Geological Quarterly, 2015, 59 (1): 215-228
DOI: http://dx.doi.org/10.7306/gq.1206

" Researon

Fossils from the Silesian-Subsilesian series of the Polish Western Carpathians:
the implications for changes in sea level and the marine environment
during the Albian—Turonian

Andrzej SZYDLO" *, Malgorzata JUGOWIEC-NAZARKIEWICZ* and Barbara OLSZEWSKA®
1 Polish Geological Institute — National Research Institute, Carpathian Branch, Skrzatéw 1, 31-560 Krakéw, Poland

Szydto, A., Jugowiec-Nazarkiewicz, M., Olszewska, B., 2015. Fossils from the Silesian-Subsilesian series of the Polish
Western Carpathians: the implications for changes in sea level and the marine environment during the Albian—Turonian.
Geological Quarterly, 59 (1): 215-228, doi: 10.7306/gq.1206

Foraminifera and calcareous nannoplankton, as well as other fossils from the Albian-Turonian deposits of the Western Pol-
ish Carpathians, are discussed in relation to changes in depositional environments, which were controlled by geotectonic ac-
tivity, sea level changes, and anoxic and biotic events. The distribution and diversity of fossils in the deposits studied have
been related to global sea level fluctuations or local sea level rise and fall. During the Albian to the Early Cenomanian, and in
the Turonian, the local sea level falls led to an increased supply of coarse-grained material rich in siliceous and sometimes
calcareous fossils and rock material. This cyclic process has contributed to changes in the marine biota. In the Albian,
monospecific foraminiferal assemblages with a surficial infauna which colonized bottom waters after periods of organic influx
and oxygen deficiency (OAE1b), evolved into more variable associations including deep infauna which indicate more aerobic
conditions. Under these conditions planktonic and calcareous benthic fossils (tintinnids, calcareous nannoplankton, and
foraminifera) were also preserved. Their presence was associated with the supply of terrigenous material from shallow-water
environments and land, which were eroded during regressions controlled by local tectonic activity. During the Albian-
Turonian transition, intense subsidence and volcanic activity associated with a relative sea level rise led to increased pro-
ductivity of phytoplankton in the area studied. The sea-surface productivity and enhanced upwelling resulted in expanded
short-term oxygen minima at the end of the Albian (OAE1d) and the Cenomanian (OAE2). In the latter interval benthic forms
became almost extinct while siliceous and calcareous plankton survived. In the Turonian, changes in sea level and sedimen-
tary regime led to re-colonization of the basin bottom.
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INTRODUCTION and Jenkyns, 1976; Arthur et al., 1990). The widespread distri-
bution of black shales has been regarded as reflecting Oceanic
Anoxic Events (OAEs) (Schlanger and Jenkyns, 1976). Its im-
pact on biotic evolution in the ocean was dependent on how rel-
ative sea level coincided with the nutrient supply. The flooding
of neighbouring lands and the input of nutrients during a relative
rise of sea level led to increased productivity and expansion of
the oxygen minima. Under these dysaerobic conditions, deep-
dwelling forms became extinct. Shallower dwelling radiolarians
and planktonic foraminifers survived (Leckie, 1987; Erbacher et
al., 1999; Robaszynski et al., 2010). The determination of the
oxygen minima has been correlated with the uplift of lands and
relative sea level falls, corresponding with a decreased nutrient
supply, which led to the development of new deep habitats and
to the radiation of deep-dwelling forms (Erbacher and Thurow,
1997; Erbacher et al., 1999).

The above-mentioned model allows for the correlation of
micropalaeontological data and different types of organic-rich
shale, which reflect the OAEs and sea level fluctuations in the
marine environment. It was used to explain the expansion of the

Collision between the African and European-Asiatic plates
led to important changes in global palaeogeography during the
mid-Cretaceous (e.g., Erbacher and Thurow, 1997; Hay et al.,
1999; Golonka et al., 2000; Stampfli et al., 2001; Stampfli and
Borel, 2002; Cavazza and Wezel, 2003). At that time, the
Tethys Ocean was closing and volcanic activity was unusually
high. It was responsible for changes in ocean circulation, sea
level, the carbon cycle, and sea-surface productivity or preser-
vation conditions (Bralower and Thierstein, 1984; Haq et al.,
1988; Vogt, 1989; Calvert and Pederson, 1992; Erbacher et al.,
1999, 2001; Golonka and Krobicki, 2001; Herrle et al., 2003).
All these external factors were responsible for the greenhouse
conditions in the mid-Cretaceous. At that time massive deposi-
tion of organic matter in marine environments resulted in the
formation of organic-rich deposits (black shales) (Schlanger
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oxygen minimum zone (OMZ), which caused the extinction and
radiation of foraminifers and radiolarians in the mid-Cretaceous
and the Cenomanian-Turonian transition in the North Atlantic
and the western Tethys (Erbacher and Thurow, 1997; Erbacher
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Fig. 1. Location of outcrops studied in the context of the tectonic units
of the Polish Outer Carpathians (modified from Zytko et al., 1989)

1 - Cisownica-3, 2 — Ustron, 3 — Jasienica, 4 — Jaworze, 5 — Lipnik, 6 — Kozy, 7 — Bolecin, 8 —
Rzyki, 9 — Kaczyna, 10 — Wozniki, 11 — Klecza, 12 — Barwatd Gérny, 13 — Bugaj, 14 — Brody, 15—
Lanckorona, 16 — Bysina, 17 — Barnasiowka, 18 — Lusina, 19 — Myslenice, 20 — Rajbrot

et al., 1999). An attempt to apply this model to reconstructions
of the environmental and sea level fluctuations during the
Albian—Turonian in the Western Outer Carpathian Basin has
been proposed. The northern part of this area included mar-
ginal seas, which were especially sensitive to geotectonic insta-
bility and changes in sea level during the mid-Cretaceous
(Birkenmajer and Gasinski, 1992; Slaczka et al., 1999). In the
Subsilesian and Silesian sub-basins the dynamic and rapid de-
position of siliciclastic sediments alternated with hemipelagic
and pelagic sedimentation of organic-rich shales, which partly
correspond to anoxic facies.

The formation of organic-rich siliciclastic deposits, which
contain numerous and variable mineralised skeletal parts or
components, and also crushed fragments of skeletons belong-
ing to microfossils (foraminifers, radiolarians, sponges, dino-
cysts), macrofossils (bivalves, belemnites, ammonites) and
nannofossils (calcareous nannoplankton), has been analysed
in relation to changes in the marine environment, supplies of
clastic material, and organic matter in the basin.

GEOLOGICAL AND BIOSTRATIGRAPHICAL
SETTINGS

Rock material was sampled from the Albian-Turonian de-
posits, including coarse-grained sandstone successions inter-
calated with shales or separate formations of dark green radio-
larian and variegated shales, which occur in the Silesian-
Subsilesian zone of the Western Outer Carpathians in Poland.

The deposits described are accessible in profiles located in the
Beskid S'.Iqski: Cisownica-3, Ustron, Jaworze, Jasienica; the
Beskid Maty: Lipnik, Kozy, Bolecin, Rzyki, Kaczyna, Buldo-
néwka; Lanckorona Foothills: Lusina, Wozniki, Klecza, Bugaj,
Brody, Barwatd Gérny, Lanckorona; the Beskid Sredni: Bysina,
Barnasidéwka, Jasienica near Myslenice, and also the Beskid
Wyspowy: Rajbrot. With the exception of the Wozniki, Barwaid
Gorny, Lusina, Jasienica near Myslenice, and Rajbrot sections
that contain the Subsilesian Series, in the exposures listed only
deposits of the Silesian Unit occur (Fig. 1).

In the area studied, located between the Olza and the
Dunajec rivers, the deposits sampled belong to the Albian-
Turonian Lgota and Gaize beds, the Turonian-lowermost
Turonian green radiolarian shales, and the Turonian Godula
Beds and variegated marly shales (Slaczka et al., 1993; Bak et
al., 2001; Fig. 2). The so-called Lgota Beds include three
lithostratigraphical units. There are coarse-grained sandstones
of Early Albian age containing carbonate and magmatic rocks,
spicule-rich sandstones intercalated with dark, non-calcareous
shales of the Middle-Late Albian age, and spongiolites of Late
Albian-Turonian age (Koszarski and Nowak, 1960; Bieda et al.,
1963; Geroch et al., 1967). The lower and uppermost parts of
the Lgota Beds occur only in the western part of the study area.
Sandstone series intercalated with shales, that are typical of the
middle and partly upper part of this lithostratigraphical unit, are
exposed in the remaining areas. The Lgota Beds are replaced
locally by the Gaize Beds, consisting of sponge spicules in the
northern and sporadically in the eastern uplifted parts of the
Silesian Basin, which formed as the Subsilesian sub-basin in
Cenomanian-Turonian time (Bieda et al., 1963; Geroch et al.,
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Fig. 2. Lithology and stratigraphical position of the studied series of the Silesian and Subsilesian units

1967; Alexandrowicz, 1973). In the Cenomanian, ferromanga-
nese and green radiolarian shales were typical of open seas in
the Silesian Basin while variegated biosiliceous marly shales
and silicified marls and bioturbated limestone occurred in the
Subsilesian zone. This succession, which is traditionally known
as the radiolarian beds, was partly assigned to the Barnasiéwka
Radiolarian Shale Formation by Bak et al. (2001). The
biosiliceous deposits, including tuffites and bentonites, locally
persisted to the earliest Turonian (Bak, 2000), at which time the
deposition of the Jasienica marls ceased (Liszkowa, 1972). In
the Turonian, coarse clastic turbidites (Godula Beds) were de-
posited again in the western part of the Outer Carpathian Basin,
which was divided into diverse zones of deposition (Silesian,
Lanckorona and Wieliczka zones; Ksiazkiewicz, 1962). In the
initial stage of this deposition, thick-bedded sandstones domi-
nated (Silesian zone). The sandstone succession was interca-
lated with variegated calcareous shales, which became the
dominant facies in the central part of the basin (Silesian zone)
and at its northern and eastern margins (Lanckorona and
Wieliczka zones; Koszarski et al., 1959; Ksigzkiewicz, 1962;
Stomka, 1995).

The Albian-Turonian series include biosiliceous and sili-
ceous coarse-grained turbidites (Lgota Beds, Gaize Beds and
Godula Beds) and also green and variegated shales and marls,
which contain numerous sponge spicules, radiolarians, fora-
minifers, dinocysts, benthic and nektonic macrofauna (bivalves,
belemnites and ammonites), and carbonate and crystalline
blocks (Ksiazkiewicz, 1962). Among them, foraminifers, radio-
larians, and dinocysts are usually used for biostratigraphy of the
deposits studied (Koszarski et al., 1959; Koszarski and Nowalk,
1960; Geroch, 1966; Geroch et al., 1967; Geroch and Nowak,
1984; Olszewska, 1997; Bak, 2000; Bak et al., 2000, 2005;
Gedl, 2001, 2003).

MATERIAL AND METHODS

The paper is partly based on the study of rock material taken
mainly from siliceous, marly, or limy shales, and sometimes bio-
and siliceous sandstones. The collected shaly samples were dis-
integrated by boiling and freezing. The 63 um fraction was used
for micropalaeontological analysis. The study of the selected

microfossils (foraminifers, radiolarians, and sponge spicules)
was performed under a stereoscopic optical microscope (Zeiss
Stereo Discovery.V12). In addition, the smear-slides for calcare-
ous nannoplankton investigations and the thin-sections for
micropalaeontological analysis (foraminifers, tintinnids, calcare-
ous dinocysts, and algae) were analysed using polarizing optical
microscopes. Photographic documentation was performed using
optical microscopes made by Nikon and Zeiss.

The collected micro- and nannofossils were described with
a special focus on the relationship between test morphology
and living or feeding strategy, and also ecological preferences
and fossilisation potential. These results are compared with sea
level and oxygenation changes in the marine environments.

RESULTS

The Albian-Turonian deposits contain diverse micro- and
macrofossils. Foraminifers are the most widespread group in
the deposits. This microfauna includes primarily autochthonous
forms agglutinated by silica, and also ones with calcareous ce-
ment and planktonic and calcareous benthic forms (Huss,
1957; Geroch, 1966; Geroch and Nowak, 1984; Olszewska,
1997; Bak et al., 2005; Szydto, 2008). Agglutinated forms are
numerous, while calcareous forms occur in low numbers. Peri-
odically siliceous skeletal elements of sponges and radiolarians
co-occur with them or replace them. These siliceous micro-
fossils are mainly components of spongiolites, cherty mud-
stones, and green radiolarian shales (Geroch, 1966; Geroch et
al., 1967; Geroch and Nowak, 1984; Olszewska, 1997; Gorka
and Geroch, 1998; Bak, 2000). Moreover, the silica originating
from the dissolution of these elements cemented mainly sand-
stones and conglomerates, and sometimes marly shales be-
longing to the Lgota and the Godula beds. Similarly to the sili-
ceous microfossils, dinocysts occur frequently. These or-
ganic-walled microfossils occur in the Albian-Turonian sand-
stone series and also in the Cenomanian-Turonian succes-
sions (Ged|, 2001, 2003). Important components of fossil as-
semblages are calcareous nano- and microflora and also
macrofauna, which occur periodically. Calcareous zooplankton
(tintinnids) and phytoplankton (dinocysts) were described for
the first time in the deposits studied while macrofauna (bivalves,
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ammonites and belemnites) had been reported earlier (Kosza-
rski et al., 1959; Koszarski and Nowak, 1960).

The oldest foraminiferal assemblage that is dominated by
numerous specimens of Recurvoides pseudononioninoides
Neagu (= Haplophragmoides aff. nonioninoides sensu Geroch,
1966; Neagu and Platon, 1994) is widely distributed in the lower
and middle part of the Lgota Beds of the Silesian and the
Subsilesian units (comp. with Geroch, 1966; Szydto, 2008;
Figs. 3 and 4). The mass occurrence of this taxon is known from
the underlying Verovice Beds and corresponds with the aggluti-
nated foraminiferal zone of Hpl. nonioninoides, dated to the
Early Albian age (Geroch and Nowak, 1984; Olszewska, 1997,
Fig. 2). According to Szydto (2008), the rare taxa belonging to
genera Jaculella, Hyperammina, Ammodiscus, Glomospira,
Saccammina, Caudammina, Haplophragmoides, Thalmanna-
mmina, Trochammina, Gaudryina, and Pseudobolivina are lo-
cally accompanied by the index species in the lower part of the
Lgota Beds (Cisownica-3, Jaworze, Lipnik, Kozy; Fig. 3).

In these successions few and poorly preserved radiolarians
belonging mainly to the genera Nasellaria, Dictyomitra, Sticho-
capsa, Stichocampe, and sometimes Spumellaria, Cenellipsis,
and Cenosphaera are also present (Geroch, 1966; Gorka and
Geroch, 1989). In these deposits macrofauna also occurs. This
is represented by forms belonging to Inoceramus, single
ammonites referable to Acanthoplites bigoureti (Early Albian),
and also numerous belemnite rostrae, which are correlated with
the mass occurrence zone of Neohibolites minimus (Middle
Albian; Figs. 3 and 4). In the western part of the Polish Outer
Carpathians, this macrofauna is known from the Straconka and
Lipnik localities in Beskid Maly (Koszarski and Nowak, 1960;
Szymakowska, 1980).

This macrofauna suggests that the lower part of the Lgota
Beds was mainly deposited in the Early Albian and partly also in
the Middle Albian. At the time, tintinnids (Colomiella recta, C.
semiloricata; Fig. 5A, B) and calcareous dinocysts (Colomi-
sphaera heliosphaera; Fig. 5C, see Appendix 1*) locally occur
in marls (Jasienica near Myslenice, Subsilesian Unit; Olsze-
wska, 1997; Fig. 4). These deposits were regarded as the
Jasienica marls that locally persisted into the latest Turonian
(Liszkowa, 1972).

In places, the assemblage with R. pseudononioninoides sur-
vived until the end of the succession in low frequency (Jaworze,
Rzyki, Bysina, Barnasiéwka localities; Figs. 3 and 4). In the mid-
dle and upper parts of the Lgota Beds, this assemblage is usually
replaced by the Late Albian association composed of the species
P. alternans and R. imperfectus and G. filiformis (see Appendix
1) in the Lipnik and Kaczyna localities (Fig. 3). The assemblage
described also contains numerous specimens of the genera
Plectorecurvoides and Thalmannammina (Lipnik, Bolecin; Fig.
3). This microfauna corresponds to the P. alternans Zone, which
is correlated with the Middle Albian—Cenomanian by Geroch and
Nowak (1984), or the Late Albian by Olszewska (1997) (Fig. 2).
In the latter cases, the upper part of the zone was marked by the
first occurrence (FO) of Bulbobaculites problematicus towards
the end of the Early Cretaceous (Figs. 3 and 4). In Beskid Maty
and in the Lanckorona Foothills the Lgota Beds contain
arenaceous microfauna, which are represented by the species
Haplophragmoides falcatosuturalis (Lipnik, Lanckorona -
Geroch, 1966; borehole todygowice 1G-1 — Geroch and Nowak,
1980) and Arenobulimina chapmani (Kozy, Fig. 3; Brody, Fig. 4).
These Albian forms may still be present in the Cenomanian. Sin-
gle specimens of calcareous foraminifera of the genera
Lenticulina and Pseudonodosaria locally co-occur with them
(Jaworze-Jasienica area and Kozy; Fig. 3).

In the upper part of the Lgota Beds, siliceous microfauna is
replaced by calcareous foraminifers, including planktonic and
benthic forms. The first simple inflated forms belong to Hedber-
gella delrioensis, H. infracretacea and Heterohelix moremani
(Lipnik, Bolecin, Barnasiéwka; Fig. 3) and others are represented
by the genus Rotalipora (Klecza Dolna, Fig. 4, see Appendix 1).
The benthic forms include Osangularia (O. brotzeni, O. schloen-
bachi), Lenticulina, Gyroidinoides, Discorbis, Cibicides (Ciso-
wnica-3, Lipnik, Bysina, Figs. 3 and 4; cf. with Geroch, 1966).
The calcareous foraminifer tests are often small and poorly pre-
served, showing traces of dissolution and corrosion.

Numerous spicules of sponges and very rare radiolarians
(Spumellaria) occur next to foraminifera in the deposits dis-
cussed. Radiolarians and calcareous foraminifers are preser-
ved usually as moulds composed of pyrite (Geroch, 1966; Bak,
2000).

Additionally, organic-walled dinocysts occur in the Lgota
Beds. According to Ged! (2003) these forms, occurring above
thick-bedded sandstones, correspond to the Palaeohystricho-
phora infusorioides Zone of Late Albian age and they are corre-
lated with the Albian-Turonian transition (Epelidophaeridia
spinosa Zone) in the upper part of the Lgota Beds (Gedl, 2003).
Generally, palynofacies occurring in the lower part of the Lgota
Beds are dominated by forms belonging to Pterodinium and by
diversified endocysts belonging to the genera Ovoidinium,
Odontichitina, Muderongia, Apteodinium, Canningia, Cyrculo-
dinium, Pseudoceratinium, and also peridinioids (Lipnik; Gedl,
2001, 2003). Peridinioids also dominate in the upper part of the
Lgota Beds. Along with the dominant Palaeohystrichophora
infusorioides there co-occur numerous black organic objects
(phytoclasts) (Lipnik, Rzyki, Barnasiowka; Ged|, 2003). At the
top of this succession blooms of Pseudoceratinium, Subtili-
sphaera, and Ovoidinium are noted (Lipnik, Kozy, Rzyki).

In spicule-rich deposits, which are assigned to the Gaize
Beds, the number and diversity of the foraminifers distinctly de-
crease. The microfauna is represented by calcareous benthic
foraminifera of the Albian—Turonian (Berthelina intermedia, B.
berthelini, Gyroidinoides infracretaceus, Valvulineria loetterlei,
Patellina subcretacea). Part of them is poorly preserved. These
forms belong to the genera Lagena and Cibicides (Klecza-
Babica and WozZniki localities; Fig. 4) or Guttulina and Planularia
(Barwatd; Fig. 4). Planktonic foraminifers belonging to Rotalipora
co-exist with them (cf. Liszkowa, 1956; Huss, 1957). In these
biosiliceous rocks, calcareous nannoplankton have been re-
ported. In the vicinity of Barwatd Gorny (Fig. 4), reworked Juras-
sic species occur (Watznaueria barnesae, Polypodorhabdus
escaigii, Ellipsogelosphaera britannica, Zeugrhabdotus erectus,
Cretarhabdus conicus, Stephanolithion atmetos, C. crenulatus,
Lotharingius hauffii, Crepidolithus granulatus, and specimens of
Manivitella pemmatiodea; Fig. 6, see Appendix 1) known from
the Hauterivian; in addition, calcareous benthic foraminifers be-
longing to the genera Guttulina, Planularia, and Lenticulina are
described. Moreover, calcareous nannoplankton including
long-lived forms (Vagalapilla matalosa, Watznaueria barnesae,
Glaukolithus diplogrammus), and those from the Barremian (Gl.
compactus) and the Albian-Turonian (Prediscosphaera
columnata) are reported from Wozniki (Figs. 4 and 6, see Appen-
dix 1). The assemblages described correspond to intervals CC8
and the CC9. In the same sample, agglutinated foraminifers be-
longing to B. problematicus, the FO of which is located in the
highest Albian, were found.

In silicified variegated shales and marls, as opposed to
spongiolites, there occur not only radiolarians and sponge
spicules but also planktonic forms. The dominant component of

* Supplementary data associated with this article can be found, in the online version, at doi: 10.7306/gq.1206
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Fig. 4. The distribution and variability of fossil material from the profiles studied of the Subsilesian Unit

Data compiled by the authors of this study, including their ow|

n results and the results on radiolarians and dinocysts published

by Bak (2000) and Gedl (2001, 2003) respectively; for other explanations see Figure 3

planktonic associations is made of spherical skeletons of radio-
larians belonging to the genera Holocryptocanium and Hemi-
cryptocapsa (Bak, 2000), as well as smaller conical forms of
Dictyomitra, which appear rarely in the Lgota Beds of the
Silesian Unit (cf. Geroch, 1966; Gorka and Geroch, 1989).
These forms, belonging to the Nassellaria and the Spumellaria
(Praeconocaryomma, Patellula), occurred in the Late Cenoma-
nian—Early Turonian (Bak, 2000). In Albian-Cenomanian time,
dinocysts and planktonic foraminifers co-existed with them. The
first are calcareous forms belonging to the species Ortho-
pithonella sphaerica and O. ovalis (Fig. 5D, E; Rajbrot, Sub-
silesian Unit; Olszewska, 1997), and organic-walled taxa
(Silesian Unit; Bak et al., 2000). Foraminiferal plankton, which

are represented by forms typical of the Cenomanian (Schac-
koina, Rotalipora) and the Cenomanian—Early Turonian (Prae-
globotruncana stephani), were described in green shales of the
Subsilesian Unit occurring between and under radiolarites in
Wegléwka (Huss, 1957) and Tuchéw, Targanice, and Czaniec
Gorny (Koszarski et al., 1959) respectively. In the green shales,
which include radiolarites, planktonic forms belonging to the
genera Hedbergella, Guembelitria, Hetereholix (Fig. 5F-H)
were also noted at Rajbrot (cf. Olszewska, 1997).

In the Cenomanian variegated shales of the Silesian Unit, in
which siliceous foraminifers are often lacking (Kaczyna; Fig. 3)
planktonic foraminifers belonging to the genera Hedbergella
and Heterohelix occur in low numbers (Barnasiéwka; Fig. 4). In
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Fig. 5. Calcareous plankton including tintinnids, dinocyst and foraminifers

Tintinnids: A — Colomiella recta Bonet, B — C. semiloricata Trejo (A, B — Jasienica n. Myslenice;
Subsilesian Unit); calcareous dinocysts: C — Colomisphaera heliosphaera (Vogler), Jasienica n.
Myslenice (Subsilesian Unit); D — Orthopithonella sphaerica (Kaufman); E — O. ovalis (Kaufman) (D, E —
Rajbrot; Subsilesian Unit); foraminifers: F — Hedbergella delrioensis Carsey, G — Guembelitria cenomana
Keller; H — Heterohelix moremani (Cushman) (F-H — Rajbrot; Subsilesian Unit)
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Fig. 6. Calcareous nannoplankton

A — Watznaueria barnesae (Barwald Gorny, Gaize Beds, Subsilesian Unit); Ba, Bb —
Cyclagelosphaera margerelii (Buldonéwka, Godula Beds, Silesian Unit); C — Glaukolithus com-
pactus (Wozniki, Gaize Beds, Subsilesian Unit); D — Ellipsagelosphaera lucasii; E — E.
fossacincta; F — E. britannica; G — Lotharingius hauffii (D-G — Barwatd Gorny, Gaize Beds,
Subsilesian Unit); Ha, Hb — Prediscosphaera columnata (Wozniki, Gaize Beds, Subsilesian
Unit); | — Cretarhabdus crenulatus (Barwatd Gérny, Gaize Beds, Subsilesian Unit); J — Cr.
conicus; Ka, Kb — Ephrolithus floralis (J, K — Buldonéwka, Godula Beds, Silesian Unit); La, Lb —
Vagalapilla sp. (Wozniki, Gaize Beds, Subsilesian Unit); M — Polypodorhabdus escaigii
(Barwald Gorny, Gaize Beds, Subsilesian Unit); N — Ethmorhabdus gallicus (Buldonéwka,
Godula Beds, Silesian Unit); O — Stephanolithion atmetos; P — Crepidolithus granulatus; Ra, Rb
— Manivitella pemmatoidea; S — Zeugrhabdotus erectus (O—S — Barwatd Gérny, Gaize Beds,
Subsilesian Unit); T — Vagalapilla matalosa (Wozniki, Gaize Beds, Subsilesian Unit) (see Ap-
pendix 1)
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calcareous shales of the same age, agglutinated forms (Recur-
voide sgodulensis, R. variabilis, Thalmannammina neocomie-
nsis, Uvigerinammina praejankoi or Bulbobaculites problema-
ticus — see Appendix 1; Kaczyna, Klecza Dolna) co-exist with
single specimens of Rotalipora (Rzyki; Figs. 3 and 4). Apart
from these, Falsogaudryinella moesiana occurs very rarely
(Lanckorona; Fig. 4). Its occurrence determines the age of the
variegated shales as being of the earliest Cenomanian.

In the Turonian, these facies were replaced locally by thick-
bedded and coarse-grained sandstones, which are typical of
the bottom of the Godula Beds (Stomka, 1995). In this part of
the succession, macrofauna, including poorly preserved and
crushed shells of ammonites and bivalves of the genus Ino-
ceramus, occurs locally (Koszarski et al., 1959). In other areas,
variegated shales, which occur as intercalations in the glauco-
nitic sandstones, contain rare foraminifers. Single specimens of
the planktonic Marginotruncana coronata, the FO of which cor-
responds to the Late Turonian, appear in the Outer Carpathian
region (Buldonéwka; Fig. 3). In the same sample, mixed and re-
worked calcareous nannoplankton belonging to the species W.
barnesae, E. gallicus, Cyclagelosphaera margerelii, Cretarha-
bdus conicus and E. floralis are present (Fig. 6, see Appendix
1). The last form corresponds to the Aptian-Santonian interval
(cf. Caron, 1985). In places, the Turonian Godula sandstones
are intercalated with variegated shales containing agglutinated
foraminifers: N. excelsa, C. ovulum, G. lenis and U. jankoi (Fig.
4, see Appendix 1; cf. Geroch et al., 1967).

CHANGES IN THE DEPOSITIONAL
ENVIRONMENTS

In the Silesian-Subsilesian zone of the Outer Carpathian Ba-
sin, biosiliciclastic sedimentation prevailed during the
Albian—Turonian. This sedimentary process was clearly related
to geotectonic and volcanic activities, which resulted in relative
sea level fluctuations and anoxic or biotic events (Ksigzkiewicz,
1961, 1975; Gucwa and Wieser, 1980; Olszewska, 1984,
Gucwa, 1990; Bak et al., 2001, 2005; Olszewska and Malata,
2006; Bak, 2007; Szydto, 2008; Olszewska and Szydio, 2012).
The availability of oxygen and organic matter content in depo-
sitional environments was also controlled by these settings. All
these factors had strong influence on the evolution and distribu-
tion of biotopes and on fossilisation in the deposits. The fossils,
especially calcareous forms, are generally poorly preserved in
the deposits studied, and are strongly affected by diagenetic pro-
cesses. Calcareous fossils include benthic and planktonic fora-
minifers, as well as nannoplankton, calcareous dinocysts, and
the shells of bivalves and ammonites. Calcareous fossils similar
to belemnites, siliceous skeletal elements of radiolarians and
sponges and also organic dinocysts were reworked and mixed
many times before they finally accumulated in the deposits. Cal-
careous or siliceous skeletons of benthic forms originated in
shallow water environments, which were destroyed during the
uplift of areas and the sea level falling, especially in the Early
Albian and the Early Turonian, and locally in the Late Albian. The
occurrence of the organic-walled dinocysts, which are character-
istic of low salinity (Ovoidinium, Odontichitina, Muderongia) and
terrestrial (peridinioids) environments, coincided with these
events during the Albian. These organic-walled cysts had thin
and delicate shells devoid of complex appendages (Gedl, 2003).
Probably tintinnids belonging to Colomiella as index fossils for

the Late Aptian—Early Albian (Longoria, 1973) co-existed with
them (Jasienica near Myslenice, Subsilesian Unit; Olszewska,
1997; Figs. 3-5 and 7).

This bioclastic material was transported periodically by tur-
bidity currents on slopes. In the initial stages of the process the
coarse-grained sandstones of the Lgota, the Gaize, and the
Godula beds accumulated. These deposits include the broken
and crushed skeletons of benthic (bivalves) and nektonic (bel-
emnites and ammonites) macrofauna, and also crystalline
(magmatic, metamorphic) or carbonate blocks characterized by
a low degree of weathering (Wieser, 1948; Koszarski and
Nowak, 1960; Szymakowska, 1980). In addition, the almost
monospecific assemblages of macrofauna contained belem-
nites, which show evidence of wave action (Lipnik; Koszarski,
and Nowak, 1960).

The formation of these deposits was related to sudden brief
transport of sediments downslope over a short distance (Lee et
al., 2007; Szydto, 2011). Calcareous bioclastic material was lo-
cally supplied. Individual planktonic forms, accompanied by
rare benthic forms, were transported in long-distance suspen-
sion currents during the Albian-Turonian transition. In the upper
part of the Lgota Beds containing spongiolites (Albian-
Turonian), agglutinated microfauna were occasionally replaced
by calcareous foraminiferal associations, which consist of op-
portunistic planktonic (Hedbergella, Heterohelix) or benthic
forms represented by the genera Osangularia, Lenticulina,
Gyroidinoides, Discorbis, Cibicides, and Dentalina (Geroch,
1966; Bak et al., 2005; Szydto, 2008). These calcareous forms
inhabited the near-shore environments, and part of them ex-
isted under anaerobic conditions (Berhnard, 1986; Koutsoukos
et al., 1990); they are usually preserved as moulds composed
of pyrite (Geroch, 1966; Bak, 2000). Similar calcareous benthic
foraminifers and mostly reworked calcareous nannoplankton,
and also planktonic foraminifera and tintinnids, appeared peri-
odically during the deposition of the Gaize Beds in the Albian-
Turonian transition and of the Godula Beds in the Early
Turonian (Figs. 3, 4 and 7). Massive corroded tests of deep-
dwelling planktonic forms (Rotalipora) sensitive to environmen-
tal changes (Gaize Beds; Liszkowa, 1956) or better preserved,
epifaunal benthic forms belong mainly to active deposit feeders
(Berthelina, Gyroidinoides, Valvulineria, Patellina, Cibicides)
that are observed in the studied samples of these biosiliceous
deposits (Figs. 3 and 4). Benthic foraminifera and calcareous
nannoplankton were noted in hemipelagic deposits forming
sandstone intercalations, while planktonic foraminifera and
tintinnids appeared in hemipelagic and pelagic deposits, which
formed as independent lithostratigraphic units. Their relation-
ship was related to short- or long-lasting periods of low tectonic
activity and minor eustatic changes, respectively.

During the supply of coarse-grained turbidities into the ba-
sin, deep-water circulation was reactivated, the upwelling in-
creased, and the nutrient supplies were more frequent and in-
tense. These factors had an impact on the spread on diverse
agglutinated assemblages. In the Albian, assemblages in-
cluded mainly shallow and surficial epifauna (Plectorecurvo-
ides, Recurvoides, Thalmannammina) accompanied by a few
deep infaunal forms such as Gaudryina, Bulbobaculites, and
Arenobulimina (Figs. 3, 4 and 7). In the upper part of the Lgota
Beds, bacterial and detritus feeders occurred locally in high
numbers (Haplophragmoides falcatosuturalis; Geroch, 1966;
Geroch and Nowak, 1984; Szydto, 2008). Numerous and di-
verse agglutinated foraminifera, belonging to shallow or deep
infauna, were observed in light grey and green shales of the
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Fig. 7. Faunal changes in agglutinated foraminiferal assemblages in relation to facies models and sea level fluctuations,
geotectonic activity, and also oceanic anoxic and biotic events

Assemblages with: 1 — surficial epifauna (Recurvoides), la — surficial epifauna (Recurvoides), semi-infauna (Jaculella) and rare deep
infauna (Gaudryina, Pseudobolivina), 2 — surficial epifauna (Recurvoides) and shallow infauna (Plectorecurvoides), 3 — numerous mobile
(Haplophragmoides) and very rare deep (Bulbobaculites, Arenobulimina) infauna, 4 — very rare deep infauna (Uvigerinammina, Gaudryina),
5 — surficial infauna (Recurvoides) or/and surficial infauna (Uvigerinammina, Gerochammina), 6 — suspension (Nothia) and attached

epifauna (Ammodiscus)

Lgota Beds as well as in the Cenomanian-Turonian variegated
shales, which occur as intercalations in the lower part of the
Godula Beds, or constitute a separate lithological unit. Speci-
mens of shallow infauna (Recurvoides) are numerous, while
mobile (Haplophragmoides) and deep infauna (Uvigerina-
mmina, Falsogaudryinella, Gaudryina) rarely occur. The deep
infauna (Gerochammina and Uvigerinammina), including active
deposit and bacterial feeders, dominated in variegated shales
of the Turonian (Figs. 3, 4 and 7). The accompanying epifaunal
suspension feeders (Nothia) and forms attached to marine
plants (Ammaodiscus) are rare. The surface waters were colo-
nized by deep-dwelling planktonic forms (Marginotruncana) at
that time (Fig. 3). During the homogeneous sedimentation, an
impoverished foraminiferal microfauna existed under the condi-
tions of organic influx and oxygen deficiency, which dominated
during the relative sea level rise. In the Early Albian, impover-
ished agglutinated foraminiferal assemblages, similar to those
from the Verovice Shales, persisted under dysaerobic condi-
tions (OAE1b) in the separated parts of the basin. The mono-
specific agglutinated assemblages known as biofacies B
(Severin, 1983; Kuhnt and Kaminski, 1990), including mainly
surficial infauna (Recurvoides), which are accompanied by rare
deep infauna (Gaudryina, Pseudobolivina) or scarce semi-
infauna (Jaculella) and epifauna (Glomospira), appeared in

black organic-rich deposits (lower part of the Lgota Beds; Figs.
3 and 7). In this period, plankton, including calcareous dino-
cysts and tintiniids (Colomiella), probably accumulated in the
separated parts of the basin. In the Late Albian and Turonian,
intense subsidence and volcanic activity associated with a
eustatic sea level rise influenced increased phytoplankton pro-
ductivity and radiolarian blooms (CBTE). Siliceous plankton
productivity and enhanced upwelling led to expanded
short-term oxygen minima in the Late Albian (OAE1d) and in
the latest Cenomanian (OAE2). In these periods of deficient ox-
ygen levels, agglutinated foraminifers became almost extinct in
the bottom waters, while planktonic forms locally survived near
the surface (Hedbergella, Heterohelix, Guembelitria) and in sur-
face waters (Rotalipora, Praeglobotruncana; Caron, 1985; Le-
ckie, 1987; Leckie et al., 2002). The first forms occurred in the
upper part of the Lgota Beds, including spongiolites, and the lat-
ter were noted in the variegated (green and red) shales belong-
ing to the so-called radiolarian beds (Huss, 1957; Liszkowa,
1956). In these pelagic deposits of the Cenomanian—Turonian,
the number of dinocysts specific for open areas (Pterodinium)
increased (Bak et al., 2000). Forms of this type also occurred
periodically in hemipelagic deposits of the Albian (Lgota Beds).
This coincided with changes in relative sea level and phyto-
plankton productivity at the time.
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DISCUSSION

Changes in fossil assemblages are very closely related with
sedimentary processes and environmental parameters, which
are shaped by geotectonic and volcanic activities and also sea
level fluctuations and anoxic and biotic events. Agglutinated
foraminifers are regarded as autochthonous microfauna and
therefore are closely related to depositional environments (e.g.,
Haig, 1979; Olszewska, 1984; Jones and Charnock, 1985;
Loubere, 1989; Kuhnt et al., 1989, 1992; Szydto, 2008). The
simplification of foraminiferal assemblages may mainly be ob-
served under low oxygen conditions and high organic flux. Ag-
glutinated foraminifers existed as bacterial, deposit, and detri-
tus feeders under dysaerobic conditions in the Early Albian
(OAE1b) and the Late Albian (OAE1d). In the long perspective,
decay of the organic matter contributed to oxygen consumption
in the bottom waters and finally led to the disappearance of ben-
thic life. This was intensified by volcanic activity and a maximal
deepening of the basin during pelagic sedimentation. The im-
poverished assemblages could also reflect the short sedimen-
tation periods just after the sudden supply of coarse-grained
material into the basin. In the long perspective, the supply of the
sandstones contributed to the increase of water circulation and
oxygenation of the basin floor. Consequently, these sedimenta-
tion episodes favoured numerous and variable deep water
morphotypes, which assembled the second ecological type of
foraminiferal assemblages.

Faunal changes in the agglutinated microfauna coincided
with the supply of calcareous bioclastic material and caused
phytoplankton productivity to fluctuate. This event was proba-
bly recorded for the first time in the Early Albian. It was corre-
lated with the occurrence of tintinnids (Colomiella), which are
preserved in marly sediments of the Subsilesian Unit (Ol-
szewska, 1997).

Agglutinated foraminiferal assemblages were periodically
replaced by planktonic and calcareous benthic foraminifers dur-
ing the Albian-Turonian transition. At the time of tectonic insta-
bility and dynamic changes in sedimentation, calcareous
nannoplankton, including mainly forms which were resistant to
dissolution, and limestone of the Stramberk type had been sup-
plied. Carbonate rocks, including calcareous nannoplankton,
originated mainly from former Jurassic platforms, which were
uplifted and eroded intensely in the separated parts of the ba-
sin. These events coincided with the widespread destruction of
sponge “reefs”, which provided material for forming the bio-
siliceous deposits (cherty mudstones and spongiolites). In
these settings, organic-walled dinocysts of littoral and low salin-
ity environments dominated.

These organic-walled cysts were replaced gradually by
forms characteristic of open seas during the Cenomanian. At
that time, planktonic siliceous forms (radiolarians) were wide-
spread. The expansion and radiation of the phytoplankton was
related to low tectonic activity and low-energy sedimentation.
Deposition of this type dominated in the Subsilesian Zone,
while the sedimentation of sponge-rich biosiliciclastic deposits
prevailed in the Silesian Zone. Under these conditions specific
planktonic foraminifers survived. Their extinction was caused
by the formation of the OMZ in the surface waters during the
Late Albian (OAE1ld) and the latest Cenomanian (OAE2).
Some of these, as eurytopic forms, had a wider ecological toler-
ance (Heterohelix, Hedbergella, Guembelitria), and other ones,

as stenotopic forms, were very environmentally sensitive
(Rotalipora, Praeglobotruncana; Leckie, 1987; Gasinski, 1997;
Hart, 1999; BouDagher-Fadel, 2013). The first were shallow-
dwelling forms, while the latter represented deep dwelling
microfossils. This sequence of planktonic foraminifers distinctly
coincided with the enhanced upwelling that led to the uplift of
anoxic waters into the surface at the time.

During the Turonian, the evolution of planktonic foraminifera
correlated with dynamic changes in depositional environments,
which were induced by the renewed supply of terrigenous mate-
rial. This material mainly originated from the eastern uplifted
parts of the Silesian Basin, formed as the Subsilesian sub-ba-
sin, in Cenomanian—Turonian time. The biogenic material, in-
cluding calcareous skeletal elements of planktonic forms, were
locally supplied in that time. These were calcareous nanno-
plankton of the Jurassic and the Early Cretaceous, and fora-
minifera of the Turonian—Santonian. Apart from new keeled
plankton belonging to Marginotruncana, agglutinated benthos
that is represented by forms belonging to Uvigerinammina and
Gerochammina occur in foraminiferal assemblages. Faunal
changes in foraminiferal associations were correlated with the
development of new niches during the sedimentation of varie-
gated calcareous deposition in the Turonian.

CONCLUSIONS

The sequences of the fossils described were clearly re-
lated to sea level changes and also to phytoplankton produc-
tivity during the Albian—Turonian. The number, diversity, and
preservation of the fossils discussed correspond with oceanic
maximum anoxic (OAE1b, OAE1d, OEA2) and biotic (CTBE)
events, which can be correlated with geotectonic and volcanic
activity in the Outer Carpathian Basin. During and after each
type of event there occurred significant faunal changes in
foraminiferal assemblages. Usually, the decreased variability
and number of the microfauna coincided with dominant sili-
ceous fossils (sponge spicules, radiolarians) during the Late
Albian—Cenomanian or the Cenomanian—Turonian. In these
intervals, such microfossils were the predominant compo-
nents of organic-rich deposits (cherty mudstones, spongiolites
and radiolarian shales). The spicule-rich deposits included
also skeletal elements of macro- and microfossils and also
rock clasts from near shore environments and land, which
were uplifted and eroded at the time. The accumulation of
radiolarian skeletons in large masses coincided with a maxi-
mal subsidence and eustatic sea level rise, which previously
resulted in radiolarian blooms (CTBE; Thurow, 1988; Bau-
mgartner et al., 1992). Just before and during this event, en-
hanced volcanic activity and upwelling were associated with
an increased surface productivity and the deficiency of oxygen
in subsurface waters due to oxidation of organic carbon
(Gucwa and Wieser, 1980; Vogt, 1989). This led to expanded
and intensified oxygen minima, which coincided with the elimi-
nation of life in bottom (agglutinated foraminifers) and then in
surface waters (foraminifers, radiolarians and dinocysts). Dur-
ing the Turonian, tectonic reorganization of the basin led to the
reactivation of coarse-grained turbidites containing reworked
macrofossils and rock blocks similar to those from the Lower
Albian thick-bedded deposits, but in low numbers. Finally,
coarse-grained deposits were gradually replaced by hemipe-
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lagic variegated shales during the Turonian. At that time, di-
versified agglutinated and single planktonic foraminifera rep-
resented mainly by deep-dwelling forms existed in the bottom
or subsurface waters.
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