose main values are ;> 1 (in: Stanisz, 2007).
It has been decided, however, to take into account the Cattell
scree test (in: Stanisz, 2007) and the adoption of two principal
components PC7 and PC2, which altogether explained 93.49%
of the variance (Fig. 3). Principal components PC1 and PC2 will
function as inputs of newly designed neural networks.

The PCA method was also used for the input data of data
compression pre-processing.

NEURAL MODELS WITH APPLIED PCA

The best new artificial neural networks with two inputs (PC1
and PC2), one hidden layer and a single output are designated
as ANN(PCA) and are presented in Table 4. ANN(PCA)s of

9 86.06%
8
K
\ﬂ
<
[}
35
®©
>
5 4
k=) Two PCs
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2
1 17435 04
. 227144 0.73 0.22 0.10 0.05 0.02 0.01
-1
-1 ) 1 2 3 4 5 6 7 8 ] 10 11 12

Number of principle components

Fig. 3. Percentage of variance explained by following PCs and
Catell’s criterion
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P.min» target values

P, target values

Table 4

ANNs and ANN(PCA)s with the best prediction accuracy and their error measures

Output — ANA,\Gc(rtmitecture of NP MAE R’
raining num-
parameter ber of epo%hs) L ‘ v ‘ T L ‘ v ‘ T
ANNs
Pamin 10-4-1 (43) 49 0.050 0.052 0.065 0.73 0.65 0.82
Pamax 10-4-1 (134) 49 | 0.040 | 0.055 | 0.047 | 0.74 0.71 0.70
Pds 10-4-1 (28) 49 0.038 0.035 0.050 0.87 0.89 0.87
Wopt 10-4-1 (48) 49 1.02 1.49 1.88 0.76 0.67 0.67
ANN(PCA)s
Pamin 2-6-1 (37) 25 | 0.058 | 0.056 | 0.066 | 0.67 0.72 0.72
Pamax 2-6-1 (201) 25 | 0.047 | 0.052 | 0.050 | 0.73 0.65 0.67
Pds 2-6-1 (516) 25 0.034 0.038 0.045 0.89 0.89 0.89
Wopt 2-6-1 (325) 25 1.34 1.34 1.11 0.72 0.71 0.72
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Fig. 4. Comparison between target values and predicted values by ANNs

A — pdmin; B — pamax; C — pas; D — Wopi; other explanations as in Table 4
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Fig. 5. Comparison between target values and predicted values by ANN(PCA)s

A — pamin; B — pdamax; C — pas; D — Wop; €xplanations as in Table 4

comparable predictive quality were obtained when using 3 in-
puts (PC1-PC3) or 4 inputs (PC1-PC4) as well as 2 inputs
(PC1 and PC2). The third (PC3) and/or fourth (PC4) principal
components (variables) were not often included in the model as
a result of resetting the weights.

In conclusion of the analysis of networks, summarized in
Table 4, it can be stated that the quality of prediction of compac-
tion parameters pgmin » Pamax » Wopt @Nd pgs iS quite good, and by
applying the neural networks, the most accurately predicted pa-
rameter was pg. Comparison of neural network quality mea-
sures contained in Table 4 shows that the PCA method of data
compression enabled the construction of neural networks
ANN(PCA)s with a much smaller number of neurons, and a
smaller number of network parameters than ANNs. In contrast,
after analysing the measurements of errors MAE and R? it can
be concluded that the accuracy of predictions did not decrease
or decreased only to a small extent. Figures 4 and 5 show the

relative error (RE) of prediction by using ANN and ANN(PCA)
models, calculated according to the formula:

y(p) d(p)

- [26]
Y@

RE = x100%

RESULTS AND CONCLUSIONS

Comparing the values of the coefficient of determination in
regression models shown in Table 2 and neural models shown
in Table 4, it can be concluded that, in general, neural models
(R* = 0.67-0.89 in the test subset) have a better predictive
value than the regression models (R? = 0.31-0.78). Consider-
ing the ANNs and ANN(PCA)s models (Table 4), it can be
stated that compression of input data by the PCA method and
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reducing the number of input data to the neural networks (from
10 variables to 2 variables) resulted not only in reducing the
number of neural network parameters (from 49 to 25), but also
in improving the prediction accuracy for pgs and wp:. The small-
estimprovement in predictive quality was obtained for parame-
ter pamax, Whereas the greatest improvement in the quality of
prediction was obtained by using a neural network for the pa-
rameter pgmin (R%=0.82 and R? = 0.72 for the test subset). The
clearest correlations can be observed between soil particle size
distribution and maximum bulk density of soil matrix through the
Proctor test method pys. The ANN model (PCA) reached a
value of R? = 0.89 in the test subset. Klos et al. (2011) reports
that it was possible for modelling of pg by means of
semi-Bayesian Neural Network (SBNN) with pre-processing of
input data using PCA (array covariance matrix) for the SBNN

PCA model 10-2-1 to obtain value R? = 0.93 for the test subset.
Application of PCA in modelling the compaction curves of fly
ash using ANNs has also produced very good results and al-
lowed obtaining a neural network of satisfactory accuracy
(Zabielska-Adamska and Sulewska, 2012). It can be concluded
that the ANN tool can be used to analyse the results of experi-
mental studies and to obtain the relationships between the test
values with a better accuracy than by the regression method,
which, however, has the advantage of an explicit character of
the pattern.
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